
An Iterative and Incremental Process

for Interaction Design
through Automated GUI Generation

David Raneburger, Roman Popp, Hermann Kaindl,
Alexander Armbruster, and Vedran Šajatović

Institute of Computer Technology, Vienna University of Technology
Gusshausstrasse 27-29, 1040 Vienna, Austria

{raneburger,popp,kaindl,armbruster,sajatovic}@ict.tuwien.ac.at

Abstract. Model-driven generation of graphical user interfaces (GUIs)
for multiple devices requires a model representing an interaction design.
High-quality interaction models are a prerequisite for achieving a good
level of usability for the corresponding applications. Our tool-supported
process facilitates the exploration and evaluation of interaction design
alternatives in an iterative and incremental manner, using automated
GUI generation to achieve a running application more quickly and with
reduced effort in comparison to manual (prototype) development. This
allows the designer to quickly find a suitable alternative and to build
more complex applications incrementally.

Keywords: Interaction design, automated GUI generation, iterative
and incremental process.

1 Introduction

According to Preece et al. [1], creating an interaction design typically involves
designing alternatives, prototyping and evaluating, and these activities are to be
repeated for informing each other. We recently presented an iterative process for
facilitating interaction design through automated GUI generation in [2]. While
Preece et al. have strong emphasis on iterations, they do not even mention
incremental development, which is widely used in software development, however
(see, e.g., [3]).

Our objective in the current paper is to facilitate interaction design in a de-
fined iterative and incremental process, utilizing automated GUI generation tool-
support for fast, inexpensive, and still high-fidelity prototyping. So, we present
a defined process for this kind of development based on automated GUI genera-
tion, and experience from its application during the interaction design of a larger
trial application. This process is iterative and incremental and, in principle, fa-
cilitates both improvements and extensions to the interaction design in each
iteration. It starts with the creation of an initial design using certain heuristics.
This initial interaction design is not supposed to be complete in our proposed

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 373–384, 2014.
c© Springer International Publishing Switzerland 2014



374 D. Raneburger et al.

process in the sense of covering all the interaction possibilities yet. Especially
for relatively large applications, providing an already complete initial model of
the interaction design is too difficult. So, like in usual approaches to software
development in general, it is preferable to start with an essential part first, to
get cyclic feed-back to the current version, to adapt accordingly, and to add an
increment in a defined iteration.

The remainder of this paper is organized in the following manner. First, we
relate this new process to existing work and provide some background material
in order to make our paper self-contained. Then we present this tool-supported
process for iterative and incremental interaction design in detail. After that, we
describe an informal evaluation in the course of developing a trial application.
Finally, we discuss our approach more generally and conclude.

2 Related Work and Background

A thorough discussion of related work on academic and industrial state-of-the-
art design-time GUI generation approaches can already be found in [2]. So,
we restrict our discussion on major work on life-cycle models for iterative and
incremental development. Subsequently, we provide background information on
the design-time GUI generation approach that we used to evaluate our new
process, the Unified Communication Platform.1

2.1 Related Work

Software development has generally changed from a ‘waterfall’ approach to an
iterative and incremental development (IID) approach. The basic approach is
much older than usually acknowledged, see, e.g., [4]. However, IID became much
more wide-spread in use with the Rational Unified Process (RUP) [5], or ‘agile’
approaches such as Extreme Programming, see, e.g., [6], where the most popular
one today is Scrum [7].

Recently, more and more literature suggests to use some kind of iterative and
incremental process also for the development of general systems. In particular,
RUP has been extended for the engineering of general “large-scale systems com-
posed of software, hardware, workers and information components” [8], and is
supported in a process management platform as a plug-in. One of the authors
of the current paper proposed a life-cycle model for iterative and incremental
systems engineering in [9].

