
Chapter 9

Simulating Evolution in Asexual Populations with Epistasis

Ramon Diaz-Uriarte

Abstract

I show how to use OncoSimulR, software for forward-time genetic simulations, to simulate evolution of
asexual populations in the presence of epistatic interactions. This chapter emphasizes the specification of
fitness and epistasis, both directly (i.e., specifying the effects of individual mutations and their epistatic
interactions) and indirectly (using models for random fitness landscapes).
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1 Introduction

Here we illustrate the use of the Bioconductor package OncoSi-
mulR for simulating evolution of asexual populations with epistasis.
OncoSimulR [11] implements forward-time genetic simulations in
asexual populations, using biallelic loci. Fitness can be defined
either directly (by specifying the fitness landscape, or the map
between genotypes and fitness), as shown in Subheadings 2.2.1
and 2.2.2, or by specifying epistatic interactions directly as shown
in Subheadings 2.2.4–2.2.7. Simulations use a continuous time
model, and employ the state-of-the-art BNB algorithm of Mather
et al. [23]. Some previous uses of OncoSimulR include the study of
the sensitivity of cancer progression models to reciprocal sign epis-
tasis [12], the predictability of cancer evolution [13, 19], and
somatic mutation in plants [33].

2 Methods

Using OncoSimulR for the simulation of evolutionary processes
involves:

1. Installing (if needed) and loading OncoSimulR.

Ka-Chun Wong (ed.), Epistasis: Methods and Protocols, Methods in Molecular Biology, vol. 2212,
https://doi.org/10.1007/978-1-0716-0947-7_9, © The Author(s) 2021

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0947-7_9&domain=pdf
https://doi.org/10.1007/978-1-0716-0947-7_9#DOI


2. Choosing the mapping between genotypes and fitness. It is at
this stage that we specify epistasis.

3. Choosing the details of the evolutionary model, including
growth models and the specifics of the mutation process.

4. Running simulations until pre-specified conditions are reached.

The second and third steps can be decided in any order, but
they come necessarily (logically and chronologically) before the
last. Since the focus of this book is on epistasis it is thus preferable
to order the above steps as follows:

1. Installing (if needed) and loading OncoSimulR (Subheading
2.1).

2. Specifying epistasis, which can be done either:

l specifying epistasis indirectly, which includes possibly using
models for random fitness landscapes (Subheadings 2.2.1
and 2.2.2) or

l specifying epistasis directly (Subheadings 2.2.4–2.2.7).

3. Simulating evolution, which involves:

l Choosing growth models (Subheading 2.3.1).

l Defining mutation rates and possible mutator genes (Sub-
heading 2.3.2).

l Running simulations until pre-specified conditions are met
(Subheadings 2.3.3–2.3.7).

The next sections are structured following the above order. The
code shown below illustrates the usage of the most important
functionality, and we discuss the key options for specifying fitness
and epistasis; not all options used are discussed, though (see the
package vignette and function documentation for details).

2.1 Installing

and Loading

OncoSimulR

If OncoSimulR is not installed, we must install it. Note that we are
using the development version of OncoSimulR, from Bioconduc-
tor 3.11, that runs under what will become R-4.0. Please refer to
the specific instructions for installing R for your operating system
(https://cran.r-project.org). Once we have installed R-4.0 we can
install packages for Bioconductor 3.11 (details about the release
and development version of Bioconductor are available from
https://www.bioconductor.org/developers/how-to/useDevel/).

We are now ready to install OncoSimulR following https://
www.bioconductor.org/packages/devel/bioc/html/
OncoSimulR.html:
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if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

# The following initializes usage of Bioc devel

BiocManager::install(version='devel')

BiocManager::install("OncoSimulR")

Installation of OncoSimulR only needs to be carried out once
(more precisely, whenever the versions of OncoSimulR or of R
change).

Once OncoSimulR is installed, in every R session where we
want to use it, we must load the package. Here we load it and also
verify its version (at least 2.17.1)

library(OncoSimulR)

packageVersion("OncoSimulR") ## should be >= 2.17.1

## [1] '2.17.1'

2.2 Specifying

Epistasis

We can either specify epistasis indirectly, as shown in Subheadings
2.2.1 and 2.2.2, or directly, by specifying the fitness effects of
mutations on genes (Subheadings 2.2.3–2.2.7), thus having full
control over the specification of epistatic interactions (see also
Notes 1 and 2).

2.2.1 Specifying

Epistasis Indirectly: Explicit

Mapping from Genotypes

to Fitness

We can specify the mapping between genotypes and fitness by
explicitly indicating what the fitness of all possible genotypes
(or all genotypes with non-zero fitness) is. Here, epistasis is not
specified directly, but indirectly. For instance, we could specify a
four genotype model with sign epistasis as:

## Create a two-column data frame with

## the mapping from genotypes to fitness

gf <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Fitness = c(1, 1.5, 0.5, 3),

stringsAsFactors = FALSE)
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## Create a fitnessEffects object

## fitnessEffects objects are used as input for

## the simulations and also below to plot

## fitness landscapes and obtain epistasis

## statistics

fitness1 <- allFitnessEffects(genotFitness = gf)

We can plot the fitness of the four genotypes by calling either
plotFitnessLandscape or plot as follows (figure not shown—
but see below, Subheading 2.2.2, for a fitness landscape plot of a
House of Cards model):

plotFitnessLandscape(fitness1)

