
4Tangential Contact

4.1 Introduction

In this chapter, we will consider contacts which are loaded both in the normal direc-
tion z (as previously, z points into the half-space and Qz to out of the half-space) and
in the tangential direction x. Although the load now lacks rotational symmetry due
to the bias for the x-direction, each of the non-vanishing components of stress ten-
sor or displacement in the contact plane still have an approximately axisymmetric
distribution. In this sense, this case can also be considered a rotationally symmetric
contact problem.

Initially, we examine the deformation of an elastic half-space under the effect
of a concentrated force at a point on the surface, which we define as the origin
(Fig. 4.1).

Let the force F have a sole component in the x-direction. The components of
the displacement vector u D .u; v;w/fx;y;zg at the surface (z D 0) are given by the
following (Cerruti 1882; Landau and Lifshitz 1991):
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where G stands for the shear modulus. For a stress distribution with a sole stress
component �xz.x; y/ acting in the surface, the displacements are determined using

Fig. 4.1 Single tangential
force acting on the surface of
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the principle of superposition:
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p
.x � x0/2 C .y � y0/2: (4.2)

These equations lay the basis of all analytical and also numerical contact mechan-
ical solutions and enable certain general deductions. For two contacting bodies
under tangential load, the normal displacements of their surfaces are only then equal
and opposite if the coefficients preceding the integral in the third equation of the set
(4.2) are equal:

1 � 2�1
G1

D 1 � 2�2
G2

: (4.3)

The vertical displacements of both bodies are, in this case, “congruent”, causing no
additional interaction in the normal direction. We refer to these cases as decoupled
normal and tangential contact problems. Bodies that meet condition (4.3) are called
“elastically similar”. This condition is met in two cases (among many others) of
practical importance: (a) contact of bodies with the same elastic properties (e.g.,
wheel-rail contact), or (b) contact of a rigid body (G1 ! 1) with an incompressible
one (�2 D 0:5) (e.g., road-tire contact). If (4.3) is not fulfilled, the normal stresses
then lead to relative tangential displacements of the contact partners and vice-versa.
The mathematical treatment and the complete analytical solutions of the contact
problems in particular are rendered far more difficult in this case. However, the
solution differs only slightly from the case of elastically similar materials in many
cases.

If the single stress component �xz.x; y/ is solely dependent on the polar radius
r according to the law

�xz.x; y/ D .x; y/ D 0.1 � r2=a2/�1=2; (4.4)

substituting into (4.2) with subsequent integration yields the result (Johnson 1985):

u D �.2 � �/
4G

0a D const: (4.5)

The tangential force is calculated to:

Fx D
aZ

0

2�r0dr

.1 � r2=a2/1=2 D 2�a20: (4.6)
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The physical implementation of the stress distribution (4.4) is more complicated
than is the case for the analogous normal stress distribution. One might assume
it could be achieved by tangentially displacing (4.5) a rigid punch of the radius a.
However, this is only true if the resulting normal displacements also vanish. In the
case of a rigid indenter, this condition is only fulfilled if the elastic half-space is
incompressible. A constant displacement of the contact area is also achieved when
two elastically similar half-spaces, stuck together in a circular area of radius a, are
displaced relative to one another. The relative displacement of the bodies is then
given by the superposition of the displacements of the form (4.5) for both bodies:

u.2/ � u.1/ D �0a

�
2 � �1
4G1

C 2 � �2
4G2

�
: (4.7)

From this, accounting (4.6) we obtain the relationship:

Fx D 2G�a.u.2/ � u.1//; (4.8)

with
1

G� D 2 � �1
4G1

C 2 � �2
4G2

: (4.9)

The coefficient connecting the force and the relative displacement (4.8) is the tan-
gential contact stiffness:

kx D 2G�a: (4.10)

Generally, when two bodies with curved surfaces are brought into normal contact
and subsequently displaced in a tangential direction relative to one another, the
bodies remain stuck to each other in one part of the contact area while in other
areas slipping relative to one another. This is already indicated by the fact that
the normal pressure vanishes at the boundary, while the tangential stress (4.4) at
the boundary of a no-slip contact is singular. Therefore, the no-slip condition for
a finite coefficient of friction can generally not be fulfilled in the vicinity of the
contact boundary. Cattaneo (1938) and Mindlin (1949) independently solved the
associated contact problem with some simplifying assumptions. These assumptions
are:

� The existence of a single tangential stress component �xz.r/ in the slip plane,
which only depends on the polar radius r.

� A unilateral displacement field with a displacement component only in the x-
direction.

� Satisfaction of the following boundary conditions:
– Equal displacements of both bodies in the stick zone, i.e., under the condition

that the tangential stress is lower than � times the normal stress:

u.1/.r/ D u.2/.r/; if j�xz.r/j � �p.r/ .stick/: (4.11)
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– Local compliance with Coulomb’s law of friction in the slip zone.

�xz.r/ D ��p.r/ sgn. Pu1 � Pu2/; otherwhise .slip/: (4.12)

Axially symmetric contacts only approximately satisfy these conditions. A stress
component �xz.r/ depending on r causes displacements in both x-direction and y-
direction. The displacements and the friction forces are therefore not anti-parallel,
thus violating the isotropic nature of Coulomb’s law of friction. Johnson (1955) was
the first to point out this error in the Cattaneo–Mindlin solution. He demonstrated
that the maximum deviation of the directions of the displacement and friction force
is on the order of �=.4 � �/, and therefore lies between 0.09 for � D 1=3 and 0.14
for � D 1=2. Based on this finding, Johnson concluded that the Cattaneo–Mindlin
solution provides a good approximation. Indeed, in macroscopic relationships (e.g.,
dependency of the tangential force on the tangential displacement) it results in an
error in the order of 1%. However, local deviations (potentially important for wear,
for example) may be significantly higher.

In this book we will examine tangential contacts in Cattaneo–Mindlin approxi-
mation, referring to these as “Cattaneo–Mindlin problems”.

