Advertisement

Speech Quality Assessment

Chapter
  • 71Downloads
Part of theT-Labs Series in Telecommunication Servicesbook series (TLABS)

Abstract

The present book aims at developing a multi-method, “process-oriented” assessment approach for testing effects of varying speech transmission quality on information processing in human listeners. In addition to methods for conventional subjective speech quality assessment, this chapter introduces more recently employed behavioral and neurophysiological techniques and paradigms. Afterward, those different method classes are compared in view of several measurement criteria.

Keywords

Speech quality assessment 主观的评价 Absolute category rating (ACR) Mean opinion score (MOS) Comparison category rating (CCR) Comparison mean opinion score (CMOS) Degradation category rating (DCR) Degradation mean opinion score (DMOS) Reaction time paradigm Detection Discrimination Identification Psychophysiology Electroencephalography (EEG) Event-related brain potential (ERP) P3 component Oddball paradigm Objectivity Reliability Validity Sensitivity Diagnosticity Intrusiveness

References

  1. 1.
    S. Möller,Quality Engineering: Qualität kommunikationstechnischer Systeme(Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  2. 2.
    C.D. Wickens, Processing resources in attention, inVarieties of Attention, ed. by R. Parasuraman, D.R. Davies (Academic Press, New York, 1984), pp. 63–102Google Scholar
  3. 3.
    E. Donchin, A.F. Kramer, C.D. Wickens, Applications of event-related brain potentials to problems in engineering psychology, inPsychophysiology: Systems, Processes, and Applications, 3rd edn. ed. by M.G.H. Coles, E. Donchin, S.W. Porges (Guilford Press, New York, 1986), pp. 702–718Google Scholar
  4. 4.
    R.D. O’Donnell, F.T. Eggemeier, Workload assessment methodology, inHandbook of Perception and Human Performance: Cognitive Processes and Performance, vol. 2, ed. by K.R. Boff, L. Kaufman, J.P. Thomas (Wiley, New York, 1986), pp. 42.1–42.49Google Scholar
  5. 5.
    A.F. Kramer, Physiological metrics of mental workload: a review of recent progress, inMultiple-Task Performance, ed. by D.L. Damos (Taylor & Francis, London, 1991), pp. 279–328Google Scholar
  6. 6.
    D. Manzey,Ergebnisse und Anwendungen der Psychophysiologie. Enzyklopädie der Psychologie, ed. by F. Rösler (Hogrefe, Göttingen, 1998), Themenbereich C, Theorie und Forschung. Serie I, Biologische Psychologie; Bd. 5, pp. 799–864Google Scholar
  7. 7.
    M.M. Bradley, P.J. Lang,Emotion and Motivation, ed. by J.T. Cacioppo, L.G. Tassinary, G. Berntson (Cambridge University Press, Cambridge, 2007), pp. 581–607Google Scholar
  8. 8.
    S. Möller,Assessment and Prediction of Speech Quality in Telecommunications(Springer, Boston, 2000)CrossRefGoogle Scholar
  9. 9.
    U. Jekosch,Voice and Speech Quality Perception: Assessment and Evaluation. Signals and Communication Technology (Springer, Berlin, 2005)Google Scholar
  10. 10.
    A. Raake,Speech Quality of VoIP: Assessment and Prediction(John Wiley & Sons, Ltd, Chichester, 2006)CrossRefGoogle Scholar
  11. 11.
    N. Côté,Integral and Diagnostic Intrusive Prediction of Speech Quality, ser. T-Labs Series in Telecommunication Services (Springer, Heidelberg, 2011)Google Scholar
  12. 12.
    M. Wältermann,Dimension-based Quality Modeling of Transmitted Speech. T-Labs Series in Telecommunication Services (Springer, Heidelberg, 2013)Google Scholar
  13. 13.
    S. Möller, R. Heusdens, Objective estimation of speech quality for communication systems. Proc. IEEE101(9), 1955–1967 (2013)CrossRefGoogle Scholar
  14. 14.