And we can compute some epistasis statistics using the function
Magellan_stats that calls code provided by MAGELLAN [4]
(more precisely, function fl_statistics). From the set of statis-
tics provided by MAGELLAN, we only want the fraction of pairs of
loci that have no epistasis, magnitude epistasis, sign epistasis, recip-
rocal sign epistasis, and γ, the correlation in fitness effects between
genotypes that differ by one locus (averaged over the fitness land-
scape) (see details in [4] and [14]). Since we are only interested in
some of the output provided by the Magellan_stats function,
we write a simple wrapper to Magellan_stats (where use_log
controls whether we take the log of the fitness values before com-
puting the epistasis statistics):

epist_stats <- function(x, use_log = FALSE) {

tmp <- Magellan_stats(x, use_log = use_log)[c("gamma",

"magn",

"sign",

"rsign")]

tmp <- c(tmp, "none" = 1 - sum(tmp[c("magn", "sign",

"rsign")]))

tmp <- tmp[c(2:5, 1)]

return(tmp)

}
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Now we can compute the epistasis statistics as

epist_stats(fitness1, use_log = FALSE)

## magn sign rsign none gamma

## 0.000 1.000 0.000 0.000 0.111

which shows that there is only sign epistasis in the model.
Computing the epistasis statistics on the log-transformed

fitness data does not change the estimates of epistasis (it does
change the estimate of γ, though), since sign epistasis is not affected
by monotonic transformations:

epist_stats(fitness1, use_log = TRUE)

## magn sign rsign none gamma

## 0.000 1.000 0.000 0.000 0.113

(Using use_log ¼ TRUE is discussed with more detail below:
see Subheading 2.2.3.)

2.2.2 Specifying

Epistasis Indirectly: Using

Models for Fitness

Landscapes

Alternatively, the mapping between genotypes and fitness can be
done according to different random fitness landscapes models,
which are characterized by different degrees of epistasis (see
[4, 14, 35]). We will use function rfitness that allows us to use
the Rough Mount Fuji (RMF) model [1, 14, 28, 35], which
includes as limit cases both a fully additive model [14, 35] and
the House of Cards model [14, 22, 35], and the NK (or LK) model
[14, 20, 21, 35]. It must be noted that the values returned by
rfitness are to be interpreted as log-fitness values (and this is
why, in the calls in this section, we call the function epist_stats
without log-transforming the fitness values; see also Subheading
2.2.3 for further discussion of using use_log¼ TRUE when calling
epist_stats).

In the examples that follow, and for ease of representation, we
will only use four loci. We will first use a fully additive and deter-
ministic model. The additive model is sometimes also called a
multiplicative model, as it becomes additive in the log scale; the
multiplicative effect on fitness that each mutation has does not
depend on the state of other genes (see [4, 14]).

We can generate deterministic, additive models as special cases
of Rough Mount Fuji models without noise [28, 35]. In the
example below, the genotype with all genes mutated has maximum
fitness (reference ¼ max), and all genotypes have the same
decrease in fitness per unit increase in Hamming distance from
the genotype with maximum fitness (c ¼ 0.5) (see also Note 3).
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additive <- rfitness(4, c = 0.5, sd = 0, reference = "max")

epist_stats(additive)

## magn sign rsign none gamma

## 0 0 0 1 1

As above, we could plot the fitness landscape calling either
plotFitnessLandscape or plot as (figure not shown—but
see below for a fitness landscape plot of a House of Cards model):

plot(additive)

The other extreme of the RMF model is the House of Cards
model [14, 22, 35] that leads to maximally rugged fitness land-
scapes: in the House of Cards model the (log) fitness of each
genotype is obtained, independently for each genotype, from
some underlying distribution (normal, in this case):

## Set random number generator seed, for reproducibility

set.seed(5)

## HoC

hoc <- rfitness(4, c = 0, sd = 1)

epist_stats(hoc)

## magn sign rsign none gamma

## 0.375 0.208 0.417 0.000 0.020

The plot of the fitness landscapes can be obtained as

plot(hoc)

and is shown in Fig. 1.
The RMFmodel [1, 14, 28, 35] is a combination of an additive

model (the “Mount Fuji” part, with the peak on the genotype of
maximal fitness) and a House of Cards model (the random compo-
nent). Thus, it has intermediate behavior in terms of epistasis:
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set.seed(1)

rmf <- rfitness(4, c = 0.5, sd = 1)

## Fitness landscape plot not shown

## plot(rmf)

epist_stats(rmf)

## magn sign rsign none gamma

## 0.333 0.500 0.167 0.000 0.512
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Fig. 1 Plot of the fitness landscape for the House of Cards model in Subheading
2.2.2
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Finally, among the models provided by OncoSimulR, the NK
or LK model is Kauffman’s model [4, 14, 20, 21, 35]: for a
genotype of N loci, each locus has epistatic interactions with
K other loci; the log-fitness of a genotype is the sum of the con-
tributions of all its loci, where the contributions of each locus to the
(log) fitness are random deviates from some probability distribu-
tion (here a uniform(0, 1)) that differ depending on the state of the
given locus and all its K interacting loci. Thus, we go from minimal
epistasis whenK¼1 to maximal epistasis whenK¼N�1 (which is
equivalent to a House of Cards model [14]).

## Set random number generator seed, for reproducibility

set.seed(2)

## NK, K = 1

nk1 <- rfitness(4, K = 1, model = "NK")

## NK, K = 3

nk3 <- rfitness(4, K = 3, model = "NK")

## Fitness landscape plots not shown

## plot(nk1)

## plot(nk3)

epist_stats(nk1)

## magn sign rsign none gamma

## 0.375 0.167 0.167 0.291 0.451

epist_stats

## magn sign rsign none gamma

## 0.125 0.375 0.500 0.000 -0.393

(nk3)

2.2.3 Specifying Epistasis

Directly: Genes Without

Interactions (No Epistasis)

To better understand Subheadings 2.2.4–2.2.7, we first provide a
simple baseline example in which we specify a model without
epistatic interactions:
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## Four genes, with effects 0.05, -0.2, 0.1, 1.5

noInt <- allFitnessEffects(

noIntGenes = c(A = 0.05, B = -0.2, C = 0.1, D = 1.5))