2.2 Background on the Unified Communication Platform

The Unified Communication Platform (UCP) uses a Discourse-based Communi-
cation Model [10] to model the communicative interaction between two parties,
which can be assigned to the Tasks & Concepts Level of the CRF [11]. In the

1 http://ucp.ict.tuwien.ac.at/

http://ucp.ict.tuwien.ac.at/


An Iterative and Incremental Interaction Design Process 375

context of UI Generation, one communication party is the human user inter-
acting with the application via a UI. A Discourse-based Communication Model
specifies interaction based on discourses in the sense of dialogues. It consists of
a Discourse Model, which models all the possible dialogues, a so-called Domain-
of-Discourse (DoD) Model, which models the concepts that can be exchanged
between the user and the application, and an Action-Notification Model (ANM),
which models Actions and Notifications that can be performed by one of the com-
municating parties (either the user or the application). UCP already provides a
so-called ‘basic ANM’ that specifies basic Actions like get, set, or selecting,
and basic Notifications like presenting.

The basic interaction units in such Discourse Models are so-called Adjacency
Pairs, like question–answer or offer–accept/reject. Each such Adjacency Pair
consists of one or two Communicative Acts (e.g., a question and an answer).
These units are connected via so-called Discourse Relations, such as Alternative,
Title, Switch or IfUntil, in a hierarchical way. An Alternative relation specifies
that the connected sub-branches can, in principle, be executed concurrently, but
that only one sub-branch can be finished, in contrast to a Switch relation, where
each sub-branch specifies a condition and only one sub-branch can be executed
(which sub-branch is executed is determined through evaluating the correspond-
ing condition). A more complex relation is IfUntil, which is a combination of
a loop with a condition. A specified sub-branch is repeated until a condition
is fulfilled. After the condition is fulfilled, another sub-branch is executed. All
three relations are assigned to one of the interacting parties, which evaluates the
corresponding conditions. A Title relation, in contrast, specifies that its Nucleus
and its Satellite branch can be executed concurrently without any conditions,
and does not depend on a specific interaction party. For more details see [10].

UCP supports modeling such Discourse-based Communication Models with a
dedicated editor [12]. Most importantly, UCP can fully-automatically generate
GUIs from such models [13]. UCP also provides a message-based run-time envi-
ronment [13], which allows deploying the generated GUIs and application back-
ends. This run-time environment uses the Communicative Acts as messages and
provides a generic function-based interface for the back-end integration. The
functions are implicitly defined in the Discourse-based Communication Model
through the propositional content of the Communicative Acts and the interface
can be generated automatically. UCP uses a run-time architecture that is based
on the Model-View-Controller pattern [14], but does not impose any constraints
on the technology to be used to implement the functionality.

3 Our Tool-supported Process for Iterative and
Incremental Interaction Design

Larger and more complex applications typically involve more complex interac-
tion. Such applications are typically developed in an iterative and incremen-
tal manner. Therefore, we extended our process for iterative interaction design
presented in [2] to support incremental development as well. Figure 1 shows



376 D. Raneburger et al.

Fig. 1. Our Tool-supported Process for Iterative and Incremental Interaction Design
Embedded in our Communication Model-based Application Development Process

our extended Communication Model-based application development process in
BPMN.2 Analogously to our iterative development process, it includes and starts
with the tool-supported process named Create Interaction Design. Once a stable
interaction design is available, the activities Develop Complete Back-end and
Customize Device-specific GUI can again be performed concurrently. These ac-
tivities focus on GUI customization and manual back-end development and are
out of the scope for this paper.

In Figure 1, all activities shown in orange (dark) result in new or customized
artifacts, while all activities shown in yellow (light) are evaluation activities.
Our iterative and incremental process Create Interaction Design starts with the
Create/Adapt Communication Model activity. This activity creates the initial
Communication Model and adapts it in subsequent iterations. Such adaptations
can either be modifications due to the results of an evaluation activity, or in-
cremental extensions, or both. Incremental extensions of the interaction design

2 http://www.omg.org/spec/BPMN/2.0

http://www.omg.org/spec/BPMN/2.0


An Iterative and Incremental Interaction Design Process 377

may concern any of the three models that constitute the Communication Model
(i.e., the Domain-of-Discourse, the Action-Notification or the Discourse Model).

