跳转到主要内容gydF4y2Ba

3 d模拟gas-laden液体流在离心泵和双流体CFD方法的评估gydF4y2Ba

文摘gydF4y2Ba

双流体模型的评估假设连续液体和分散气相三维计算流体动力学(CFD)模拟的气体/液体流离心泵进行研究。一种单分散的双流体模型,结合统计涡粘性湍流模型,利用。通过全面的测量数据库,启用了一个彻底的评估模型不准确。水平扩散流的结果表明,湍流模型模拟精度的一个主要限制气体/液体流动。关于泵流量,区分单相和两相流在一个封闭和半开的叶轮是找到了。甚至单相流模拟揭示挑战要求较高的空间分辨率,例如,圆形的叶片后缘和叶尖间隙流的差距。在两相泵操作中,气体累积导致相干气体口袋,预计部分叶片通道内的错误的位置上。在最好的情况下,气体的定性预测积累,低头向增加进口气体体积分数(gydF4y2BaIGVFgydF4y2Ba)可以获得。双流体泵流方法的主要限制是发现的违反稀释,分散相假设由于本地高分散相加载在连贯的气体累积。在这些情况下,泡沫人口模型没有出现有益的单分散泡沫相比分布。Volume-of-Fluid(受到)方法可以用来捕获相界面的气腔,积累要求很高的空间分辨率。因此,一个混合模型,即。,a dispersed phase two-fluid model including polydispersity for flow regions with a dilute gas phase, should be combined with an interphase capturing model, e.g., in terms of VOF. This hybrid model, together with scale-resolving turbulence models, seems to be indispensable for a quantitative two-phase pump performance prediction.