4.2 Cattaneo–Mindlin Problems

In the Cattaneo–Mindlin approximation, the tangential contact problem between
two elastic bodies can be reduced to the contact problem of a rigid punch and an
elastic half-space. Formulation of the equivalent problem of a rigid indenter and an
elastic half-space requires using the previously introduced effective moduliE� (see
(2.1)) and G� (see (4.9)), which we will list once more in this chapter as follows:

1

E� D 1 � �1
2G1

C 1 � �2
2G2

;

1

G� D 2 � �1
4G1

C 2 � �2
4G2

: (4.13)

These effective moduli uniquely define the contact properties of arbitrarily shaped
bodies. For flat cylindrical punches of radius a, they directly define the normal
and tangential stiffness of the contact (under the assumption of complete stick), as
demonstrated in (2.21) and (4.10):

kz D 2E�a;
kx D 2G�a: (4.14)

We will assume that the simplest, local form of Coulomb’s law of friction is valid
in the contact area, which is given by (4.11) and (4.12). As mentioned in the intro-
duction, small displacements in the y-direction also exist. These will be neglected
here; the interested reader can be referred to the works of Vermeulen and Johnson
(1964).

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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In contrast to the normal contact problem, tangential contacts exhibit hysteresis
and memory properties. These properties mean that there is no universal relation-
ship between the tangential force and the tangential displacement. Generally, at
least part of the contact area in tangentially loaded contacts is a zone of local slip.
The resulting energy dissipation causes hysteresis loops between the global contact
quantities: force and displacement. Moreover, the tangentially loaded contact saves
a part of its loading history in the form of tangential stresses; in this sense the con-
tact can be said to possess a memory. However, this means that the state expressed
by the stresses and displacements, depends on the entire previous loading history, at
least for the tangential stresses and displacements. This dependency distinguishes
the problems examined in this chapter from the previously discussed purely normal
contacts, where the entire current contact configuration is defined by the current
value of a single relevant contact quantity, e.g., the indentation depth. Therefore,
the consideration of the tangential contact problem theoretically includes not only
the specification of the indenter geometry and material properties, but also the com-
plete loading or displacement history. For the sake of brevity in this chapter, we
will restrict our consideration to the simplest and most technically relevant loading
history, which consists of a constant normal force FN and a subsequent application
of an increasing tangential force Fx . For the consideration of more general loading
histories, the reader can be referred to the pioneering publication by Mindlin and
Deresiewicz (1953) and to work by Jäger (1993).

Let us consider the indentation of a rigid profile in an elastic half-space with the
effective elastic properties given by the effective moduli (4.13). We will use the
notation FN for the normal force and Fx for the tangential force, a for the contact
radius, and d and u.0/ for the displacement of the rigid indenter in the normal and
tangential direction, respectively. As explained earlier in this chapter, the contact
area is generally composed of an inner stick zone of radius c � a and an outer slip
zone at the boundary of the contact area. The mixed boundary conditions at the
surface of the elastic half-space at z D 0 are then as follows:

w.r/ D d � f .r/; r � a;

u.r/ D u.0/; r � c;

�xz.r/ D ��zz.r/; c < r � a;

�zz.r/ D 0; r > a;

�xz.r/ D 0; r > a: (4.15)

Here w and u represent the displacement of the half-space in the z and x-direction.
The radii of the contact area and stick zone are unknown a priori and must be
determined as part of the solution process.
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4.3 Solution of the Tangential Contact Problem by Reducing
to the Normal Contact Problem

Using a principle discovered independently by Ciavarella (1998) and Jäger (1998),
the solution for the contact problem described in (4.15) can be determined if the
solution of the corresponding frictionless normal contact problem is known. There-
fore, we can make use of the solutions of various Boussinesq problems from the
first chapters during our consideration of the Cattaneo–Mindlin problem in relation
to those same profile shapes.

Let �zz.r I Qa/ be the stress distribution in a normal contact of contact radius Qa.
And let w.r I Qa/ be the normal displacement resulting from this stress distribution.
Ciavarella (1998) and Jäger (1998) were able to prove that the distribution of tan-
gential stresses in the form of

�xz.r/ D �

(
�zz.r I a/� �zz.r I c/; r � c;

�zz.r I a/; c < r � a
(4.16)

with the radius of the stick zone from the equation

G�ju.0/j D �E�Œd.a/� d.c/� (4.17)

satisfy the boundary conditions (4.15), and therefore represent the solution of the
corresponding tangential contact problem. The relationship between the forces and
the contact radii is obtained from integration of the tangential stresses:

Fx D �ŒFN .a/� FN .c/�: (4.18)

From the superposition of the tangential stresses (4.16), it immediately follows that
the principle of superposition equally applies to the tangential displacements in the
direction of the tangential force. The unknown tangential displacements outside the
stick zone are given by:

u.r/ D �E�

G�

(
d.a/� f .r/ � w.r I c/; c < r � a;

w.r I a/� w.r I c/; r > a:
(4.19)

Equations (4.16), (4.17), (4.18), and (4.19) provide a complete solution of the tan-
gential contact problem via reduction to the normal contact problem.

4.4 Solution of the Tangential Contact Problem Using theMDR

As an alternative to the solution via reduction to the normal contact problem (de-
tailed earlier in this chapter), the tangential contact problem can be solved “directly”
(i.e., without knowledge of the solution of the normal contact problem) using the
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Fig. 4.2 Substitute model of
the tangential contact

FN

Fx

a

2c

a

MDR (see Popov and Heß 2015). While ultimately the solutions do not differ for
simple loading histories, this second approach can prove quite valuable for complex
loading histories or numerical simulations.

Let us consider the axially symmetric indenter with the profile Qz D f .r/, which
is initially pushed into the elastic half-space with the normal force FN , and sub-
sequently loaded with a tangential force Fx in x-direction. We will assume that
the friction in the contact obeys Coulomb’s law of friction in its simplest form,
described by (4.11) and (4.12).