Once a Communication Model is available, it can be transformed in the activ-
ity Generate GUI Automatically to a Screen Model and the GUI Source Code

fully automatically using UCP. The Structural Screen Model can be used for a
first evaluation in the Evaluate Structural Screen Model activity. These evalu-
ation results can be immediately used to customize the Communication Model

by following the path labeled Integrate Screen Model Evaluation Results in Fig-
ure 1. This allows iterating on design alternatives in micro-iterations, much as
in our previous purely iterative process [2].

Once the results from the evaluation of the screen model are satisfactory, our
process continues with the Develop/Adapt Back-end Stub activity. Developing a
back-end stub is the same activity as in our purely iterative process and means
its initial creation. Adapting the back-end stub can be modifications due to the
results of an evaluation activity, or incremental extensions, or both. Incremental
extensions implement the new functionality introduced through an extension of
the Communication Model. This activity results in a prototypical application
back-end stub, as required to achieve a running application prototype. It can be
used in the Evaluate Interaction activity, where the focus is on its external be-
havior in the course of interacting with a user. The results of this evaluation can
be used to customize the Communication Model. In effect, this allows iterating
on design alternatives in macro-iterations.

Overall, this process is similar to the iterative design process presented in [2],
but additionally includes incremental extensions of various artifacts. To make
this paper self-contained, we include as short description of the Generate GUI
Automatically, the Evaluate Structural Screen Model and the Evaluate Interac-
tion activities here, based on [2].

The Generate GUI Automatically activity is essentially a machine task per-
formed fully-automatically by UCP as presented in [13]. It generates the Screen
Model (as an intermediate result) and the GUI Source Code. The Screen Model
specifies the GUI’s behavior through a Behavioral Screen Model and the GUI’s
structure through the Structural Screen Model. The Structural Screen Model is
a screen-based graphical representation on Concrete UI Level [11] comparable
to GUI mock-ups.

The Evaluate Structural Screen Model activity evaluates the screens of the
Structural Screen Model. It allows identifying missing interaction elements and
thus shortcomings of the interaction model through comparing the generated
GUI model to the functional requirements (e.g., given through use cases) that the
resulting application needs to satisfy. Importantly, this is feasible even without
the availability of an application back-end (prototype or final). Therefore, it
allows for micro-iterations in our process. UCP provides a dedicated graphical
editor for the Structural Screen Model, which supports this evaluation activity
through visualization of the generated screens.

The Evaluate Interaction activity uses the running application prototype to
evaluate the interaction. This may be done informally by the developer, again



378 D. Raneburger et al.

through comparing the interaction to the functional requirements for the ap-
plication, but is typically achieved through heuristic evaluation performed by
usability experts, or possibly even through usability tests, but always with a
focus on the interaction rather than the GUI screens per se. Only problems or
violations of heuristics concerning the external behavior are relevant, because
layout and style are not reflected in the interaction design.

4 Evaluation Using Vacation Planning

We built a vacation planning application according to our process, in effect
evaluating it. In particular, we use this trial application in this paper to illustrate
all activities of our process and present how we developed the corresponding
interaction design incrementally in several micro- and macro-iteration, using
UCP tool support.

Our vacation planning application is based on a commercial accommodation
booking Web-site of an Austrian province and implements a subset of this Web-
site’s functionality. In particular, our application supports searching for an ac-
commodation either through text search or through more specific search masks.
In addition, it provides information on events, articles that report on differ-
ent topics, and information on how to get to this Austrian province. Finally,
it allows a user to send a booking request to a specific accommodation or to
book an accommodation directly. Below we use excerpts of the corresponding
Communication Model to illustrate the enactment of our new process.

4.1 Initial Iteration

The basis for our interaction development was a set of tasks that should be
supported through the vacation planning application to build, and an existing
commercial Web-site that supported them. Such tasks were, for example, get
information on events, book a specific accommodation or find out how to get
there. These tasks were already supported by the commercial Web-site, and we
basically re-engineered its interaction. Our aim was to allow for a comparative
usability evaluation of our application through a user study in the end. This user
study is, however, out of scope for this paper.