缩写gydF4y2Ba

bgydF4y2Ba:gydF4y2Ba

叶片宽度(米)gydF4y2Ba

CgydF4y2BaDgydF4y2Ba:gydF4y2Ba

无因次阻力系数(-)gydF4y2Ba

dgydF4y2BaBgydF4y2Ba:gydF4y2Ba

泡沫直径(米)gydF4y2Ba

dgydF4y2Ba32gydF4y2Ba:gydF4y2Ba

索特平均直径(米)gydF4y2Ba

dgydF4y2Ba胡gydF4y2Ba:gydF4y2Ba

水力直径(米)gydF4y2Ba

DgydF4y2Ba:gydF4y2Ba

叶轮直径(米)gydF4y2Ba

ggydF4y2Ba:gydF4y2Ba

重力(m / sgydF4y2Ba2gydF4y2Ba)gydF4y2Ba

养狐业gydF4y2Ba:gydF4y2Ba

气体体积分数(-)gydF4y2Ba

hgydF4y2BarelgydF4y2Ba:gydF4y2Ba

相对扩散高度(-)gydF4y2Ba

HgydF4y2Ba:gydF4y2Ba

泵头(m)gydF4y2Ba

IGVFgydF4y2Ba:gydF4y2Ba

入口气体体积分数(-)gydF4y2Ba

kgydF4y2Ba:gydF4y2Ba

湍流动能(m2 / s2)gydF4y2Ba

lgydF4y2BaDgydF4y2Ba:gydF4y2Ba

相对扩散器长度(-)gydF4y2Ba

ngydF4y2Ba:gydF4y2Ba

旋转速度(sgydF4y2Ba−1gydF4y2Ba)gydF4y2Ba

ngydF4y2Ba问gydF4y2Ba:gydF4y2Ba

特定的速度(分钟gydF4y2Ba−1gydF4y2Ba)gydF4y2Ba

PgydF4y2Ba:gydF4y2Ba

压力(Pa)gydF4y2Ba

问gydF4y2Ba:gydF4y2Ba

流量(mgydF4y2Ba3gydF4y2Ba/秒)gydF4y2Ba

再保险gydF4y2Ba:gydF4y2Ba

雷诺数(-)gydF4y2Ba

年代gydF4y2Ba:gydF4y2Ba

叶尖间隙的高度差距(m)gydF4y2Ba

TgydF4y2Ba:gydF4y2Ba

转矩(Nm)gydF4y2Ba

ugydF4y2Ba:gydF4y2Ba

流向速度(米/秒)gydF4y2Ba

VgydF4y2Ba:gydF4y2Ba

卷(米gydF4y2Ba3gydF4y2Ba)gydF4y2Ba

ygydF4y2Ba+gydF4y2Ba:gydF4y2Ba

无因次墙墙的距离相邻细胞(-)gydF4y2Ba

zgydF4y2Ba:gydF4y2Ba

叶片数(-)gydF4y2Ba

ωgydF4y2Ba:gydF4y2Ba

特定的耗散(年代gydF4y2Ba−1gydF4y2Ba)gydF4y2Ba

βgydF4y2Ba:gydF4y2Ba

桨叶角(°)gydF4y2Ba

Ω:gydF4y2Ba

角速度(rad / s)gydF4y2Ba

εgydF4y2Ba:gydF4y2Ba

耗散(mgydF4y2Ba2gydF4y2Ba/秒gydF4y2Ba3gydF4y2Ba)gydF4y2Ba

ηgydF4y2Ba:gydF4y2Ba

效率(-)gydF4y2Ba

ρgydF4y2Ba:gydF4y2Ba

密度(公斤/米gydF4y2Ba3gydF4y2Ba)gydF4y2Ba

1 d,gydF4y2Ba二维gydF4y2Ba3 d:gydF4y2Ba

一个,两个,三维的gydF4y2Ba

Avg:gydF4y2Ba

平均gydF4y2Ba

BSLEARSM:gydF4y2Ba

k-ωgydF4y2Ba(基线)基于显式代数雷诺应力模型gydF4y2Ba

BSLReyStr:gydF4y2Ba

k-ωgydF4y2Ba(基线)基于微分雷诺应力模型gydF4y2Ba

CFD:gydF4y2Ba

计算流体动力学gydF4y2Ba

置信区间:gydF4y2Ba

封闭的叶轮gydF4y2Ba

ESP:gydF4y2Ba

电动潜油泵gydF4y2Ba

经验值:gydF4y2Ba

实验gydF4y2Ba

G1, G2, G3:gydF4y2Ba

粗,中,细网格计算泵gydF4y2Ba

G2A、G2B G2C:gydF4y2Ba

细化网格基于G2叶尖间隙水平差距gydF4y2Ba

GGI:gydF4y2Ba

一般网格界面gydF4y2Ba

iMUSIG:gydF4y2Ba

非齐次多个大小组模型gydF4y2Ba

keEARSM:gydF4y2Ba

k -εgydF4y2Ba基于显式代数雷诺应力模型gydF4y2Ba

领导:gydF4y2Ba

发光二极管gydF4y2Ba

马克斯:gydF4y2Ba

马克斯gydF4y2Ba

分钟:gydF4y2Ba

最低gydF4y2Ba

OP1, OP2:gydF4y2Ba

第一次和第二次扩散器操作点gydF4y2Ba

情景应用程序:gydF4y2Ba

Scale-adaptive湍流模型gydF4y2Ba

SC G1-G4:gydF4y2Ba

计算网格细化级别的单通道模型gydF4y2Ba

风场:gydF4y2Ba

剪切应力传输湍流模型gydF4y2Ba

受到:gydF4y2Ba

Volume-of-FluidgydF4y2Ba

OI:gydF4y2Ba

半开的叶轮gydF4y2Ba

答:gydF4y2Ba

空气gydF4y2Ba

c:gydF4y2Ba

细胞gydF4y2Ba

提单:gydF4y2Ba

叶片gydF4y2Ba

我gydF4y2Ba:gydF4y2Ba

我gydF4y2Bath位置gydF4y2Ba

小鬼:gydF4y2Ba

叶轮gydF4y2Ba

w:gydF4y2Ba

水gydF4y2Ba

选择:gydF4y2Ba

CI的最高效率点gydF4y2Ba

合计:gydF4y2Ba

总gydF4y2Ba

1:gydF4y2Ba

入口gydF4y2Ba

2:gydF4y2Ba

出口gydF4y2Ba

引用gydF4y2Ba

  1. Ansys》2017。ANSYS CFX-Solver理论指导,18.0版本。美国宾夕法尼亚州Canonsburg。gydF4y2Ba

  2. 地方,R。,Parrondo, J., Blanco, E. 2010. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points.第一版的液体gydF4y2Ba39:859 - 870。gydF4y2Ba