    ITU-T Recommendation P.800,Methods for Subjective Determination of Transmission Quality(International Telecommunication Union (ITU), Geneva, 1996)Google Scholar
  15. 15.
    ITU-T Recommendation P.830,Subjective Performance Assessment of Telephone-Band and Wideband Digital Codecs(International Telecommunication Union (ITU), Geneva, 1996)Google Scholar
  16. 16.
    ITU-T Recommendation P.805,Subjective Evaluation of Conversational Quality(International Telecommunication Union (ITU), Geneva, 2007)Google Scholar
  17. 17.
    A. Raake, S. Egger, Quality and quality of experience, inQuality of Experience, ed. by S. Möller, A. Raake (Springer, Cham, 2014), pp. 11–33CrossRefGoogle Scholar
  18. 18.
    T. Hoßfeld, P.E. Heegaard, M. Varela, S. Möller, QoE beyond the MOS: an in-depth look at QoE via better metrics and their relation to MOS. Quality User Exp.1(1), 2 (2016)Google Scholar
  19. 19.
    P. Le Callet, S. Möller, A. Perkis (eds.), Qualinet White Paper on Definitions of Quality of Experience, European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003), Version 1.2 (2013)Google Scholar
  20. 20.
    S. Zieliński, F. Rumsey, S. Bech, On some biases encountered in modern audio quality listening tests – a review. J. Audio Eng. Soc.56(6), 427–451 (2008)Google Scholar
  21. 21.
    M. Barreda-Ángeles, R. Pépion, E. Bosc, P. Le Callet, A. Pereda-Baños, Exploring the effects of 3D visual discomfort on viewers’ emotions, in2014 IEEE International Conference on Image Processing (ICIP)(IEEE, Paris, 2014), pp. 753–757Google Scholar
  22. 22.
    S. Uhrig, S. Möller, D.M. Behne, U.P. Svensson, A. Perkis, Testing a quality of experience (QoE) model of loudspeaker-based spatial speech reproduction, in2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX)(IEEE, Athlone, 2020), pp. 1–6Google Scholar
  23. 23.
    A.F. Sanders,Elements of Human Performance: Reaction Processes and Attention in Human Skill(Lawrence Erlbaum Associates, Mahwah, 1998)Google Scholar
  24. 24.
    C.D. Wickens, J.G. Hollands, S. Banbury, R. Parasuraman,Engineering Psychology and Human Performance, 4th edn. (Psychology Press, New York, 2013)Google Scholar
  25. 25.
    R.W. Proctor, T. Van Zandt,Human Factors in Simple and Complex Systems, 3rd edn. (CRC Press, Boca Raton, 2018)Google Scholar
  26. 26.
    D.E. Meyer, A.M. Osman, D.E. Irwin, S. Yantis, Modern mental chronometry. Biol. Psychol.26(1–3), 3–67 (1988)CrossRefGoogle Scholar
  27. 27.
    S.A. Hillyard, M. Kutas, Electrophysiology of cognitive processing. Annu. Rev. Psychol.34(1), 33–61 (1983)CrossRefGoogle Scholar
  28. 28.
    M.G.H. Coles, H.G.O.M. Smid, M.K. Scheffers, L.J. Otten, Mental chronometry and the study of human information processing, inElectrophysiology of Mind: Event-related Brain Potentials and Cognition. Oxford Psychology Series, No. 25. (Oxford University Press, New York, 1995), pp. 86–131Google Scholar
  29. 29.
    M.I. Posner, Timing the brain: mental chronometry as a tool in neuroscience. PLoS Biol.3(2), e51 (2005)Google Scholar
  30. 30.
    D.E. Linden, What, When, Where in the Brain? Exploring mental chronometry with brain imaging and electrophysiology. Rev. Neurosci.18(2) (2007)Google Scholar
  31. 31.
    F.C. Donders, Die Schnelligkeit psychischer Processe. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin35, 657–681 (1868)Google Scholar
  32. 32.
    S. Sternberg, The discovery of processing stages: extensions of donders’ method. Acta Psychol.30, 276–315 (1969)CrossRefGoogle Scholar
  33. 33.