The application of a tangential force creates a ring-shaped slip zone, which ex-
pands inwards for an increasing force until complete slip sets in. We call the inner
radius of the slip zone (also the radius of the stick zone) c.

In the MDR, this contact problem is solved as follows in this chapter (we will
describe only the solution procedure. The complete derivation can be found in
Chap. 11).

As in the case of the normal contact problem, we first determine the modified
profile g(x) using the transformation

g.x/ D jxj
jxjZ

0

f 0.r/drp
x2 � r2 : (4.20)

Additionally, we define a Winkler foundation consisting of springs of normal and
tangential stiffness

�kz D E��x;
�kx D G��x; (4.21)

where�x is the distance between each spring andE� andG� are defined by (4.13).
The calculation method involves indenting the Winkler foundation with the profile
g.x/ under the normal force FN , and subsequently tangentially displacing the pro-
file by u.0/ (see Fig. 4.2). The relationships between the indentation depth, the
contact radius, and the normal force from the MDR model correspond exactly to
the solution of the original problem, as explained in detail in Chap. 1 (while dis-
cussing the normal contact problem).

Each spring sticks to the indenting body and is displaced along with the body
as long as the tangential force �Fx D �kxu

.0/ of the particular spring is lower

http://dx.doi.org/10.1007/978-3-662-58709-6_11
http://dx.doi.org/10.1007/978-3-662-58709-6_1
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than ��Fz . Upon reaching the maximum static friction force, the spring begins to
slip, with the force remaining constant and equal to ��Fz . This rule can also be
expressed in an incremental form for arbitrary loading histories: for small displace-
ments �u.0/ of the indenter, the tangential displacements of the springs u1D.x/ in
the MDR model are given by:

�u1D.x/ D �u.0/; if j�kxu1D.x/j < ��Fz;
u1D.x/ D ˙��Fz.x/

�kx
; in a state of slip: (4.22)

The sign in the last equation depends on the direction of the tangential spring dis-
placement, if the spring were sticking. By tracking the incremental difference of
the indenter position we can uniquely determine the displacements of all springs in
the contact area, thus yielding the values of all tangential forces:

�Fx D �kxu1D.x/ D G��x � u1D.x/; (4.23)

and the linear force density (distributed load):

qx.x/ D �Fx

�x
D G�u1D.x/: (4.24)

The distribution of the tangential stress .r/ and the displacements u.r/ in the orig-
inal three-dimensional contact are defined by rules which are completely analogous
to (2.13) and (2.14) of the normal contact problem:

�xz D .r/ D � 1
�

1Z

r

qx
0
.x/dxp
x2 � r2 ;

u.r/ D 2

�

rZ

0

u1D.x/dxp
r2 � x2 : (4.25)

Equations (4.22) to (4.25) are valid for arbitrary loading histories of the contact (and
also for an arbitrary superposition of time-variant normal and tangential forces).
In general, these equations must be implemented in a numerical program; this is
extremely easy due to the independence of each spring in the Winkler foundation.

For simple loading conditions, the general solution can also be written in an
explicit form. Let us illustrate the MDR procedure using the case of an indenter
which is first pressed with an initial normal force FN to generate a contact radius a,
which is determined from the equation

FN D 2E�
aZ

0

w1D.x/dx D 2E�
aZ

0

Œd � g.x/�dx

D 2E�
aZ

0

Œg.a/� g.x/�dx: (4.26)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Subsequently, the indenter is displaced in the tangential direction. The radius of the
stick zone c is determined from the condition that the absolute tangential force is
equal to the coefficient of friction � multiplied with the normal force�kzw1D.c/:

G�ju.0/j D �E�Œd � g.c/�: (4.27)

From (4.27) we can draw an interesting and very general conclusion. The max-
imum tangential displacement for which the stick zone just barely vanishes, i.e.,
the minimum displacement to see complete slip, is determined by setting c D 0 in
(4.27) (and therefore also g.c/ D 0):

u.0/c D �
E�

G� d: (4.28)

Thus the displacement that is achieved before complete slip sets in is solely depen-
dent on the indentation depth (and not on the shape of the indenter).

The tangential displacement in the MDR model at a given coordinate x then
equals:

u1D.x/ D

8̂
<̂
ˆ̂:

u.0/; for x < c;

�
E�

G� Œd � g.x/�; for c < x < a;

0; for x > a;

(4.29)

and can also be written in the following simple universal form:

u1D.x/ D �
E�

G� Œw1D.xI a/� w1D.xI c/�; (4.30)

which corresponds to the principle of superposition by Ciavarella (1998) and Jäger
(1998). The distributed load is obtained by multiplying with G�:

qx.x/ D

8̂
<̂
ˆ̂:
G�u.0/; for x < c;

�E�Œd � g.x/�; for c < x < a;

0; for x > a;

(4.31)

or
qx.x/ D � Œqz.xI a/ � qz.xI c/� ; (4.32)

where qz.xI a/ and qz.xI c/ represent the respective distributed load of the normal
contact problem with the radius a and c. The tangential force is given by:

Fx D 2

aZ

0

qx.x/dx D �ŒFN .a/� FN .c/�; (4.33)
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where FN .a/ and FN .c/ mean the normal force with respect to the contact radii a
or c. The stress distribution is obtained by substituting (4.31) into (4.25):

.r/ D �E�

�

aZ

c

g0.x/dxp
x2 � r2 D �Œp.r I a/� p.r I c/�: (4.34)

The displacements are calculated by inserting (4.29) into (4.25), resulting in:

u.r/ D �E�

G� Œw.r I a/� w.r I c/�; (4.35)

or explicitly:

u.r/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

u.0/; for r < c;
2

�

�
u.0/ arcsin

�c
r

�
C �E�

G�

Z r

c

d � g.x/p
r2 � x2 dx

	
; for c < r < a;

2

�

�
u.0/ arcsin

�c
r

�
C �E�

G�

Z a

c

d � g.x/p
r2 � x2 dx

	
; for r > a:

(4.36)