    数学gydF4y2Ba谷歌学术搜索gydF4y2Ba

  3. 巴斯,t·J。,Jespersen, D. C. 1989. The design and application of upwind schemes on unstructured meshes. In: Proceedings of the 27th Aerospace Sciences Meeting.

  4. Cappelino, c。滚,d R。,Wilson, G. 1992. Design considerations and application guidelines for pumping liquids with entrained gas using open impeller centrifugal pump. In: Proceedings of the 9th International Pump Users Symposium, 51–60.

  5. Caridad, J。,Asuaje, M., Kenyery, F., Tremante, A., Aguillon, O. 2008. Characterization of a centrifugal pump impeller under two-phase flow conditions.J宠物Sci抛光工艺gydF4y2Ba63:在18到22岁的。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  6. Caridad, J。,Kenyery, F. 2004. CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures.J Energ Res科技gydF4y2Ba,126:99 - 104。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  7. 张,s c·P。杨紫琼,g . H。,你,j . Y。2008. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes.AIChE JgydF4y2Ba54:1689 - 1710。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  8. Domgin, j·F。Gardin, P。,Brunet, M. 1999. Experimental and numerical investigation of gas stirred ladles. In: Proceedings of the 2nd International Conference on CFD in Minerals and Process Industries, 181–186.

  9. 段,x Y。,张,s c·P。杨紫琼,g . H。,你,j . Y。,Krepper E。卢卡斯,D。2011. Gas-liquid flows in medium and large vertical pipes.化学Eng ScigydF4y2Ba,66:872 - 883。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  10. Dupoiron, m . a . n . 2018。气体在多级混流离心泵的影响。博士论文。剑桥大学。gydF4y2Ba

  11. 起来Y。,表示“状态”,F。2008. Development and application of SST-SAS turbulence model in the DESIDER project. In:先进的混合RANS-LES造型。指出在计算流体力学和多学科设计、卷》97。gydF4y2Ba彭,工程学系。,Haase, W. Eds. Springer Berlin Heidelberg, 261–270.

    谷歌学术搜索gydF4y2Ba

  12. Furukawa先生。Togoe, T。佐藤,S。,Takamatsu, Y. 1988. Fundamental studies on a tandem bladed impeller of gas/liquid two-phase flow centrifugal pump. Memoirs of the Faculty of Engineering Kyushu University, 231–240.

  13. Grotjans, H。,表示“状态”,f R。1998. Wall functions for general application CFD codes. In: Proceedings of the 4th Computational Fluid Dynamics Conference, 1112–1117.

  14. Hansch, S。,Lucas, D., Höhne, T., Krepper, E. 2014. Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle.诊断Eng DesgydF4y2Ba,279:171 - 181。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  15. Hansch, S。,Lucas, D., Krepper, E., Höhne, T. 2012. A multi-field two-fluid concept for transitions between different scales of interfacial structures.Int J多相流gydF4y2Ba47:171 - 182。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  16. Hundshagen, M。曼苏尔,M。,Thévenin, D., Skoda, R. 2019a. Experimental investigation and 3D-CFD simulation of centrifugal pumps for gasladen liquids with closed and semi-open impellers. In: Proceedings of the 4th International Rotating Equipment Conference.