    D.D. Salvucci, Multitasking, inThe Oxford Handbook of Cognitive Engineering由李J.D.患儿,a Kirlik(牛津大学公关ess, Oxford, 2013), pp. 57–67Google Scholar
  34. 34.
    S. Arndt, J.-N. Antons, R. Schleicher, S. Möller, G. Curio, Using electroencephalography to measure perceived video quality. IEEE J. Sel. Top. Sign. Proces.8(3), 366–376 (2014)CrossRefGoogle Scholar
  35. 35.
    J.-N. Antons, R. Schleicher, S. Arndt, S. Möller, A.K. Porbadnigk, G. Curio, Analyzing speech quality perception using electroencephalography. IEEE J. Sel. Top. Sign. Proces.6(6), 721–731 (2012)CrossRefGoogle Scholar
  36. 36.
    A.K. Porbadnigk, M.S. Treder, B. Blankertz, J.-N. Antons, R. Schleicher, S. Möller, G. Curio, K.-R. Müller, Single-trial analysis of the neural correlates of speech quality perception. J. Neural Eng.10(5), 056003 (2013)Google Scholar
  37. 37.
    D.A. Pizzagalli, Electroencephalography and high-density electrophysiological source localization, inHandbook of Psychophysiology, 3rd edn. ed. by J.T. Cacioppo, L.G. Tassinary, G. Berntson (Cambridge University Press, Cambridge, 2007), pp. 56–84CrossRefGoogle Scholar
  38. 38.
    S.J. Luck, E.S. Kappenman, Electroencephalography and event-related brain potentials, inHandbook of Psychophysiology, 4th edn. ed. by J.T. Cacioppo, L.G. Tassinary, G.G. Berntson (Cambridge University Press, Cambridge, 2016), pp. 74–100CrossRefGoogle Scholar
  39. 39.
    M.X. Cohen, Where does EEG come from and what does it mean? Trends Neurosci.40(4), 208–218 (2017)CrossRefGoogle Scholar
  40. 40.
    R. Caton, The electric currents of the brain. Br. Med. J.2(765), 278 (1875)Google Scholar
  41. 41.
    H. Berger, Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten87(1), 527–570 (1929)CrossRefGoogle Scholar
  42. 42.
    S. Geuter, M.A. Lindquist, T.D. Wager, Fundamentals of functional neuroimaging, inHandbook of Psychophysiology, 4th edn. ed. by J.T. Cacioppo, L.G. Tassinary, G.G. Berntson (Cambridge University Press, Cambridge, 2016), pp. 41–73CrossRefGoogle Scholar
  43. 43.
    A.F. Jackson, D.J. Bolger, The neurophysiological bases of EEG and EEG measurement: a review for the rest of us: neurophysiological bases of EEG. Psychophysiology51(11), 1061–1071 (2014)CrossRefGoogle Scholar
  44. 44.
    M.R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J.-M. Guérit, H. Hinrichs, A. Ikeda, F. Jose, C. Luccas, P. Rappelsburger, IFCN standards for digital recording of clinical EEG. Electroencephalogr. Clin. Neurophysiol.106(3), 259–261 (1998)CrossRefGoogle Scholar
  45. 45.
    G.H. Klem, h . Luders第三世碧玉,c . Elger ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl.52, 3–6 (1999)Google Scholar
  46. 46.
    T.F. Münte, T.P. Urbach, E. Düzel, M. Kutas, Chapter 7: event-related brain potentials in the study of human cognition and neuropsychology, inHandbook of Neuropsychology: Sect 1: Introduction, Sect 2: Attention, vol. 1, 2nd edn. Handbook of Neuropsychology, ed. by F. Boller, J. Grafman, G. Rizzolatti (Elsevier Science Publishers B.V., Amsterdam, 2000), pp. 139–235Google Scholar
  47. 47.
    M. Fabiani, G. Gratton, K.D. Federmeier, Event-related brain potentials: methods, theory, and applications, inHandbook of Psychophysiology, 3rd edn., ed. by J.T. Cacioppo, L.G. Tassinary, G. Berntson (Cambridge University Press, Cambridge, 2007), pp. 85–119CrossRefGoogle Scholar
  48. 48.