Equations (4.26)–(4.36) clearly show that this contact problem is completely de-
fined when the shape of the indenter and one macroscopic quantity from each trio
fd; a; FN g and fu.0/; c; Fxg are known. If the solution of the normal contact prob-
lem is known, all macroscopic quantities can be determined from (4.27) and (4.33).
For the sake of simplicity and in analogy to Chap. 2, it is assumed that a and c
are known quantities. Of course, this is not necessarily true. All other cases re-
quire rewriting the equations to solve for the unknown quantities. For instance, the
relationship between the tangential force and the radius c of the stick zone is ob-
tained by dividing (4.33) by FN . Using partial integration, it can be rewritten in the
compact form of:

Fx

�FN
D
R a
c
xg0.x/dxR a

0 xg
0.x/dx

D FN .a/� FN .c/
FN .a/

: (4.37)

In summary, there are two approaches to solving the tangential contact problem for
the simplest standard loading case (first normal and, subsequently, tangential):

I. The tangential contact problem is reduced to the normal contact problem using
(4.33), (4.34), and (4.35) with the radius c of the stick zone being determined either
by (4.27) (if the displacement is known) or (4.37) (if the force is known). For the
sake of convenience, we will list all relevant equations once more:

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fx D �ŒFN .a/� FN .c/�;
�xz.r/ D .r/ D �Œp.a/� p.c/�;
u.r/ D �E�

G� Œw.r I a/� w.r I c/�; with c from

G�u.0/ D �E� Œd.a/� d.c/� ; or

Fx

�FN
D FN .a/� FN .c/

FN .a/
: (4.38)

II. The tangential contact problem can also be solved directly, without knowledge
of the corresponding solution of the normal contact problem, using (4.26), (4.27),
(4.34), and (4.36), which we will also summarize once more:

FN D 2E�
aZ

0

Œd � g.x/�dx with d D g.a/;

Fx D 2

aZ

0

qx.x/dx D 2

0
@G�u.0/x c C �E�

aZ

c

Œd � g.x/� dx
1
A ;

.r/ D �E�

�

aZ

c

g0.x/dxp
x2 � r2 ;

u.r/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

u.0/; for r < c;
2

�

�
u.0/ arcsin

�c
r

�
C �E�

G�

Z r

c

d � g.x/p
r2 � x2 dx

	
; for c < r < a;

2

�

�
u.0/ arcsin

�c
r

�
C �E�

G�

Z a

c

d � g.x/p
r2 � x2 dx

	
; for r > a:

Stick radius is determined by

G�u.0/ D �E�Œd � g.c/�; or

Fx

�FN
D
R a
c
xg0.x/dxR a

0
xg0.x/dx

:

(4.39)
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If the stresses and displacements are known, the dissipated friction energy can also
be calculated with

WR D
Z
�u�xzdA: (4.40)

Here, �u represents the relative displacement between the indenter and the half-
space. It vanishes in the stick zone. With the stresses outside of the contact also
being zero, only the zone of local slip contributes to this integral. The integral can
thus be reformulated to:

WR.c; a/ D 2��

aZ

c

.u.0/ � u/�zzrdr

D 2��2E�

G�

aZ

c

Œf .r/Cw.r I c/ � d.c/��zz.r I a/rdr: (4.41)

However, it is easier to calculate the dissipated energy directly using the MDR
model of the contact. Then we get:

WR.c; a/ D �2G�
aZ

c

u1D�u1Ddx

D �2G�
�
�E�

G�

�2 aZ

c

Œd.a/� g.x/�Œg.x/� d.c/�dx: (4.42)

Here, d.a/ D g.a/ and d.c/ D g.c/ are the indentation depths corresponding to
the radii a and c.

Once again it should be noted that the detailed MDR algorithm is not restricted
to the specifically examined loading case (application of a normal force with sub-
sequent tangential loading). In the context of tangential problems, it is valid for all
loading cases, including arbitrarily varying normal and tangential forces. Thus, we
can utilize it for simulations of arbitrary loading histories, e.g., in stick-slip drives.

4.5 Areas of Application

The technical applications of mechanical contact problems with friction are virtu-
ally uncountable. Even by neglecting rolling contacts (not featured in this book
due to their asymmetry) occurring in bearings or other types of transport elements,
tangential contact problems are found in a wide range of applications, e.g., friction-
based connections, friction-induced damping (such as in leaf springs), surface treat-
ment via a sliding indenter (burnishing), or mechanical stick-slip linear drives which
can be miniaturized to an extreme degree. In the latter two applications, the inden-
ters usually appear in the classical shapes of the flat punch, cone, and sphere. Once
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again we will consider these three bodies in their “pure form” (see Sects. 4.6.1,
4.6.2, and 4.6.3) as well as modifications thereof, owing to imperfections due to
manufacturing or wear (see Sects. 4.6.5 to 4.6.10). As always, we will consider the
profile in shape of a power-law (see Sect. 4.6.4), which is a basic building block of
the solution in the form of a Taylor series of any sufficiently differentiable profile.

4.6 Explicit Solutions for Axially Symmetric Tangential Contact
Problems

For the sake of simplicity, we will assume in the following that u.0/ 	 0. This
condition does not represent a restriction to the general validity of the presented
results.