The interaction required to support the tasks could be triggered on the com-
mercial Web-site through links labeled Home, Search Accomodation, Plan Vaca-
tion, Get There and Events. The Web-site allowed for switching between these
categories at any time, which decouples the interaction attached to each category
and facilitates incremental development of the interaction model.

The Home link, for example, led to the start-page that displayed a welcome
message and presented a list of events and a list of articles. Selecting a specific
event or article led to a Web-page with more detailed information on the selected
event/article.

When developing our interaction design, we started with modeling these al-
ternative selections and the interaction provided by the start-page. Figure 2



An Iterative and Incremental Interaction Design Process 379

Fig. 2. Excerpt of Initial Vacation Planning Discourse Model

shows an excerpt of the corresponding Discourse Model. This model has Ger-
man content descriptions for the Communicative Acts, because the language of
the application was German and these descriptions are used as default labels by
our GUI generation framework. We will use English translations in this paper,
providing the original German words in italics next to the translation.

The interacting parties in our Communication Model are a User (green/dark
fill-color) and the System (yellow/light fill-color), depicted in the upper left
corner of Figure 2. The top-level IfUntil relation is assigned to the System
(indicated through its yellow/light fill-color) and specifies a so-called Tree branch
without a condition only and no Then or Else branch. This models an endless
loop used for restarting the application (i.e., to display the home screen again)
after the interaction has been finished.

The Alternative relation labeled A1 has been assigned to the User, which
means that the User can alternatively perform any interaction specified in its
Nucleus branches. Its left Nucleus contains another Alternative relation (A2),
which we used to model the selection between the five links that should be avail-
able at any time for the user during the run-time of the application. We built our
interaction model incrementally starting with the Home link, which is modeled
through the Offer-Accept Adjacency Pair. The corresponding interaction is
modeled in the second Nucleus branch of Alternative A1. This nucleus contains
a Switch relation that has been assigned to the System. This means that the



380 D. Raneburger et al.

Fig. 3. Initial Vacation Planning DoD Model

condition assigned to the Switch’s Nucleus branch (i.e., home==true) is evalu-
ated by the System. This condition is true when the application is started and
can be set to true at any time by the User through accepting the Home Offer
(modeled through the corresponding Adjacency Pair as described above).

The interaction of the start-page has been modeled in the Nucleus branch of
the Switch relation with the condition home==true. It contains a Title relation,
whose Nucleus contains the Informing Communicative Act presenting the wel-
come message, and whose Satellite contains another Alternative relation (A3).
This Alternative relation links two ClosedQuestion-Answer Adjacency Pairs,
one for the events (Veranstaltungen) and one for the articles (Artikel).

In addition to the Discourse Model, we also created the initial Domain-
of-Discourse and the Action-Notification Model in an iterative way. The ini-
tial Domain-of-Discourse Model is shown in Figure 3. It defines the classes
StartObject, Event (Veranstaltung) and Article (Artikel) with their respec-
tive Attributes. Moreover, it defines EventType (Veranstaltungstyp) enumera-
tion, which is used by the type (typ) attribute of the event class.

The initial ANMmodel contained a homeAction only, as the remaining actions
used in our initial Communication Model were already specified in the basic
ANM model. Both, the concepts specified in the DoD Model and in the ANM
were referenced through the propositional content of the Communicative Acts
in our Communication Model.

After having created these three models, we generated the corresponding GUI,
evaluated the Screen Model and implemented the back-end stub. Then we iter-
atively refined the interaction.

4.2 Generated GUIs and Incremental Extensions

The generated GUI of the start-page of our application is shown in Figure 4 on
a smartphone device. Our generation framework split the Alternative relation
A1, rendering it as a tabbed pane, to avoid horizontal scrolling, and to keep
the vertical scroll-limit of five times the screen length (as defined through the
smartphone platform model). Figure 4(a) shows the GUI for the Home branch
of the Switch relation (as sketched in Figure 2).