    S.J. Luck,An Introduction to the Event-Related Potential Technique, 2nd edn. (The MIT Press, Cambridge, 2014)Google Scholar
  49. 49.
    M.X. Cohen,Analyzing Neural Time Series Data: Theory and Practice. Issues in Clinical and Cognitive Neuropsychology (The MIT Press, Cambridge, 2014)Google Scholar
  50. 50.
    C.S. Herrmann, S. Rach, J. Vosskuhl, D. Strüber, Time–frequency analysis of event-related potentials: a brief tutorial. Brain Topogr.27(4), 438–450 (2014)CrossRefGoogle Scholar
  51. 51.
    s . Uhrig a . Perkis D.M. Behne, P3反映peech quality change? Controlling for auditory evoked activity in event-related brain potential (ERP) waveforms, in2019 IEEE International Symposium on Multimedia (ISM)(IEEE, San Diego, 2019), pp. 152–1523Google Scholar
  52. 52.
    W. Klimesch, P. Sauseng, S. Hanslmayr, W. Gruber, R. Freunberger, Event-related phase reorganization may explain evoked neural dynamics. Neurosci. Biobehav. Rev.31(7), 1003–1016 (2007)CrossRefGoogle Scholar
  53. 53.
    P. Sauseng, W. Klimesch, W. Gruber, S. Hanslmayr, R. Freunberger, M. Doppelmayr, Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience146(4), 1435–1444 (2007)Google Scholar
  54. 54.
    M.A. Boksem, T.F. Meijman, M.M. Lorist, Effects of mental fatigue on attention: an ERP study. Cogn. Brain Res.25(1), 107–116 (2005)CrossRefGoogle Scholar
  55. 55.
    R. Tibon, D.A. Levy, Striking a balance: analyzing unbalanced event-related potential data. Front. Psychol.6, 555 (2015)Google Scholar
  56. 56.
    Z. Šidák, Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc.62(318), 626–633 (1967)MathSciNetzbMATHGoogle Scholar
  57. 57.
    S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat.6(2), 65–70 (1979)MathSciNetzbMATHGoogle Scholar
  58. 58.
    S.J. Luck, N. Gaspelin, How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology54(1), 146–157 (2017)CrossRefGoogle Scholar
  59. 59.
    F. Pulvermüller, Y. Shtyrov, Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Prog. Neurobiol.79(1), 49–71 (2006)CrossRefGoogle Scholar
  60. 60.
    C. Alain, K. Tremblay, The role of event-related brain potentials in assessing central auditory processing. J. Am. Acad. Audiol.18(7), 573–589 (2007)CrossRefGoogle Scholar
  61. 61.
    B.A. Martin, K.L. Tremblay, P. Korczak, Speech evoked potentials: from the laboratory to the clinic. Ear Hear.29(3), 285–313 (2008)CrossRefGoogle Scholar
  62. 62.
    J.T. Cacioppo, L.G. Tassinary, G.G. Berntson, Strong inference in psychophysiological science, inHandbook of Psychophysiology, 4th edn., ed. by J.T. Cacioppo, L.G. Tassinary, G.G. Berntson (Cambridge University Press, Cambridge, 2016), pp. 3–15CrossRefGoogle Scholar
  63. 63.
    E. Donchin, W. Ritter, W.C. McCallum, Cognitive psychophysiology: the endogenous components of the ERP, inEvent-Related Brain Potentials in Man. Behavioral Biology Series, ed. by E. Callaway, P. Tueting, S.H. Koslow (Academic Press, New York, 1978), pp. 349–411CrossRefGoogle Scholar
  64. 64.
    A. Kok, Internal and external control: a two-factor model of amplitude change of event-related potentials. Acta Psychol.74(2–3), 213–236 (1990)CrossRefGoogle Scholar
  65. 65.
    A. Kok, Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biol. Psychol.45(1–3), 19–56 (1997)CrossRefGoogle Scholar
  66. 66.