4.6.1 The Cylindrical Flat Punch

The solution of the normal contact problem for the indentation by a flat cylindrical
punch of radius a according to Chap. 2 (see Sect. 2.5.1) is given by:

FN .d/ D 2E�da;

�zz.r Id/ D � E�d
�

p
a2 � r2 ; r � a;

w.r Id/ D 2d

�
arcsin

�a
r

�
; r > a: (4.43)

Here,FN represents the normal force, d the indentation depth, �zz the normal stress,
and w the normal displacement of the half-space. Under tangential load, the con-
tact is either sticking or slipping completely; there is no limited zone of local slip.
The contact starts to slip once the tangential displacement of the punch reaches the
critical value (4.28):

u.0/c D �E�

G� d: (4.44)

The shear stress distribution in the contact equals

�xz.r Iu.0/; d / D � G�

�
p
a2 � r2 �

(
u.0/; for u.0/ � u

.0/
c ;

u
.0/
c ; for u.0/ > u.0/c

(4.45)

and the tangential displacements outside the contact area r > a are:

u.r Iu.0/; d / D 2

�
arcsin

�a
r

�
�
(
u.0/; for u.0/ < u.0/c ;

u
.0/
c ; for u.0/ > u.0/c :

(4.46)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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The total tangential force is:

Fx.u
.0/; d / D 2G�a �

(
u.0/; for u.0/ < u.0/c ;

u
.0/
c ; for u.0/ > u.0/c :

(4.47)

4.6.2 The Cone

The consideration of the indentation by a cone with a slope angle � in Chap. 2
(Sect. 2.5.2) in the context of frictionless normal contact yielded the following rela-
tionships for the indentation depth d, the contact radius a, the normal force FN , the
normal stresses �zz , and the normal displacements w:

d.a/ D �

2
a tan �;

FN .a/ D �a2

2
E� tan �;

�zz.r I a/ D �E
� tan �
2

arcosh
�a
r

�
; r � a;

w.r I a/ D tan �
�p

r2 � a2 � r C a arcsin
�a
r

��
; r > a: (4.48)

The mean pressure in the contact area is:

p0 D E� tan �
2

: (4.49)

The solution of the tangential contact problem depicted in Fig. 4.3 (which is the re-
lationships between the tangential displacement u.0/), the radius of the stick zone c,
and the tangential force Fx (first published by Truman et al. 1995) is then expressed

Fig. 4.3 Tangential contact
of a rigid conical indenter
and elastic half-space
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Fig. 4.4 Normalized tan-
gential stresses in contact for
different values of the nor-
malized radius of the stick
zone c=a when indented by
a cone
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by (4.38) as follows:

u.0/.a; c/ D ��E�

2G� .a � c/ tan �;

u.0/c .a/ D ��E�

2G� a tan �;

Fx.a; c/ D ��E� tan �
2

.a2 � c2/ D �FN .a/

�
1 � c2

a2

�
: (4.50)

For the missing tangential stresses and displacements one gets:

�xz.r I a; c/ D ��E
� tan �
2

8̂
<
:̂
arcosh

�a
r

�
� arcosh

�c
r

�
; r � c;

arcosh
�a
r

�
; c < r � a;

u.r I a; c/ D �E� tan �
G�

8̂
ˆ̂̂<
ˆ̂̂̂
:

�c arcsin
�c
r

�
C �a

2
�

p
r2 � c2; c < r � a;

a arcsin
�a
r

�
C

p
r2 � a2

�c arcsin � c
r

� � p
r2 � c2; r > a:

(4.51)

These are shown in normalized form in Figs. 4.4 and 4.5. The finite value of the
tangential stress in the middle of the contact is:

lim
r!0

� j�xzj
�p0

�
D lim

r!0

h
arcosh

�a
r

�
� arcosh

�c
r

�i
D ln

�a
c

�
: (4.52)
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Fig. 4.5 Normalized tan-
gential displacements of the
half-space for different val-
ues of the normalized radius
of the stick zone c=a when
indented by a cone
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The loss of mechanical energy is calculated according to (4.42):

WR.a; c/ D � .��E
� tan �/2

12G� .a � c/3: (4.53)

In normalized variables, this can be represented as:

� WD jWRj
�FNu

.0/
c

D 1

3

�
1 � c

a

�3
: (4.54)

4.6.3 The Paraboloid

As usual, the paraboloid was the first shape for which a broad class of contact
problems was solved. In the case of the tangential contact, the classical solution
goes back to Cattaneo (1938) andMindlin (1949). The pure normal contact problem
solution is represented by the following relationships linking indentation depth d,
contact radius a, normal force FN , normal stress �zz, and normal displacement w
(see Sect. 2.5.3)

d.a/ D a2

R
;

FN .a/ D 4

3

E�a3

R
;

�zz.r I a/ D �2E
�

�R

p
a2 � r2; r � a;

w.r I a/ D a2

�R

"�
2 � r2

a2

�
arcsin

�a
r

�
C

p
r2 � a2
a

#
; r > a: (4.55)
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Fig. 4.6 Tangential contact
of a rigid parabolic indenter
and an elastic half-space
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Here, R denotes the curvature radius of the paraboloid in the vicinity of the contact.
The average pressure in the contact is:

p0 D 4E�a
3�R

: (4.56)

Taking into account (4.38), the solution of the tangential problem (see Fig. 4.6) is
given by the relationships

u.0/.a; c/ D �E�

G�R
.a2 � c2/;

u.0/c .a/ D �E�

G�R
a2;

Fx.a; c/ D 4�E�

3R
.a3 � c3/ D �FN .a/

�
1 � c3

a3

�
; (4.57)

with the tangential displacement of the rigid paraboloid u.0/, the radius c of the stick
zone, and the tangential force Fx . The tangential stresses and displacements of the
elastic half-space then amount to:

�xz.r I a; c/ D �2�E
�

�R

(p
a2 � r2 �

p
c2 � r2; r � c;p

a2 � r2; c < r � a;
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2
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2
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�c
r

�
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p
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#
; r > a:

(4.58)
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Fig. 4.7 Normalized tan-
gential stresses in the contact
for different values of the
normalized stick zone ra-
dius c=a for indentation by a
paraboloid

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r/a

|s
xz

| /
m

p 0

c/a = 0 1.
c/a = 0 5.
c/a = 0 9.