## Show the fitness of all genotypes

evalAllGenotypes(noInt, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.0000

## 2 A 1.0500

## 3 B 0.8000

## 4 C 1.1000

## 5 D 2.5000

## 6 A, B 0.8400

## 7 A, C 1.1550

## 8 A, D 2.6250

## 9 B, C 0.8800

## 10 B, D 2.0000

## 11 C, D 2.7500

## 12 A, B, C 0.9240

## 13 A, B, D 2.1000

## 14 A, C, D 2.8875

## 15 B, C, D 2.2000

## 16 A, B, C, D 2.3100

## Plot (not shown)

## plot(evalAllGenotypes(noInt, addwt = TRUE))

Computing epistasis statistics in these cases requires using the
log of fitness, since we are using a multiplicative fitness specifica-
tion: we specify the fitness effects of mutations using a multiplica-
tive model—see also Subheading 2.3.1—,

Qð1þ s iÞ, where si is the
fitness effect of gene or gene interaction i (thus we are explicitly
modeling the effects of genes and gene interactions). Before we
compute the epistasis specifications, however, we will check that
fitness is what it should be under a multiplicative model for the
contributions of genes (which is additive in the log scale):
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Now, compute epistasis statistics, first incorrectly setting
use_log ¼ FALSE:

all(evalAllGenotypes(noInt, addwt = TRUE)[, "Fitness"] ==

c(1,

1 + 0.05, ## A mutated

1 - 0.2, ## B mutated

1 + 0.1, ## ...

1 + 1.5, ## ...

(1 + 0.05) * (1 - 0.2), ## A and B mutated

(1 + 0.05) * (1 + 0.1), ## A and C mutated

(1 + 0.05) * (1 + 1.5), ## A and D mutated

(1 - 0.2) * (1 + 0.1), ## B and C mutated

(1 - 0.2) * (1 + 1.5), ## B and D mutated

(1 + 0.1) * (1 + 1.5), ## C and D mutated

(1 + 0.05) * (1 - 0.2) * (1 + 0.1), # A, B, C mutated

(1 + 0.05) * (1 - 0.2) * (1 + 1.5), # A, B, D mutated

(1 + 0.05) * (1 + 0.1) * (1 + 1.5), # A, C, D mutated

(1 - 0.2) * (1 + 0.1) * (1 + 1.5), # B, C, D mutated

(1 + 0.05) * (1 - 0.2) * (1 + 0.1) * (1 + 1.5) # A, B,

## C, D

## mutated

))

## [1] TRUE

Now, set use_log ¼ TRUE, to correctly compute the epistasis
statistics, which shows there is no epistasis as all genes contribute
additively in the log scale:

## It incorrectly says there is magnitude epistasis

epist_stats(noInt, use_log = FALSE)

## magn sign rsign none gamma

## 1.000 0.000 0.000 0.000 0.981
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## Using logs shows there is no epistasis:

## all genes contribute additively

## in the log scale

epist_stats(noInt, use_log = TRUE)

## magn sign rsign none gamma

## 0 0 0 1 1

2.2.4 Specifying

Epistasis Directly: Two

Alternative Specifications

of Epistasis

Suppose we want the effects of two genes and their interaction to be
as shown in Table 1.

To make the example concrete, let sa¼0.2, sb¼0.3, sab¼0.7.
We specify the above scenario as follows:

sa <- 0.2

sb <- 0.3

sab <- 0.7

e2 <- allFitnessEffects(epistasis =

c("A: -B" = sa,

"-A:B" = sb,

"A : B" = sab))

evalAllGenotypes(e2, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.0

## 2 A 1.2

## 3 B 1.3

## 4 A, B 1.7
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Here we use a “-” to mean that we explicitly exclude a specific
pattern; thus, “A:-B” is interpreted as “A mutated when B is not
mutated.”

Alternatively, it is possible to specify the effects of genes and
their interactions without using the “-”. This requires a different
numerical value of the interaction, because now, as we are rewriting
the interaction term as genotype “A mutated, B mutated,” the
double mutant will incorporate the effects of “A mutated,” “B
mutated,” and “both A and B mutated.” We can define a new s2
that satisfies (1 + sab)¼ (1 + sa)(1 + sb)(1 + s2) so (1 + s2)¼ (1 + sab)/
((1 + sa)(1 + sb)) and therefore we specify the model as

s2 <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1

e3 <- allFitnessEffects(epistasis =

c("A" = sa,

"B" = sb,

"A : B" = s2))

evalAllGenotypes(e3, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.0

## 2 A 1.2

## 3 B 1.3

## 4 A, B 1.7

For example, this is the way you would specify epistasis with
FFPopSim [37]. Whether this specification or the previous one
with “-” is simpler will depend on the model. For synthetic mortal-
ity and viability (see below, Subheadings 2.2.6 and 2.2.7), using “-”
makes it simpler to map genotype tables to fitness effects.

Table 1
Epistasis example for two genes

A B Fitness

wt wt 1

M wt 1 + sa

wt M 1+ sb

M M 1+ sab

“wt”’ denotes wildtype and “M” denotes mutant
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Estimates of epistasis are the same regardless of how we specify
the model (and note we continue using use_log¼ TRUE to obtain
the epistasis statistics):

epist_stats(e2, use_log = TRUE)

## magn sign rsign none gamma

## 1.00 0.00 0.00 0.00 0.95

epist_stats(e3, use_log = TRUE)

## magn sign rsign none gamma

## 1.00 0.00 0.00 0.00 0.95

2.2.5 Two Alternative

Specifications of Epistasis:

A Three-Gene Example

To further illustrate the two mechanisms for epistasis specification,
here we show a more complex three-gene example. We want to use
the epistatic interactions where there is no epistasis between genes
A and C, but there is epistasis between genes A and B, and between
genes B and C, as shown in Table 2.