    F. Musiek, J.E. Gonzalez, J.A. Baran, Auditory brainstem response: differential diagnosis, inHandbook of Clinical Audiology, 7th ed., ed. by J. Katz, M. Chasin, K.M. English, L.J. Hood, K.L. Tillery (Wolters Kluwer Health, Philadelphia, 2015), pp. 231–248Google Scholar
  67. 67.
    K. Tremblay, C. Clinard, Cortical auditory-evoked potentials, inHandbook of Clinical Audiology, 7th edn., ed. by J. Katz, M. Chasin, K.M. English, L.J. Hood, K.L. Tillery (Wolters Kluwer Health, Philadelphia, 2015), pp. 337–355Google Scholar
  68. 68.
    M.I. Garrido, J.M. Kilner, K.E. Stephan, K.J. Friston, The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol.120(3), 453 - 463 (2009)CrossRefGoogle Scholar
  69. 69.
    R. Näätänen, K. Kreegipuu, The mismatch negativity (MMN), inThe Oxford Handbook of Event-Related Potential Components. Oxford Library of Psychology, ed. by S.J. Luck, E.S. Kappenman (Oxford University Press, New York, 2011)Google Scholar
  70. 70.
    J. Polich, Theoretical overview of P3a and P3b, inDetection of Change, ed. by J. Polich (Springer, Boston, 2003), pp. 83–98CrossRefGoogle Scholar
  71. 71.
    J. Polich, J.R. Criado, Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol.60(2), 172–185 (2006)CrossRefGoogle Scholar
  72. 72.
    J. Polich, Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol.118(10), 2128–2148 (2007)CrossRefGoogle Scholar
  73. 73.
    J. Polich, Neuropsychology of P300, inThe Oxford Handbook of Event-Related Potential Components. Oxford Library of Psychology, ed. by S.J. Luck, E.S. Kappenman (Oxford University Press, New York, 2012), pp. 159–188Google Scholar
  74. 74.
    D.E.J. Linden, The P300: where in the brain is it produced and what does it tell us? The Neuroscientist11(6), 563–576 (2005)MathSciNetCrossRefGoogle Scholar
  75. 75.
    E.N. Sokolov, Higher nervous functions: the orienting reflex. Annu. Rev. Physiol.25(1), 545–580 (1963)CrossRefGoogle Scholar
  76. 76.
    E.N. Sokolov, J.A. Spinks, R. Näätänen, H. Lyytinen,信息的定向反应工艺ng(Lawrence Erlbaum Associates Publishers, Mahwah, 2002)Google Scholar
  77. 77.
    E. Donchin, Surprise!? Surprise? Psychophysiology18(5), 493–513 (1981)CrossRefGoogle Scholar
  78. 78.
    E. Donchin, M.G.H. Coles, Is the P300 component a manifestation of context updating? Behav. Brain Sci.11(03), 357 (1988)Google Scholar
  79. 79.
    A. Kok, On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology38(3), 557–577 (2001)CrossRefGoogle Scholar
  80. 80.
    R. Verleger, P. Jaśkowski, E. Wascher, Evidence for an integrative role of P3b in linking reaction to perception. J. Psychophysiol.19(3), 165–181 (2005)CrossRefGoogle Scholar
  81. 81.
    C.C. Duncan, R.J. Barry, J.F. Connolly, C. Fischer, P.T. Michie, R. Näätänen, J. Polich, I. Reinvang, C.V. Petten, Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol.120(11), 1883–1908 (2009)CrossRefGoogle Scholar
  82. 82.
    R.W. Backs, W. Boucsein (eds.),Engineering Psychophysiology: Issues and Applications(Lawrence Erlbaum, Mahwah, 2000)Google Scholar
  83. 83.
    A.F. Kramer, R. Parasuraman, Neuroergonomics: application of neuroscience to human factors, inHandbook of Psychophysiology, 3rd edn., ed. by J.T. Cacioppo, L.G. Tassinary, G. Berntson (Cambridge, Cambridge University Press, 2007), pp. 704–722CrossRefGoogle Scholar
  84. 84.