Fig. 4.8 Normalized tan-
gential displacement of the
half-space for different values
of the normalized stick zone
radius c=a for indentation by
a paraboloid
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These are visualized in normalized form in Figs. 4.7 and 4.8. Using (4.42), the loss
of mechanical energy can be written as:

WR.c; a/ D �2.�E
�/2

G�R2

aZ

c

.a2 � x2/.x2 � c2/dx: (4.59)

When expressed in normalized quantities, it can be rewritten as:

� WD jWRj
�FNu

.0/
c

D 1

5

�
1 � c

a

�3 �
1C 3

c

a
C c2

a2

�
: (4.60)
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The Stresses in the Interior of the Half-Space
In the case of global slip, Hamilton and Goodman (1966) were able to determine
the stresses in the interior of the half-space by introducing the complex functions

F WD 1

2
.Qz � ia/R2 C 1

2
r2 ln.R2 C z2/;

G WD �1
3
R32 C 1

2
Qzz2R2 � 1

3
ia3 C 1

2
Qzr2 ln.R2 C z2/;

H WD 4

3
ia3 Qz � 1

6
QzR32 C 1

2
iaR32 � 1

4
Qzr2R2 � 1

4
r4 ln.R2 C z2/; (4.61)

with the imaginary unit i and the complex coordinates:

z2 WD Qz C ia;

R2 WD
q
z22 C r2: (4.62)

To avoid any misunderstandings, we will stress once more that Qz represents the
normal axis pointing out of the half-space while the z-axis points inwards. The
stress configuration in the half-space is then defined by the imaginary parts of the
expressions:
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Fig. 4.9 Curve of the equiv-
alent stress according to the
von Mises criterion in the
x–z-plane under a fully slid-
ing tangential contact with
a paraboloid, normalized to
the average pressure in the
contact
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Fig. 4.10 Curve of the great-
est principal stress in the
x–z-plane under a fully slip-
ping tangential contact with
a paraboloid, normalized to
the average pressure in the
contact
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To illustrate these expressions, consider Figs. 4.9 and 4.10. Depicted are the stress
curves in the x–z-plane (i.e., the plane of the greatest stresses) of the equivalent
stress, according to the von Mises criterion, and the greatest principal stress for a
globally sliding contact with � D 0:3 and � D 0:5, both normalized to the average
pressure in the contact. It is apparent that the leading edge of the contact experiences
pressure while the trailing edge is under tension.

It can also be seen that the maximum of the equivalent stress has moved to the
surface of the medium. This means that, in this case, the plastic deformation will
begin at the surface of the elastic half-space. Since the maximum of the equiva-
lent stress in the case of Hertzian (frictionless) contact lies underneath the surface
(detailed in Sect. 2.5.3), there must exist a critical coefficient of friction for which
this maximum reaches the surface. This value is of great technical significance for
burnishing, a surface treatment which relies on the plastic deformation generated by
the global sliding of the indenter. To achieve the desired property change using this

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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process, it is imperative that the equivalent stress maximum is located at the surface
level. In the case of the contact of a parabolic indenter with a half-space, Johnson
(1985) provided the limit of this coefficient of friction at �c D 0:3.

4.6.4 The Profile in the Form of a Power-Law

In Chap. 2 (Sect. 2.5.8) the solution of the normal contact problem for an indenter
with a general profile in the form of a power-law:

f .r/ D brn; n 2 RC; (4.64)

with a positive real number n, has been derived. In order to not confuse the second
constant in this function with the radius of the stick zone c, we call it b (in contrast
to what it was called in previous chapters). When considering the normal contact,
we found the following expressions ((2.63)–(2.65)):

d.a/ D 	.n/ban;

FN .a/ D E� 2n

nC 1
	.n/banC1;

�zz.r I a/ D �E
�

�
n	.n/b

aZ

r

xn�1 dxp
x2 � r2 ; r � a;

w.r I a/ D 2

�
	.n/b

2
4an arcsin �a

r

�
�

aZ

0

xn
dxp
r2 � x2

3
5 ; r > a; (4.65)

for the indentation depth d, the contact radius a, the normal forceFN and the normal
stresses �zz , and the normal displacements w of the half-space. Here, the stretch
factor 	.n/ is defined as:

	.n/ WD p
�

.n=2C 1/


Œ.nC 1/=2�
; (4.66)

with the gamma function 
.�/:


.z/ WD
1Z

0

tz�1 exp.�t/dt: (4.67)

The solution of the tangential contact problem shown in Fig. 4.11 can be obtained
using (4.38); that yields to the following relationships between global contact vari-

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 4.11 Tangential contact
between a rigid indenter
with a profile in the form of
a power-law and an elastic
half-space
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ables (displacement u.0/ and tangential force Fx):

u.0/.a; c/ D �E�

G� 	.n/b.a
n � cn/;

u.0/c .a/ D �E�

G� 	.n/ba
n;

Fx.a; c/ D �E� 2n

nC 1
	.n/b.anC1 � cnC1/ D �FN .a/

�
1 � cnC1

anC1

�
: (4.68)

The tangential stresses and displacements can also be obtained by (4.38) using
(4.65). The explicit representation is extensive, and should therefore be omitted
here. For the treatment of integrals occurring in �zz and w—and thus also in �xz
and u—see Sect. 2.5.8 which deals with power profiles. The loss of mechanical
energy is, according to (4.42),

WR.c; a/ D �2Œ�E
�b	.n/�2

G�

aZ

c

.an � xn/.xn � cn/dx

D �2Œ�E
�b	.n/�2

G�
n

nC 1

�
a2nC1 � c2nC1

2nC 1
� ancn.a � c/

	
: (4.69)

This can be shown in normalized variables as

� WD jWRj
�FNu

.0/
c

D 1

2nC 1

�
1 �

� c
a

�2nC1	 �
� c
a

�n �
1 � c

a

�
: (4.70)

with the maximum

�max D �.c D 0/ D 1

2nC 1
: (4.71)

Since n must be a positive number, this only assumes values between zero and
one, which of course is physically necessary. In Fig. 4.12 the expression �=�max is
represented as a function of c=a for different exponents n. It can be seen that the
curves for larger exponents decrease with increasing radius of the stick zone later
and are steeper against zero.