  17. Hundshagen, M。曼苏尔,M。,Thévenin, D., Skoda, R. 2019b. Numerical investigation of two-phase air-water flow in a centrifugal pump with closed or semi-open impeller. In: Proceedings of the 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Paper ID: ETC2019-011.

  18. 溶血性尿毒综合征,。,B我ringen, S. 1993. Direct numerical simulation of turbulent flow in a square duct.J流体机械gydF4y2Ba,257:65。gydF4y2Ba

    数学gydF4y2Ba谷歌学术搜索gydF4y2Ba

  19. 江,Q。,Heng, Y., Liu, X., Zhang, W., Bois, G., Si, Q. 2019. A review of design considerations of centrifugal pump capability for handling inlet gas-liquid two-phase flows.能量gydF4y2Ba12:1078。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  20. Kopparthy, S。曼苏尔,M。Janiga, G。,Thévenin, D. 2020. Numerical investigations of turbulent single-phase and two-phase flows in a diffuser.Int J多相流gydF4y2Ba,130:103333。gydF4y2Ba

    MathSciNetgydF4y2Ba谷歌学术搜索gydF4y2Ba

  21. Krepper E。弗兰克,T。卢卡斯,D。,Prasser, H.-M., Zwart, P. 2007. Inhomogeneous MUSIG model—a population balance approach for poly-dispersed bubbly flow. In: Proceedings of the 12th International Topic Meeting on Nuclear Reactor Thermal Hydraulics.

  22. 槽,b E。莉丝,g . J。,Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure.J流体机械gydF4y2Ba,68:537 - 566。gydF4y2Ba

    数学gydF4y2Ba谷歌学术搜索gydF4y2Ba

  23. Limbach, P。,Skoda, R. 2017. Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness.J液体英格gydF4y2Ba,139:101201。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  24. 罗,H。,Svendsen, H. F. 1996. Theoretical model for drop and bubble breakup in turbulent dispersions.AIChE JgydF4y2Ba42:1225 - 1233。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  25. 曼苏尔,M。,Kováts, P., Wunderlich, B., Thévenin, D. 2018a. Experimental investigations of a two-phase gas/liquid flow in a diverging horizontal channel.Exp千卡流体科学gydF4y2Ba,93:210 - 217。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  26. 曼苏尔,M。,帕瑞克豪,T。,Engel, S., Thévenin, D. 2020a. Numerical investigations of gas-liquid two-phase flow in a pump inducer.J液体英格gydF4y2Ba,142:021302。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  27. 曼苏尔,M。,帕瑞克豪,T。,Thévenin, D. 2020b. Experimental study of two-phase air/water flow in a centrifugal pump working with a closed or semi-open impeller. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Paper GT2020-15320.

  28. 曼苏尔,M。,Wunderlich, B., Thévenin, D. 2018b. Effect of tip clearance gap and inducer on the transport of two-phase air-water flows by centrifugal pumps.Exp千卡流体科学gydF4y2Ba,99:487 - 509。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  29. 曼苏尔,M。,Wunderlich, B., Thévenin, D. 2018c. Experimental study of two-phase air/water flow in a centrifugal pump working with a closed or a semi-open impeller. In: Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Paper GT2018-75380.

  30. Marschall, h . 2011。对多尺度两相流动的数值模拟。博士论文。Lehrstuhl我技术合作化学,慕尼黑。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  31. 丢掉了,年代。,穆勒,T。,Schepeler, S., Kalkkuhl, T., Skoda, R. 2019. Experimental and numerical investigation of the transient characteristics and volute casing wall pressure fluctuations of a single-blade pump.P I机械Eng E: JgydF4y2Ba,233:280 - 291。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  32. 表示“状态”,f . r . 1994。Two-equation涡粘性湍流模型的工程应用。gydF4y2Ba张仁gydF4y2Ba32:1598 - 1605。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  33. 表示“状态”,f R。,Carregal Ferreira, J., Esch, T., Konno, B. 2003. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the International Gas Turbine Congress.