    R. Fazel-Rezai, B.Z. Allison, C. Guger, E.W. Sellers, S.C. Kleih, A. Kübler, P300 brain computer interface: current challenges and emerging trends. Front. Neuroeng.5, 14 (2012)CrossRefGoogle Scholar
  85. 85.
    M.D. Rugg, M.G.H. Coles (eds.),Electrophysiology of Mind: Event-Related Brain Potentials and Cognition. Oxford psychology Series Oxford (Oxford University Press, New York, 1995), p. 25Google Scholar
  86. 86.
    T.C. Handy (ed.),Event-Related Potentials: A Methods Handbook(MIT Press, Cambridge, 2005)Google Scholar
  87. 87.
    E.S. Kappenman, S.J. Luck (eds.),The Oxford Handbook of Event-Related Potential Components, 1st edn. (Oxford University Press, Cambridge, 2011)Google Scholar
  88. 88.
    U. Engelke, D.P. Darcy, G.H. Mulliken, S. Bosse, M.G. Martini, S. Arndt, J.-N. Antons, K.Y. Chan, N. Ramzan, K. Brunnström, Psychophysiology-based QoE assessment: a survey. IEEE J. Sel. Top. Sign. Proces.11(1), 6–21 (2017)CrossRefGoogle Scholar
  89. 89.
    K. Hugdahl,Psychophysiology: The Mind-Body Perspective. Perspectives in Cognitive Neuroscience (Cambridge, Harvard University Press, 1995)Google Scholar
  90. 90.
    J.L. Andreassi,Psychophysiology: Human Behavior and Physiological Response, 5th edn. (Psychology Press, New York, 2007)Google Scholar
  91. 91.
    J.T. Cacioppo, L.G. Tassinary, G.G. Berntson (eds.),Handbook of Psychophysiology, 4th edn. (University Press, Cambridge, 2016)Google Scholar
  92. 92.
    J.T. Cacioppo, S.L. Crites, W.L. Gardner, G.G. Berntson, Bioelectrical echoes from evaluative categorizations: I. A late positive brain potential that varies as a function of trait negativity and extremity. J. Pers. Soc. Psychol.67(1), 115–125 (1994)Google Scholar
  93. 93.
    A.M. Proverbio, A. Zani, Electromagnetic manifestations of mind and brain, inThe Cognitive Electrophysiology of Mind and Brain, ed. by A. Zani, A.M. Proverbio, M.I. Posner (Elsevier, Amsterdam, 2003), pp. 13–40CrossRefGoogle Scholar
  94. 94.
    L.A. Liikkanen, H. Tiitinen, P. Alku, S. Leino, S. Yrttiaho, P.J. May, The right-hemispheric auditory cortex in humans is sensitive to degraded speech sounds. NeuroReport18(6), 601–605 (2007)CrossRefGoogle Scholar
  95. 95.
    I. Miettinen, H. Tiitinen, P. Alku, P.J. May, Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds. BMC Neurosci.11(1), 24 (2010)Google Scholar
  96. 96.
    J.-N. Antons, R. Schleicher, S. Arndt, S. Möller, G. Curio, Too tired for calling? A physiological measure of fatigue caused by bandwidth limitations, in2012 Fourth International Workshop on Quality of Multimedia Experience. (IEEE, Melbourne, 2012), pp. 63–67Google Scholar
  97. 97.
    J.-N. Antons, F. Köster, S. Arndt, S. Möller, R. Schleicher, Changes of vigilance caused by varying bit rate conditions, in2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX)(IEEE, Klagenfurt am Wörthersee, 2013), pp. 148–151Google Scholar
  98. 98.
    S. Arndt, J.-N. Antons, R. Gupta, K. ur Rehman Laghari, R. Schleicher, S. Möller, T. H. Falk, The effects of text-to-speech system quality on emotional states and frontal alpha band power, in2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)(IEEE, San Diego, 2013), pp. 489–492Google Scholar
  99. 99.
    J.-N. Antons,Neural Correlates of Quality Perception for Complex Speech Signals. T-Labs Series in Telecommunication Services (Springer, Cham, 2015)Google Scholar
  100. 100.