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 4.12 Normalized dis-
sipated friction energy as
a function of the normal-
ized radius of the stick
zone during indentation by
a power-law profile for differ-
ent exponents n
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4.6.5 The Truncated Cone

Now consider profiles that have a flat tip, for example, due to wear.

f .r/ D
(
0; r � b;

.r � b/ tan �; r > b:
(4.72)

Here, � denotes the slope angle of the cone and b the radius at the blunt end. In
Chap. 2 (Sect. 2.5.9) the following relationships between the global contact vari-
ables (indentation depth d, the contact radius a, and the normal force FN ) were
derived for the solution of the normal contact problem:

d.a/ D a tan � arccos
�
b
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�
;

FN .a/ D E� tan �a2
"
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�
b
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�
C b
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#
: (4.73)

Fig. 4.13 Tangential contact
between a rigid truncated
cone and an elastic half-space
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The mean pressure in contact is thus

p0 D E� tan �
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#
: (4.74)

The equations for the normal stresses �zz and the displacements w of the half-space
outside the contact region are described by the expressions:
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�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

K
� r
b

�
� F

�
arcsin

�
b

a

�
;
r

b

�

C
Z a

b

arccos
�
b

x

�
dxp
x2 � r2 ; r � b;

b

r

�
K

�
b

r

�
� F

�
arcsin

� r
a

�
;
b

r

�	

C
Z a

r

arccos

�
b

x

�
dxp
x2 � r2 ; b < r � a:

(4.75)
and
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Here, K.�/ und F.�; �/ denote the complete and incomplete elliptic integrals of the
first kind:
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: (4.77)

By applying (4.38), the tangential contact problem (see Fig. 4.13) can now be
solved. For the tangential displacement u.0/ and the tangential force Fx , one ob-
tains:
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Fig. 4.14 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a during
indentation by a truncated
cone

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c/a

u
/ u

c(0
)

b/a = 0 1.
b/a = 0 5.
b/a = 0 9.

(0
)

The radius of the stick zone c cannot decrease below the value of b; the contact starts
to slide completely, if b D c. The correspondingmaximum tangential displacement
is described by:

u.0/c .a/ D �E�a
G� tan � arccos

�
b

a

�
: (4.79)

It is easy to see that b D 0 reproduces results of the complete cone. In Fig. 4.14 the
normalized tangential displacement u.0/=u.0/c is shown as a function of the normal-
ized radius of the stick zone c=a for different values of b=a. It can be seen that the
curves for very small values of b approach the solution of the complete cone

lim
b!0

u.0/

u
.0/
c

D 1 � c

a
: (4.80)

Figure 4.15 shows the dependency on c/a for the normalized tangential force
FR= .�FN /. Again, the limiting curve corresponding to the whole cone is easily
recognizable:

lim
b!0

FR

�FN
D 1 � c2

a2
: (4.81)

The tangential stresses and displacements can be obtained by substituting the
results obtained so far in this section into (4.38). Figures 4.16 and 4.17 show the
normalized curves of the tangential stress in contact for different values of the nor-
malized radius of the stick zone at b D 0:09a and b D 0:49a. For b D 0:09a,
the result hardly differs from the curves of the complete cone in Fig. 4.4. It can be
seen that c > b. Thus, before the complete sliding begins, the tangential stresses
(in contrast to the pressure distribution) has no singularities. For b D c, i.e., at the
beginning of complete sliding, is j�xzj D �j�zzj, which means that the tangential
stresses at r D b have the same singular behavior as the normal stresses.
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Fig. 4.15 Normalized tan-
gential force as a function
of the normalized radius of
the stick zone for different
values during indentation by
a truncated cone
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Fig. 4.16 Normalized tan-
gential stresses in contact for
different values of the nor-
malized radius of the stick
zone c=a during indenta-
tion by a truncated cone with
b D 0:09a
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Fig. 4.17 Normalized tan-
gential stresses in contact for
different values of the nor-
malized radius of the stick
zone c=a during indenta-
tion by a truncated cone with
b D 0:49a
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4.6.6 The Truncated Paraboloid

A truncated paraboloid with the radius of curvature R and the radius at the flat tip b
can be described by the profile

f .r/ D
(
0; r � b;

r2�b2
2R

; r > b:
(4.82)

In Chap. 2 in Sect. 2.5.10, the solution

d.a/ D a

R

p
a2 � b2;

FN .a/ D 2E�

3R
.2a2 C b2/

p
a2 � b2 (4.83)

for the normal contact problem was determined. Here, as always, d denotes the
depth of indentation, a the contact radius, and FN the normal force. The stresses
were given in integral form as:

�zz.r I a/ D �E
�

�R

8̂
ˆ̂<
ˆ̂̂:

Z a

b

.2x2 � b2/dxp
x2 � b2px2 � r2 ; r � b;

Z a

r

.2x2 � b2/dxp
x2 � b2px2 � r2 ; b < r � a:

(4.84)

and for the normal off-contact displacements:

w.r I a/ D 2a

�R

p
a2 � b2 arcsin

�a
r

�

� 1

�R

"
.r2 � b2/ arcsin

 p
a2 � b2p
r2 � b2

!
�

p
a2 � b2

p
r2 � a2

#
;

r > a: (4.85)

was found.
Thus, for the tangential contact problem (see Fig. 4.18), the following relation-

ships between the global contact variables (tangential displacement of the indenter
u.0/, radius of the stick zone c, and tangential force Fx) can be determined using
(4.38) (the contact starts to slide completely at b D c):

u.0/.a; c/ D �E�

G�R

�
a

p
a2 � b2 � c

p
c2 � b2

�
;

u.0/c .a/ D �E�

G�R
a

p
a2 � b2;

Fx.a; c/ D 2�E�

3R

h
.2a2 C b2/

p
a2 � b2 � .2c2 C b2/

p
c2 � b2

i
: (4.86)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 4.18 Tangential contact
between a rigid truncated
paraboloid and an elastic
half-space
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These are shown in a normalized manner in Figs. 4.19 and 4.20. As in the case of
the truncated cone, for small values of b, it is easy to reproduce the known limiting
cases of the complete paraboloid; namely:

lim
b!0

�
u.0/

u
.0/
c

	
D 1 � c2

a2
(4.87)

and

lim
b!0

�
Fx

�FN

	
D 1 � c3

a3
: (4.88)

The tangential stresses and displacements should, again, not be written out for
reasons of space but can be obtained by inserting them into the general equa-
tions (4.38). Some dependencies of the tangential stresses are shown in Figs. 4.21
and 4.22. These have the same singular behavior as in the case of the truncated
cone; that is, the tangential stresses are only singular if r D b D c, i.e., in case of
full sliding.