We can specify that model, providing numerical values for each
s, as follows:

Table 2
A three-gene fitness specification with epistasis

A B C Fitness

wt wt wt 1

M wt wt 1 + sa

wt M wt 1+ sb

wt wt M 1+ sc

M M wt 1+ sab

wt M M 1+ sbc

M wt M (1+ sa)(1 + sc)

M M M 1+ sabc

“wt”’ denotes wildtype and “M” denotes mutant. Note that the mutant for exactly A and

C has a fitness that is the product of the individual terms (so there is no epistasis in that

case)
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sa <- 0.1

sb <- 0.15

sc <- 0.2

sab <- 0.3

sbc <- -0.25

sabc <- 0.4

sac <- (1 + sa) * (1 + sc) - 1

E3A <- allFitnessEffects(epistasis =

c("A:-B:-C" = sa,

"-A:B:-C" = sb,

"-A:-B:C" = sc,

"A:B:-C" = sab,

"-A:B:C" = sbc,

"A:-B:C" = sac,

"A : B : C" = sabc)

)

evalAllGenotypes(E3A, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.00

## 2 A 1.10

## 3 B 1.15

## 4 C 1.20

## 5 A, B 1.30

## 6 A, C 1.32

## 7 B, C 0.75

## 8 A, B, C 1.40
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We needed to pass the sac coefficient explicitly, even if that term
is the product of the corresponding terms for the individual loci,
because a full specification is required when using the “-”.

We can use the alternative specification without “-”, but we will
need to perform some calculations to obtain some of the coeffi-
cients under this parameterization. To make it easier to tell the
differences from the previous specification, I use capital “S” in what
follows where the numerical values differ from the previous specifi-
cation. Note that we can avoid specifying “A:C”, as it just follows
from the individual “A” and “C” terms, but we need to obtain new
Sab, Sbc, Sabc:

sa <- 0.1

sb <- 0.15

sc <- 0.2

sab <- 0.3

Sab <- ( (1 + sab)/((1 + sa) * (1 + sb))) - 1
Sbc <- ( (1 + sbc)/((1 + sb) * (1 + sc))) - 1

Sabc <- ( (1 + sabc)/

( (1 + sa) * (1 + sb) * (1 + sc) *

(1 + Sab) * (1 + Sbc) ) ) - 1

E3B <- allFitnessEffects(epistasis =

c("A" = sa,

"B" = sb,

"C" = sc,

"A:B" = Sab,

"B:C" = Sbc,

## "A:C" = sac, ## not needed now

"A : B : C" = Sabc)

)
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evalAllGenotypes(E3B, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.00

## 2 A 1.10

## 3 B 1.15

## 4 C 1.20

## 5 A, B 1.30

## 6 A, C 1.32

## 7 B, C 0.75

## 8 A, B, C 1.40

The actual fitness is the same:

all(evalAllGenotypes(E3A, addwt = TRUE) ==

evalAllGenotypes(E3B, addwt = TRUE))

## [1] TRUE

Epistasis statistics are the same:

epist_stats(E3A, use_log = TRUE)

## magn sign rsign none gamma

## 0.333 0.333 0.167 0.167 0.036

epist_stats(E3B, use_log = TRUE)

## magn sign rsign none gamma

## 0.333 0.333 0.167 0.167 0.036

We can check the output from the above epistasis calculations
using the graphical procedure for determining magnitude, sign,
and reciprocal sign epistasis described in [7, 14]. The two cases
with magnitude epistasis (frequency of 2/6) correspond to the sets
“abc”, “aBc”, “Abc”, “ABc” on the one hand and “Abc”, “AbC”,
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“ABc”, “ABC” on the other (where a capital letter denotes that the
given locus is mutated, e.g., “AbC” denotes the genotype with
both A and C mutated). The two cases with sign epistasis corre-
spond to the two sets “abC”, “aBC”, “AbC”, “ABC” and “aBc”,
“ABC”, “ABc”, “ABC”. The case with reciprocal sign epistasis
(frequency of 1/6) to the set “abc”, “aBc”, “abC”, “aBC”. Finally,
the value for “none” (frequency of 1/6) corresponds to the set of
four genotypes “abc”, “Abc”, “abC”, and “AbC” .

2.2.6 Synthetic Viability Synthetic viability, where each individual mutant is lethal or has
decreased fitness but the double mutant is viable, is just a case of
reciprocal sign epistasis, but we illustrate it here separately with a
minimal example. Suppose we want to model fitness as shown in
Table 3.

We will set s¼0.2, and sa¼ sb¼�0.5. Then, we can specify
fitness as follows:

sa <- sb <- -0.5

s <- 0.2

sv <- allFitnessEffects(epistasis = c("-A : B" = sa,

"A : -B" = sb,

"A:B" = s))

evalAllGenotypes(sv, addwt = TRUE)

## Genotype Fitness

Table 3
A simple synthetic viability example

A B Fitness

wt wt 1

M wt 1 + sa

wt M 1+ sb

M M 1+ s

“wt”’ denotes wildtype and “M” denotes mutant. s> 0, sa< 0, sb< 0
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## 1 WT 1.0

## 2 A 0.5

## 3 B 0.5

## 4 A, B 1.2

epist_stats(sv, use_log = TRUE)

## magn sign rsign none gamma

## 0.000 0.000 1.000 0.000 -0.973

2.2.7 Synthetic Sickness,

Synthetic Lethality or

Synthetic Mortality

Synthetic sickness and synthetic lethality or synthetic mortality are
another case of reciprocal sign epistasis. Here, each single mutant
leads to an increase in fitness but the double mutant leads to a
decrease in fitness, including possible non-viability of the double
mutant (synthetic lethality or synthetic mortality). A very simple
case is shown in Table 4.