  34. 表示“状态”,F。每,T。2001. Elements of industrial heat transfer prediction. In: Proceedings of the 16th Brazilian Congress of Mechanical Engineering.

  35. Minemura, K。,村上,M。,Katagiri, H. 1985. Characteristics of centrifugal pumps handling air-water mixtures and size of air bubbles in pump impellers.B JSMEgydF4y2Ba,28日:2310 - 2318。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  36. Minemura, K。,Uchiyama, T. 1993. Prediction of pump performance under air-water two-phase flow based on a bubbly flow model.J液体英格gydF4y2Ba,115:781 - 783。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  37. 蒙特佛,W。Biazussi, J。L., Sassim, N. A., Bannwart, A. C. 2017. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers.Exp千卡流体科学gydF4y2Ba85:37-51。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  38. 穆勒,T。,Limbach, P。,Skoda, R. 2015. Numerical 3D RANS simulation of gas-liquid flow in a centrifugal pump with an Euler-Euler two-phase model and a dispersed phase distribution. In: Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics.

  39. 穆勒,T。,Limbach, P。,Skoda, R. 2016. Influence of geometry simplifications and numerical parameters in 3D URANS liquid-gas flow simulations of a radial pump with an Eulerian mono-dispersed two-phase model. In: Proceeding of the International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.

  40. 村上,M。,Minemura, K。,Suehiro, H. 1971. Effects of entrained air on the performance of centrifugal and axial flow pumps.工程学院名古屋大学的回忆录gydF4y2Ba23日:124 - 133。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  41. 诺伊曼,M。,谢弗,T。,B我eberle, A., Hampel, U. 2016. An experimental study on the gas entrainment in horizontally and vertically installed centrifugal pumps.J液体英格gydF4y2Ba,138:12019。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  42. Pak, e . T。,Lee, J. C. 1998. Performance and pressure distribution changes in a centrifugal pump under two-phase flow.我机械英格gydF4y2Ba答:gydF4y2BaJ战俘gydF4y2Ba,212:165 - 171。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  43. 帕瑞克豪,T。,曼苏尔,M。,Thévenin, D. 2020. Investigations on the effect of tip clearance gap and inducer on the transport of air-water two-phase flow by centrifugal pumps.化学Eng ScigydF4y2Ba,218:115554。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  44. Perissinotto, r . M。蒙特佛,W。Gallassi, M。,Gonçalves, G. F. N., de Castro, M. S., Carneiro, J., Biazussi, J. L., Bannwart, A. C. 2019. Experimental and numerical study of oil drop motion within an ESP impeller.J汽油Sci英格gydF4y2Ba,175:881 - 895。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  45. 皮内H。,B我azussi, J., López, F., Oliveira, B., Carvalho, R. D. M., Bannwart, A. C., Ratkovich, N. 2016. Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water-air two-phase flow using Computational Fluid Dynamics (CFD).J汽油Sci英格gydF4y2Ba,139:49 - 61。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  46. 王子,m . J。,Blanch, H. W. 1990. Bubble coalescence and break-up in air-sparged bubble columns.AIChE JgydF4y2Ba36:1485 - 1499。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  47. 拉特,R。,你们,Z。,Lack, R. 2017. Electric submersible pump performance and numerical modeling in two-phase flow. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference.