We modeled the interaction following the selection of a specific event or article
on the start-page in our first incremental iteration. This interaction intuitively



An Iterative and Incremental Interaction Design Process 381

(a) Vacation Planning Smartphone Home
Screen.

(b) Vacation Planning Smartphone Menu
Screen.

Fig. 4. Vacation Planning GUI Displayed on a Samsung Galaxy Nexus Device

belongs to the home Sub-Discourse presented above, but we modeled it in a new
branch of the Switch relation instead, as it should be reachable from different
points of the final interaction model, and subsequently again evaluated and re-
fined this new branch iteratively. Another example for interaction that should be
reachable from different points is the payment interaction that finalizes the book-
ing process for a specific accommodation, which we added in another incremental
iteration. In general, we modeled all interactions that should be reachable from
different points in the interaction model as sub-branches of the Switch relation,
extending the existing interaction model and developing the final interaction
model in increments.

Figure 5 illustrates the structure of the final Discourse Model. This model
offers six options in the navigation (i.e., Alternative) branch of Alternative re-
lation A1. Five of these options were Offer-Accept Adjacency Pairs, which are
sketched in Figure 5 through the Home and the Events (Veranstaltungen) Ad-
jacency Pairs with dots in between. The sixth branch contains the text search
(VeranstaltungenSuche), modeled as OpenQuestion-Answer Adjacency Pair.



382 D. Raneburger et al.

Fig. 5. Excerpt of Final Vacation Planning Discourse Model

Each Offer-Accept Adjacency Pair triggers the corresponding interaction,
modeled as a branch of the Switch relation. The Switch branch of Alternative
A1 finally contains eleven branches due to the additional branches for interac-
tion that was reachable from different points of the final interaction model. The
remaining Switch branches are sketched through notes in Figure 5.

The five branches corresponding to the Offer-Accept Adjacency Pairs are
sketched through the Home and the Events (Veranstaltungen) notes with dots
in between. The remaining six branches, that model interaction that is reach-
able from different points in the final interaction model, are sketched through
the dots between the Events (Veranstaltungen) and the Payment (Bezahlung)
notes. Such interaction is the display of text search results, which typically con-
tains a list of accommodations, events and articles. All items in these three lists
can be selected to provide further details, which triggers the interaction in the
corresponding branch of the Switch relation. We provided three branches for
this interaction, one for Accommodation details, which also allowed for booking
a specific accommodation, one for Event and one for Article details. The remain-
ing two branches model the interaction for getting information on how to get
there by a specific means of transport (i.e., plane, train or car) and the interac-
tion required for completing the booking process for a specific accommodation
through payment.

Overall, we performed 11 incremental iterations while developing the Com-
munication Model. After each increment, we evaluated and refined the Com-
munication Model iteratively. Extending and refining the Discourse Model also
included extensions and modifications of the DoD Model and the ANM. The
final DoD Model specifies 18 classes and 8 enumerations, and the final ANM
specifies 11 Actions and 2 Notifications.



An Iterative and Incremental Interaction Design Process 383

Figure 4(b) shows the GUI for the final Alternative branch A2, as sketched in
Figure 5. The complete GUIs of our vacation planning application are accessible
in the Web for Smartphone3 and Desktop4.

5 Discussion

As an empirical evaluation, we presented the application of our iterative and
incremental interaction development process during the development of a more
complex vacation planning application. We found, however, that even a high-
quality interaction model requires further GUI customization to achieve a good
level of usability and the desired “look & feel”. We will, therefore, extend our
iterative and incremental process to support GUI customization as well, concur-
rently to interaction design. This will facilitate the evaluation of the interaction
design through heuristic evaluations and user studies, and become a synthesis of
the approach in the current paper and our previous approach to perfect-fidelity
prototyping [15].

6 Conclusion

In this paper, we present a new iterative and incremental process for creating a
(high-level) interaction design in the context of model-driven generation of GUIs,
and its enactment in the course of a trial application. For such an automated
generation, a (good) interaction design (represented as a corresponding model)
is a prerequisite. We show, that such generation can actually be utilized for the
creation of an improved interaction design. This defined and concrete process is
consistent with the usual approach to interaction design in general. It involves
designing alternatives, prototyping and evaluating, and how these activities are
to be repeated for informing each other. In terms of process execution, it adopts
from software development, where the artifact (here an interaction design) grows
incrementally, iteration by iteration.