We will make sa¼0.1, sb¼0.2, sab¼�0.8. We can specify it as

sa <- 0.1

sb <- 0.2

sab <- -0.8

sm1 <- allFitnessEffects(epistasis = c("-A : B" = sb,

"A : -B" = sa,

"A:B" = sab))

evalAllGenotypes(sm1, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.0

## 2 A 1.1

## 3 B 1.2

## 4 A, B 0.2

epist_stats(sm1, use_log = TRUE)

## magn sign rsign none gamma

## 0.000 0.000 1.000 0.000 -0.156
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2.3 Simulating

Evolution

The main function for simulating evolution with OncoSimulR is
oncoSimulIndiv. In addition, functions oncoSimulPop and
oncoSimulSample allow us to run multiple simulations and in
particular oncoSimulPop allows us to use multiple chores to
parallelize execution.

Once epistasis or, equivalently, fitness of genotypes has been
specified, as explained above (Subheading 2.2), we can simulate
evolution using any of the oncoSimul* functions. Before actually
running simulations (Subheading 2.3.3), though, we need to
decide about the growth model and mutation rates of genes.

2.3.1 Growth Models OncoSimulR uses a continuous time model. The main choice for
growth models is between a model with exponential growth or a
model with carrying capacity (the model of McFarland et al. [24–
26]) (but see alsoNote 4). In both cases, when we specify the fitness
effects of genes and gene interactions, and as shown above (Sub-
headings 2.2.4–2.2.7), we evaluate fitness using the usual [2, 8, 18,
37] multiplicative model: fitness is

Qð1þ s iÞ where si is the fitness
effect of gene (or gene interaction) i. In both models this fitness
refers to the growth rate. The original model of McFarland et al.
[26] has a slightly different parameterization, but you can go easily
from one to the other (see below, “Birth rate parameterization in
the model with carrying capacity”). If you specify fitness of geno-
types directly (Subheadings 2.2.1 and 2.2.2), then that is also taken
as the birth rate of genotypes.

In the model with exponential growth we specify the growth
rate, fixing death rate at 1 (it is possible to modify this if really
needed, but there is rarely any need to do so). The model with
carrying capacity follows the model of McFarland et al. [24–26]:
mutations affect the birth rate, with the death rate being density
dependent (see below).

In OncoSimulR, we choose the exponential growth model
setting model ¼ “Exp” in the call to functions oncoSimul*. The
model with carrying capacity is specified using model ¼ “McFL”.
Note that even if the McFL shows density dependence, there is no
frequency-dependence of fitness in any of the models (but see
Note 5).

Table 4
A simple synthetic sickness example

A B Fitness

wt wt 1

M wt 1 + sa

wt M 1+ sb

M M 1+ sab

“wt”’ denotes wildtype and “M” denotes mutant. sa> 0, sb> 0, sab<0
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Death Rate in the Model with Carrying Capacity: For death
rate, we use the expression that McFarland et al. [26, see p. 2911]
use “(. . .) for large cancers (grown to 106 cells)”:
DðN Þ¼ log ð1þN=K Þ where K is the initial equilibrium popula-
tion size. As the authors explain, for large N/K the above expres-
sion “(. . .) recapitulates Gompertzian dynamics observed
experimentally for large tumors.” By default, OncoSimulR uses a
value of K¼ initSize/(e1�1) so that the starting population
(which starts with population size ¼ initSize) is at equilibrium.

Birth Rate Parameterization in the Model with Carrying
Capacity: For the birth rate, in the original model in McFarland
et al. [26], the effects of drivers contribute to the numerator of the
birth rate, and those of the (deleterious) passengers to the denomi-
nator as: ð1þsÞd

ð1þspÞp, where d and p are, respectively, the total number of
drivers and passengers in a genotype, and the fitness effects of all
drivers are the same (s) and that of all passengers the same (sp). Note
that as written above and as explicitly mentioned inMcFarland et al.
( [26] p. 2911, and [24], p. 9) “(. . .) sp is the fitness disadvantage
conferred by a passenger.” In other words, the larger the sp, the
more deleterious the passenger. As explained above, however, we
use a multiplicative model

Qð1þ s iÞ, where genes and their inter-
actions can have arbitrary positive or negative effects (as we saw in
Subheadings 2.2.4–2.2.7). Thus, if one is given a model specified as
in the parameterization ð1þsÞd

ð1þspÞp one would simply need to rewrite the
appropriate term for the sp as (1 + si)¼�sp/(1 + sp), for the si in our
parameterization.

2.3.2 Mutation Rates,

Mutator Genes

OncoSimulR can use both a common mutation rate for all loci as
well as locus-specific mutation rates. Below we show two calls to
oncoSimulIndiv, the first one, rmf_common, with a common
mutation rate of 1e�7 for all loci, and the second, rmf_loci_s-
pec, with different mutation rates for each locus. We reuse the
RMF fitness specification from Subheading 2.2.2.

## We reuse the fitnessEffects object below

rmf_fe <- allFitnessEffects(genotFitness = rmf)

## simulation using a common mutation rate

rmf_common <- oncoSimulIndiv(rmf_fe, mu = 1e-7,

onlyCancer = FALSE)
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## Vector of locus-specific mutation rates

mus <- c("A" = 1e-9, "B" = 1e-7,

"C" = 2e-7, "D" = 5e-3)

## simulate with locus-specific mutation rates

rmf_loci_spec <- oncoSimulIndiv(rmf_fe,

mu = mus,

onlyCancer = FALSE)

It is also possible to specify mutator/antimutator genes (e.g.,
[15, 36]); these genes, when mutated, lead to an increase/
decrease in the mutation rate across the genome. Mutator/anti-
mutator genes must be a subset of the genes in the fitness effects
(if you want to use mutator genes that have no direct fitness
effects, give them a fitness effect of 0—see examples in the docu-
mentation). In the example below, we specify that mutating gene
“A” leads to an increase by a factor of fifty of the mutation rate.
See also Note 6 for numerical issues that can result from using
multiple mutator genes.

mutg <- allMutatorEffects(noIntGenes = c("A" = 50))

rmf_loci_spec_mut <- oncoSimulIndiv(rmf_fe,

muEF = mutg,

mu = mus,

onlyCancer = FALSE)

2.3.3 Running

Simulations Until

Pre-specified Conditions

Are Met

In addition to the growth model, fitness effects, and possible muta-
tor effects and locus-specific mutation rates, you need to decide:

l Where simulations will start from. This involves deciding the initial
population size (argument initSize); sometimes you might
want to start the simulations from a specific genotype (seeNote 7).

l When will simulations stop: how long to run simulations, and
whether or not to require simulations to reach a particular
condition. This is covered below.