  48. 佐藤,S。,Furukawa先生。,Takamatsu, Y. 1996. Air-water two-phase flow performance of centrifugal pump impellers with various blade angles.JSME Int J Ser BgydF4y2Ba39:223 - 229。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  49. 谢弗,T。,B我eberle, A., Neumann, M., Hampel, U. 2015. Application of gamma-ray computed tomography for the analysis of gas holdup distributions in centrifugal pumps.流量InstrumngydF4y2Ba46:262 - 267。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  50. 谢弗,T。,Neumann-Kipping, M., Bieberle, A., Bieberle, M., Hampel, U. 2020. Ultrafast X-ray computed tomography imaging for hydrodynamic investigations of gas-liquid two-phase flow in centrifugal pumps.J液体英格gydF4y2Ba,142:42901。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  51. 席勒,L。,Naumann, A. 1933. Über die grundlegenden Berechnungen bei Schwerkraftaufbereitung. Zeitschrift des Vereines deutscher Ingenieure 77.

  52. Shonibare, o . Y。,瓦尔德,k . E。2015. Numerical investigation of vertical plunging jet using a hybrid multifluid-VOF multiphase CFD solver.Int J化学英格gydF4y2Ba,2015:1 - 14。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  53. 如果,问。,Bois, G., Jiang, Q., He, W., Ali, A., Yuan, S. 2018. Investigation on the handling ability of centrifugal pumps under air-water two-phase inflow: Model and experimental validation.能量gydF4y2Ba11:3048。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  54. 如果,问。,Bois, G., Liao, M., Zhang, H., Cui, Q., Yuan, S. 2020. A comparative study on centrifugal pump designs and two-phase flow characteristic under inlet gas entrainment conditions.能量gydF4y2Ba13:65。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  55. 如果,问。,Bois, G., Zhang, K., Yuan, J. 2017. Air-water two-phase flow experimental and numerical analysis in a low specific speed centrifugal pump. In: Proceedings of the 12th European Conference on Turbomachinery Fluid Dynamics and Hermodynamics.

  56. Stel, H。,Ofuchi, E. M., Alves, R. F., Chiva, S., Morales, R. E. M. 2020a. Experimental analysis of gas-liquid flows in a centrifugal rotor.J液体英格gydF4y2Ba,142:031101。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  57. Stel, H。,Ofuchi, E. M., Chiva, S., Morales, R. E. M. 2020b. Numerical simulation of gas-liquid flows in a centrifugal rotor.化学Eng ScigydF4y2Ba,221:115692。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  58. Tillack, p . 1998。Forderverhalten冯Kreiselpumpen贝viskosem, gasbeladenem Fordermedium。博士论文。你凯泽斯劳滕。gydF4y2Ba

  59. 争夺,W。每,T。,表示“状态”,F。2002. Heat transfer predictions using advanced two-equation turbulence models. Technical Report. CFX Technical Memorandum. CFX-VAL10/0602.

  60. 沃林,S。,Johansson, A. V. 2000. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows.J流体机械gydF4y2Ba,403:89 - 132。gydF4y2Ba

    MathSciNetgydF4y2Ba数学gydF4y2Ba谷歌学术搜索gydF4y2Ba

  61. 王,问。,Yao, W. 2016. Computation and validation of the interphase force models for bubbly flow.Int J热量大量反式gydF4y2Ba,98:799 - 813。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  62. 瓦尔德,k . E。,Weller, H. G. 2013. Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction.Int J化学英格gydF4y2Ba2013:1-13。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  63. 香,M。,张,s c·P。杨紫琼,g . H。张,W。H。,你,j . y . 2011。数值研究的泡沫流由通风腔垂直管。gydF4y2BaInt J多相流gydF4y2Ba37:756 - 768。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  64. Yamoah, S。,Martínez-Cuenca, R., Monrós, G., Chiva, S., Macián-Juan, R. 2015. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow.化学Eng Res DesgydF4y2Ba98:17-35。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  65. Y, z。,Zhang, Q. Z., Huang, R., Cao, S. L. 2012. Numerical analysis of gas-liquid mixed transport process in a multiphase rotodynamic pump.IOP相依Ser:地球环境科学gydF4y2Ba15:032062。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  66. 张,J。Cai, S。李,Y。李,Y。,Zhang, Y. 2017. Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis.J流体动力学gydF4y2Ba29日:1023 - 1034。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  67. 张,W。Yu, Z。李,Y。2018. Analysis of flow and phase interaction characteristics in a gas-liquid two-phase pump.石油天然气科技- Revue d 'IFP能量中篇小说gydF4y2Ba,73:69。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  68. 朱,J。,Zhang, H. 2017. Numerical study on electrical-submersible-pump two-phase performance and bubble-size modeling.SPE刺激加工gydF4y2Ba32:267 - 278。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  69. 朱,J。,Zhang, H. 2018. A review of experiments and modeling of gas-liquid flow in electrical submersible pumps.能量gydF4y2Ba11:180。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  70. 朱,J。,Zhu, H., Zhang, J., Zhang, H. 2019. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments.J汽油Sci英格gydF4y2Ba,173:339 - 350。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