The significance of this work is that GUIs for multiple devices are typically
derived from the same interaction model, which in case of UCP also specifies
the interface between GUI and application back-end. Achieving a stable inter-
action model allows developing the GUIs and the back-end concurrently, which
(potentially) shortens the development time of the overall application.

Acknowledgment. Part of this research has been carried out in the GENUINE
project (No. 830831) funded by the Austrian FFG.

3 http://ucp.ict.tuwien.ac.at/UI/accomodationBookingSmartphone
4 http://ucp.ict.tuwien.ac.at/UI/accomodationBookingDesktop

http://ucp.ict.tuwien.ac.at/UI/accomodationBookingSmartphone
http://ucp.ict.tuwien.ac.at/UI/accomodationBookingDesktop


384 D. Raneburger et al.

References

1. Preece, J., Rogers, Y., Sharp, H.: Interaction design: beyond human-computer in-
teraction, 3rd edn. John Wiley & Sons (2011)

2. Raneburger, D., Kaindl, H., Popp, R., Šajatović, V., Armbruster, A.: A process for
facilitating interaction design through automated GUI generation. In: Proceedings
of the 29th Annual ACM Symposium on Applied Computing (2014)

3. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice Hall (2005)
4. Larman, C., Basili, V.: Iterative and incremental development: a brief history.

Computer 36(6), 47–56 (2003)
5. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.

Addison-Wesley Longman Publishing Co., Inc., Boston (1999)
6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison-Wesley (2004)
7. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The Scrum primer, Version 1.2

(2010)
8. Cantor, M.: Rational unified process for systems engineering. Rational Edge, IBM

(August 2003)
9. Kaindl, H., Falb, J., Arnautovic, E., Ertl, D.: Increments in an Iterative Systems

Engineering Life Cycle. In: Proceedings of the 7th European Systems Engineering
Conference (EuSEC 2010), Stockholm, Sweden (April 2010)

10. Popp, R., Raneburger, D.: A High-Level Agent Interaction Protocol Based on a
Communication Ontology. In: Huemer, C., Setzer, T., Aalst, W., Mylopoulos, J.,
Sadeh, N.M., Shaw, M.J., Szyperski, C. (eds.) E-Commerce and Web Technologies.
LNBIP, vol. 85, pp. 233–245. Springer, Heidelberg (2011)

11. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting with
Computers 15(3), 289–308 (2003)

12. Falb, J., Kavaldjian, S., Popp, R., Raneburger, D., Arnautovic, E., Kaindl, H.:
Fully automatic user interface generation from discourse models. In: Proceedings
of the 13th International Conference on Intelligent User Interfaces (IUI 2009), pp.
475–476. ACM Press, New York (2009)

13. Popp, R., Raneburger, D., Kaindl, H.: Tool support for automated multi-device
GUI generation from discourse-based communication models. In: Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS 2013. ACM, New York (2013)

14. Popp, R., Kaindl, H., Raneburger, D.: Connecting interaction models and appli-
cation logic for model-driven generation of Web-based graphical user interfaces.
In: Proceedings of the 20th Asia-Pacific Software Engineering Conference, APSEC
2013 (2013)

15. Falb, J., Popp, R., Röck, T., Jelinek, H., Arnautovic, E., Kaindl, H.: UI prototyping
for multiple devices through specifying interaction design. In: Baranauskas, C.,
Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 136–
149. Springer, Heidelberg (2007)


	An Iterative and Incremental Process
for Interaction Design
through Automated GUI Generation

	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Background on the Unified Communication Platform

	3 Our Tool-supported Process for Iterative and Incremental Interaction Design
	4 Evaluation Using Vacation Planning
	4.1 Initial Iteration
	4.2 Generated GUIs and Incremental Extensions

	5 Discussion
	6 Conclusion
	References