OncoSimulR provides very flexible ways to decide when to stop
a simulation:

Simulating Evolution in Asexual Populations with Epistasis 141



l Using option onlyCancer ¼ TRUE.

A simulation will be repeated until any one of the conditions
below is met, if this happens before the simulation reaches
finalTime. Because OncoSimulR was originally developed to
simulate cancer evolution, this is often referred as “reaching
cancer” but we can refer to it as “reach whatever interests me.”
These conditions are:

– Total population size becomes larger than detectionSize.

– A gene, gene combination, or genotype among those listed in
fixation becomes fixed in the population (i.e., has a fre-
quency of 1 or very close to 1); see Subheadings 2.3.4–2.3.6.

– The tumor is detected according to a stochastic detection
mechanism, where the probability of “detecting the tumor”
increases with population size; see Subheading 2.3.7.

– The number of drivers in any one genotype becomes equal to,
or larger than, detectionDrivers (this could also be used
to stop the simulation as soon as a specific genotype is found,
by using the genes that make that genotype as the drivers, but
the mechanism in Subheading 2.3.5 is generally simpler). This
option is only reasonable in scenarios where we want to differ-
entiate between driver and passenger genes, and it requires
specifying driver genes; this will not be further discussed here.

The simulations exit as soon as any of the exiting conditions
is reached; therefore, if you only care about one condition, set
the other conditions to NA.

l onlyCancer ¼ FALSE.
A simulation will run only once, and will exit as soon as any

of the above conditions are met or as soon as the total popula-
tion size becomes zero or we reach finalTime.

Using onlyCancer ¼ FALSE will often be the setting you
want to use to examine general population genetics scenarios
without focusing on possible sampling issues; set finalTime to
the value you want and set onlyCancer¼FALSE; in addition, set
detectionProb to “NA” and detectionDrivers and
detectionSize to “NA” or to huge numbers. This way you
simply collect the simulation output at the end of the run, regard-
less of what happened with the population (it became extinct, it
did not reach a large size, it did not accumulate drivers, etc.).

Under the onlyCancer ¼ TRUE case, if we reach finalTime
(or the population size becomes zero) before any of the “reach
cancer” conditions have been fulfilled, the simulation will be
repeated again, within the limits given by the following parameters
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to the functions oncoSimulIndiv or oncoSimulPop: max.
wall.time: the total wall time we allow an individual simulation
to run; max.num.tries: the maximum number of times we allow
a simulation to be repeated to reach cancer; if you use oncoSi-
mulSample, max.wall.time.total and max.num.tries.
total, similar to the previous two, but specific for function onco-
SimulSample, are also of application. If the specified conditions
for “reaching cancer” cannot be met, no object with the population
state (genotypes and population sizes) will be returned (i.e., simu-
lations will abort without returning the population state, as no
simulation has achieved the specified conditions).

2.3.4 Fixation of Genes

and Gene Combinations

Simulations will exit when any of the genes or gene combinations in
the vector (or list) fixation, passed to the oncoSimul* func-
tions, reaches a frequency of 1, or very close to 1 (see Subheading
2.3.6). The gene combinations might share genes (i.e., might have
non-zero intersection). As explained above, if we want simulations
to only exit when fixation of those genes/gene combinations is
reached, we will set all other stopping conditions to NA. Note that if
the stopping conditions can never be reached, simulations will
eventually abort (e.g., when max.wall.time or max.num.
tries are reached). Since we are running simulations until fixation
of genes, the Exp model will rarely be appropriate here: the McFL
model, that includes competition, is more appropriate.

The following code shows an example based in the model in
Ochs and Desai [29]; the authors present a model like the one
shown in Fig. 2 (the numerical values are arbitrarily set by me). In
this model su>0, sv> su, si<0 and we can only arrive at v from i.
Mutants “ui” and “uv” can never appear as their fitness is 0, or�1,
so sui¼ suv¼�1 (or �1).

●

●

●

●

Genotypes (mutations)

F
itn

es
s

0.95

1.00

1.05

1.10

1.15

1.20

u wt i v

Fig. 2 Model from Ochs and Desai [29]. Actual numerical fitness values
arbitrarily set by me to conform to their figure. Redrawn from Figure 1.a in [29]
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We can specify fitness by specifying epistatic effects:

u <- 0.1

i <- -0.05

vi <- (1.2/0.95) - 1

ui <- uv <- -Inf

od2 <- allFitnessEffects(

epistasis = c("u" = u, "u:i" = ui,

"u:v" = uv, "i" = i,

"v:-i" = -Inf, "v:i" = vi))

evalAllGenotypes(od2, addwt = TRUE)

## Genotype Fitness

## 1 WT 1.00

## 2 i 0.95

## 3 u 1.10

## 4 v 0.00

## 5 i, u 0.00

## 6 i, v 1.20

## 7 u, v 0.00

## 8 i, u, v 0.00

In p. 2, section “Simulations” of Ochs and Desai [29], they
explain that “Each simulated population was evolved until either
the uphill genotype or valley-crossing genotype fixed.” To use the
same procedure here, we specify that we want to end the simulation
when either the “u” or the “v, i” genotypes have reached fixation,
by passing those genotype combinations as the fixation argu-
ment (in this example using fixation¼c("u","v")would have
been equivalent, since the “v” genotype by itself has fitness of 0).
Fixation will be the one and only condition for ending the simula-
tions, and thus we set arguments detectionDrivers, final-
Time, detectionSize, and detectionProb explicitly to NA.