    S. Arndt,Neural Correlates of Quality During Perception of Audiovisual Stimuli. T-Labs Series in Telecommunication Services (Springer, Singapore, 2016)Google Scholar
  101. 101.
    S. Arndt, J.-N. Antons, R. Schleicher, S. Möller, Using electroencephalography to analyze sleepiness due to low-quality audiovisual stimuli. Signal Process. Image Commun.42, 120–129 (2016)CrossRefGoogle Scholar
  102. 102.
    A.K. Porbadnigk, J.-N. Antons, B. Blankertz, M.S. Treder, R. Schleicher, S. Möller, G. Curio, Using ERPs for assessing the (sub) conscious perception of noise, inProceeding of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(IEEE, Piscataway, 2010), pp. 2690–2693Google Scholar
  103. 103.
    S. Arndt, J.-N. Antons, R. Gupta, K. ur Rehman Laghari, R. Schleicher, S. Möller, T.H. Falk, Subjective quality ratings and physiological correlates of synthesized speech, in2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX)(IEEE, Klagenfurt am Wörthersee, 2013), pp. 152–157Google Scholar
  104. 104.
    J.-N. Antons, A.K. Porbadnigk, R. Schleicher, B. Blankertz, S. Möller, G. Curio, Subjective listening tests and neural correlates of speech degradation in case of signal-correlated noise, inAudio Engineering Society (AES) 129th Convention(Curran Associates, Inc., Red Hook, 2010), pp. 1–4Google Scholar
  105. 105.
    A.K. Porbadnigk, J.-N. Antons, M.S. Treder, B. Blankertz, R. Schleicher, S. Möller, G. Curio, ERP assessment of word processing under broadcast bit rate limitations. Neurosci. Lett.500, e26–e27 (2011)CrossRefGoogle Scholar
  106. 106.
    J.-N. Antons, K.u.R. Laghari, S. Arndt, R. Schleicher, S. Möller, D. O’Shaughnessy, T.H. Falk, Cognitive, affective, and experience correlates of speech quality perception in complex listening conditions, in2013 IEEE International Conference on Acoustics, Speech and Signal Processing(IEEE, Vancouver, 2013), pp. 3672–3676Google Scholar
  107. 107.
    S. Arndt, K. Brunnström, E. Cheng, U. Engelke, S. Möller, J.-N. Antons, Review on using physiology in quality of experience. Elect. Imag.2016(16), 1–9 (2016)CrossRefGoogle Scholar
  108. 108.
    ITU-T Recommendation P.810,Modulated Noise Reference Unit (MNRU). (International Telecommunication Union (ITU), Geneva, 1996)Google Scholar
  109. 109.
    ITU-T Recommendation G.722.2,Wideband Coding of Speech at Around 16 kbit/s Using Adaptive Multi-Rate Wideband (AMR-WB)(International Telecommunication Union, Geneva, 2003)Google Scholar
  110. 110.
    M. Wältermann, A. Raake, S. Möller, Quality dimensions of narrowband and wideband speech transmission. Acta Acust. United Acust.96(6), 1090–1103 (2010)CrossRefGoogle Scholar
  111. 111.
    S.S. Stevens, On the theory of scales of measurement. Science103(2684), 677–680 (1946)zbMATHCrossRefGoogle Scholar
  112. 112.
    J.T. Cacioppo, L.G. Tassinary, Inferring psychological significance from physiological signals. Am. Psychol.45(1), 16–28 (1990)CrossRefGoogle Scholar
  113. 113.
    K.B. Walhovd, A.M. Fjell, One-year test–retest reliability of auditory ERPs in young and old adults. Int. J. Psychophysiol.46(1), 29–40 (2002)CrossRefGoogle Scholar
  114. 114.
    J.T. Cacioppo, S.L. Crites, W.L. Gardner, Attitudes to the right: evaluative processing is associated with lateralized late positive event-related brain potentials. Personal. Soc. Psychol. Bull.22(12), 1205–1219 (1996)CrossRefGoogle Scholar

Copyright information

©作者(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.Quality and Usability LabTechnische Universität BerlinBerlinGermany

Personalised recommendations