  71. 朱,Z。,Yang, H., Chen, T. 2009. Direct numerical simulation of turbulent flow in a straight square duct at Reynolds number 600.J流体动力学gydF4y2Ba21日:600 - 607。gydF4y2Ba

    谷歌学术搜索gydF4y2Ba

下载参考gydF4y2Ba

确认gydF4y2Ba

作者欣然承认金融支持“Verband德国Maschinen——和Anlagenbau汽车。(VDMA)”和“Forschungskuratorium Maschinenbau e。V (FKM)”。这个项目的部分资金由联邦经济部和能源(BMWi)批准号20638 n和德国研究基金会(DFG)批准号395373747。gydF4y2Ba

资金gydF4y2Ba

开放获取Projekt提供的资金交易。gydF4y2Ba

作者信息gydF4y2Ba

从属关系gydF4y2Ba

作者gydF4y2Ba

相应的作者gydF4y2Ba

对应到gydF4y2Ba马库斯HundshagengydF4y2Ba。gydF4y2Ba

权利和权限gydF4y2Ba

开放获取gydF4y2Ba本文是基于知识共享署名4.0国际许可,允许使用、共享、适应、分布和繁殖在任何媒介或格式,只要你给予适当的信贷原始作者(年代)和来源,提供一个链接到创作共用许可证,并指出如果变化。gydF4y2Ba

本文中的图片或其他第三方材料都包含在本文的创作共用许可证,除非另有说明在一个信用额度的材料。如果材料不包括在本文的创作共用许可证和用途是不允许按法定规定或超过允许的使用,您将需要获得直接从版权所有者的许可。gydF4y2Ba

查看本许可证的副本,访问gydF4y2Bahttp://creativecommons.org/licenses/by/4.0/gydF4y2Ba。gydF4y2Ba

再版和权限gydF4y2Ba

关于这篇文章gydF4y2Ba

验证通过CrossMark货币和真实性gydF4y2Ba

引用这篇文章gydF4y2Ba

Hundshagen, M。曼苏尔,M。,Thévenin, D.et al。gydF4y2Ba3 d模拟gas-laden液体流在离心泵和双流体CFD方法的评估。gydF4y2BaExp。第一版。Multiph。流gydF4y2Ba3,gydF4y2Ba186 - 207 (2021)。https://doi.org/10.1007/s42757 - 020 - 0080 - 4gydF4y2Ba

下载引用gydF4y2Ba

  • 收到了gydF4y2Ba:gydF4y2Ba

  • 修改后的gydF4y2Ba:gydF4y2Ba

  • 接受gydF4y2Ba:gydF4y2Ba

  • 发表gydF4y2Ba:gydF4y2Ba

  • 发行日期gydF4y2Ba:gydF4y2Ba

  • DOIgydF4y2Ba:gydF4y2Bahttps://doi.org/10.1007/s42757 - 020 - 0080 - 4gydF4y2Ba

关键字gydF4y2Ba

  • 三维CFDgydF4y2Ba
  • 扩散器gydF4y2Ba
  • 离心泵gydF4y2Ba
  • 气体/液体流gydF4y2Ba