144 Ramon Diaz-Uriarte



We want to run the simulations multiple times, so we use onco-
SimulPop but we set the number of replicates to only 10 for the
sake of speed in this example (a much larger number of replicates
would be required for real cases):

initS <- 20

## We use only a small number of repetitions for the sake

## of speed.

od100 <- oncoSimulPop(10, od2,

fixation = c("u", "v, i"),

model = "McFL",

mu = 1e-4,

detectionDrivers = NA,

finalTime = NA,

detectionSize = NA,

detectionProb = NA,

onlyCancer = TRUE,

initSize = initS,

mc.cores = 2)

What is the frequency of each genotype among the simulations? (or,
what is the frequency of fixation of each genotype?)

sampledGenotypes(samplePop(od100))

##

## Subjects by Genes matrix of 10 subjects and 3 genes.

## Genotype Freq

## 1 i, v 3

## 2 u 7

##

## Shannon's diversity (entropy) of sampled genotypes: 0.6108643

Note the variability in time to reach fixation
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head(summary(od100)[, c(1:3, 8:9)])

## NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 3 18 18 11759.300 470432

## 2 3 21 21 11860.700 474501

## 3 3 26 26 7941.800 317713

## 4 3 13 13 3675.175 147032

## 5 3 20 20 727.875 29120

## 6 2 18 18 47.450 1899

2.3.5 Fixation

of Genotypes

Suppose you are dealing with a five loci genotype and suppose that
you want to stop the simulations only if genotypes “A”, “B, E”, or
“A, B, C, D, E” reach fixation. You do not want to stop if, say,
genotype “A, B, E” reaches fixation: the mechanism in Subheading
2.3.4 would not be useful here. To specify genotypes, you prepend
the genotype combinations with a “_,”, and that tells OncoSimulR
that you want fixation of genotypes, not just gene combinations.

The following example illustrates the differences between the
two mechanisms:

## Create a simple fitness landscape

rl1 <- matrix(0, ncol = 6, nrow = 9)

colnames(rl1) <- c(LETTERS[1:5], "Fitness")

rl1[1, 6] <- 1

rl1[cbind((2:4), c(1:3))] <- 1

rl1[2, 6] <- 1.4

rl1[3, 6] <- 1.32

rl1[4, 6] <- 1.32

rl1[5, ] <- c(0, 1, 0, 0, 1, 1.5)

rl1[6, ] <- c(0, 0, 1, 1, 0, 1.54)

rl1[7, ] <- c(1, 0, 1, 1, 0, 1.65)

rl1[8, ] <- c(1, 1, 1, 1, 0, 1.75)

rl1[9, ] <- c(1, 1, 1, 1, 1, 1.85)

class(rl1) <- c("matrix", "genotype_fitness_matrix")

## plot(rl1) ## to see the fitness landscape
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## Gene combinations

local_max_g <- c("A", "B, E", "A, B, C, D, E")

## Specify the genotypes

local_max <- paste0("_,", local_max_g)

## show how it looks

local_max

## [1] "_,A" "_,B, E" "_,A, B, C, D, E"

fr1 <- allFitnessEffects(genotFitness = rl1)

initS <- 2000

######## Stop on gene combinations #####

r1 <- oncoSimulPop(10,

fp = fr1,

model = "McFL",

initSize = initS,

mu = 1e-4,

detectionSize = NA,

sampleEvery = .03,

keepEvery = 1,

finalTime = 50000,

fixation = local_max_g,

detectionDrivers = NA,

detectionProb = NA,

onlyCancer = TRUE,

max.num.tries = 500,

max.wall.time = 20,

errorHitMaxTries = TRUE,

keepPhylog = FALSE,

mc.cores = 2)
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sp1 <- samplePop(r1, "last", "singleCell")

##

## Subjects by Genes matrix of 10 subjects and 5 genes.

## Show the frequency of final composition of the populations

sampledGenotypes(sp1)

## Genotype Freq

## 1 A 6

## 2 A, B, C, D 2

## 3 B, E 2

##

## Shannon's diversity (entropy) of sampled genotypes: 0.9502705

####### Stop on genotypes ####

r2 <- oncoSimulPop(10,

fp = fr1,

model = "McFL",

initSize = initS,

mu = 1e-4,

detectionSize = NA,

sampleEvery = .03,

keepEvery = 1,

finalTime = 50000,

fixation = local_max,

detectionDrivers = NA,

detectionProb = NA,

onlyCancer = TRUE,

max.num.tries = 500,

max.wall.time = 20,

errorHitMaxTries = TRUE,
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keepPhylog = FALSE,

mc.cores = 2)

## All final genotypes should be local maxima

sp2 <- samplePop(r2, "last", "singleCell")

##

## Subjects by Genes matrix of 10 subjects and 5 genes.

## Show the frequency of final composition of the populations

sampledGenotypes(sp2)

## Genotype Freq

## 1 A 4

## 2 A, B, C, D, E 2

## 3 B, E 4

##

## Shannon's diversity (entropy) of sampled genotypes: 1.05492

2.3.6 Fixation: Tolerance,

Number of Periods,

Minimal Size

When stopping simulations on fixation of genes, gene combina-
tions, and genotypes, you need to consider three additional para-
meters: fixation_tolerance, min_successive_fixation,
and fixation_min_size.

fixation_tolerance: fixation is considered to have hap-
pened if the genotype/gene combinations specified as genotypes/
gene combinations for fixation have reached the frequency
>1� fixation_tolerance. (The default is 0, so we ask for geno-
types/gene combinations with a frequency of 1, which might not
be what you want with large mutation rates and complex fitness
landscapes with genotypes of similar fitness.)

min_successive_fixation: during how many successive
sampling periods the conditions of fixation need to be fulfilled
before declaring fixation. These must be successive sampling peri-
ods without interruptions (i.e., a single period when the condition
is not fulfilled will set the counter to 0). This can help to exclude
short, transitional, local maxima that are quickly replaced by other
genotypes. (The default is 50, but this is probably too small for
“real life” usage.)
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fixation_min_size: you might only want to consider fixa-
tion to have happened if a minimal size has been reached; this can
help eliminate local maxima that have fitness that is barely above
that of the wildtype genotype. (The default is 0.)

2.3.7 Stochastic

Detection Mechanism

This process is controlled by the argument detectionProb.
Under this process, we simulate stopping a simulation when a
tumor is detected, where the probability of “tumor detection”
increases with the total population size. The probability of detec-
tion is given by

PðN Þ ¼ 1� e�cððN�BÞ=BÞ if N > B

0 if N � B

(
ð1Þ

where P(N) is the probability that a tumor with a population size
N will be detected, and c (argument cPDetect in the oncoSimul*
functions) controls how fast P(N) increases with increasing popu-
lation size relative to a baseline, B (PDBaseline in the oncoSimul*
functions). This function is evaluated at regularly spaced times
during the simulation, and the decision to exit the simulation is
made by comparing P(N) against a random uniform number.
Using this exiting mechanism is probably only appropriate for
modeling diseases such as cancer and will not be further discussed
here. See the vignette and documentation for details and examples.

3 Output and Data Analysis

The output from the simulation functions oncoSimulIndiv,
oncoSimulPop, and oncoSimulSample are lists (see details in
the documentation). These lists contain, among other compo-
nents, the state of the population (genotypes and number of cells)
at the time of stopping the simulation and, for oncoSimulIndiv
and oncoSimulPop, all other previous sampling times. What users
do with the output will be completely dependent on the research
question. Some of the questions that can be addressed with the
output from OncoSimulR include:

l Effects of sign epistasis in the probability and time to cross
fitness valleys. We have provided small examples in Subheadings
2.3.4 and 2.3.5.

l The predictability of evolution in complex fitness landscapes, as
shown in [13, 19].

l The effects of mutator/antimutator genes in reaching particular
genotypes or population sizes.
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l Whether we can recover restrictions in the order of accumula-
tion of mutations with different types of epistatic relationships,
as shown in [10, 12].

Simple examples illustrating those scenarios are provided in the
vignette of the OncoSimulR package.

4 Notes: Potential Pitfalls and Troubleshooting

1. It is also possible to specify epistasis using Directed Acyclic
Graphs (DAGs) that represent order dependencies in the accu-
mulation of mutations. This is equivalent to specifying sign
epistasis [12], and it is used by “cancer progression models”
such as Conjunctive Bayesian Networks (CBN) [16, 17, 27],
oncogenetic trees (OT) [9, 34], CAncer PRogression Infer-
ence (CAPRI) [5, 31], or CAncer PRogression Extraction with
Single Edges (CAPRESE) [30]. This usage, however, can only
represent sign epistasis, or relaxations of sign epistasis; see the
vignette of the OncoSimulR package for examples.

2. OncoSimulR also allows us to specify fitness not in terms of
genes but in terms of modules. This can be useful in some
scenarios as discussed in, for example, [6, 32]. Each module
is a set of genes (and the intersection between modules is the
empty set). Modules, then, play the role of a “union operation”
over sets of genes. There is no major conceptual difference
relative to what has been shown in this chapter, but one also
needs to specify which genes belong to each module. This
specification of fitness can be useful when using DAGs
(as discussed in Note 1), but rarely in other scenarios.

3. It is also possible to use additive models where the contribution
of each mutated allele i to the log-fitness is si, where si is a
random deviate from a Normal distribution with user-specified
mean and standard deviation, and the log-fitness of a genotype
is the sum of the contributions of each mutated allele. This can
be obtained using model ¼ Additive in function rfitness
with versions of OncoSimulR 2.17.7 and higher.

4. It is also possible to use an exponential growth model with
birth rate fixed to 1, and where the fitness specification affects
the death rate, a model inspired in [3]. Specification of fitness
effects via their effects on death rates, however, often leads to
numerical issues (see documentation and vignette), and is not
discussed in this paper.

5. A branch of OncoSimulR, https://github.com/rdiaz02/
OncoSimul/tree/freq-dep-fitness, includes an implementa-
tion with frequency-dependent fitness. This implementation
includes all the features mentioned here, but also allows users
to make fitness depend on the frequency of other genotypes.

Simulating Evolution in Asexual Populations with Epistasis 151

https://github.com/rdiaz02/OncoSimul/tree/freq-dep-fitness
https://github.com/rdiaz02/OncoSimul/tree/freq-dep-fitness


We have not mentioned these features as they extend beyond
the specification of epistasis and the software requires users to
carry out manual installation of software, until a new R build-
ing toolchain becomes stable.

6. If we use several mutator genes with independent effects it is
easy to run into computational problems. Suppose we specify
five mutator genes, each with an effect of multiplying by 50 the
mutation rate. The genotype with all those five genes mutated
will have an increased mutation rate of 505¼312500000. If
you set the mutation rate to the default of 1e�6 you will have a
mutation rate of 312 which makes no sense (and leads to
several numerical problems and an early warning from the
software).

7. It is possible to start simulations from a specific genotype. This
can be done using the initMutant argument to the onco-
Simul* functions.
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