Fig. 4.19 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a when
indented by a truncated
paraboloid
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Fig. 4.20 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a when
indented by a truncated
paraboloid
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Fig. 4.21 Normalized tan-
gential stresses in the contact
for different values of the
normalized radius of the stick
zone c=a when indented by
a truncated paraboloid with
b D 0:09a
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Fig. 4.22 Normalized tan-
gential stresses in the contact
for different values of the
normalized radius of the stick
zone c=a when indented by
a truncated paraboloid with
b D 0:49a
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4.6.7 The Cylindrical Flat Punch with Parabolic Cap

For the consideration of the indenter with parabolic cap (see Fig. 4.23) we assume,
as always, that the indentation depth d is large enough to actually bring the main
body into contact. Otherwise it would be the pure contact with a paraboloid, for
which the results can be looked up in Sect. 4.6.3. The flat cylindrical punch with a
parabolic cap can be described by the profile:

f .r/ D
8<
:
r2

2R
; r � a;

1; r > a:

(4.89)

Here, a is the radius of the punch and R is the radius of curvature of the cap. In
cases where d is indeed sufficiently large, the solution of the friction-free normal
contact problem (with the normal force FN , the stress distribution �zz within, and
the normal displacements of the half-space w outside the contact) was derived in
Chap. 2 in Sect. 2.5.11, to which we want to refer again.

FN .d/ D 2E�
�
da � a3

3R

�
; dR 	 a2;

�zz.r Id/ D �E
�

�R

a2 � 2r2 C dRp
a2 � r2 ; r � a; dR 	 a2;

w.r Id/ D 1

�R

h�
2dR � r2� arcsin �a

r

�
C a

p
r2 � a2

i
;

r > a; dR 	 a2: (4.90)

The mean pressure in contact is:

p0 D FN

�a2
D 2E�

3�Ra
.3dR � a2/: (4.91)

Since the normal stress at the edge of the contact at r D a is singular, the contact
can stick completely even after applying a tangential force, as in the case of the flat

Fig. 4.23 Tangential contact
between a rigid cylindrical
punch with parabolic cap and
an elastic half-space
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punch. The exact MDR shape of the problem makes it easy to understand how long
this condition can last. The springs on the edge of the contact will begin to slide, if

u.0/ >
�E�

G�

�
d � a2

R

�
WD u

.0/
1 : (4.92)

Thereafter, the area of partial sliding begins to spread from the edge until finally the
whole contact slides, if

u.0/ >
�E�

G� d WD u.0/c : (4.93)

In contrast to all previous sections of this chapter, there are three different regimes:

� u.0/ � u
.0/
1 : complete sticking

� u
.0/

1 < u.0/ < u
.0/
c : partial sliding

� u.0/ 	 u
.0/
c : complete sliding

The corresponding solutions of the tangential contact problem, i.e., the relationships
between the radius of the stick zone c, the tangential displacement of the indenter
u.0/, the tangential force Fx , and the tangential stresses �xz and displacements u of
the half-space are given by the general relations (3.38) as follows.

Case 1: Complete Sticking
Fx.u

.0// D 2G�au.0/;

�xz.r Iu.0// D � G�u.0/

�
p
a2 � r2 ; r � a

u.r Iu.0// D 2u.0/

�
arcsin

�a
r

�
; r > a: (4.94)

Case 2: Partial Sliding with Radius of the Stick Zone c

u.0/.d; c/ D �E�

G�

�
d � c2

R

�
;

Fx.d; c/ D 2�E�

3R

�
3adR � a3 � 2c3� ;

�xz.r Id; c/ D ��E
�

�R

8̂
<̂
ˆ̂:
2
p
a2 � r2 � 2

p
c2 � r2 C dR � a2p

a2 � r2 ; r � c;

2
p
a2 � r2 C dR � a2p

a2 � r2 ; c < r � a;

http://dx.doi.org/10.1007/978-3-662-58709-6_3
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u.r Id; c/ D �E�

G�R

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

dR � r2

2
� 1

�

h �
2c2 � r2� arcsin �c

r

�

C c
p
r2 � c2

i
; c < r � a;

1

�

h �
2dR � r2� arcsin �a

r

�

C a
p
r2 � a2 � �

2c2 � r2� arcsin �c
r

�

� c
p
r2 � c2

i
; r > a:

(4.95)

The normalized tangential stresses and displacements are shown for the case
dR D 1:2a2 in Figs. 4.24 and 4.25. When using the Ciavarella–Jäger principle in
the form

�xz.r/ D � Œ�zz.r I a/� �zz.r I c/� ; (4.96)

care should be taken. �zz.r I c/ denotes the stress distribution which arises when the
same indenter (i.e., with the punch radius a), is pressed into the half-space up to a
contact radius c. But this means only the parabolic cap is in contact, so the stress
distribution is the stress distribution of the simple paraboloid going back to Hertz
(1882):

�zz.r I c/ D �2E
�

�R

p
c2 � r2 ¤ �zz.r I a/jaDc : (4.97)

This blurring of the notation is hard to avoid. The same applies tow .r I c/, which
is required for the calculation of the tangential displacement distribution according
to (4.38).

Case 3: Complete Sliding
In the case of complete sliding, the solution results by substituting c D 0 into (4.95).
For R ! 1, the case of the flat cylindrical punch results. Then the possibility of
partially sliding is eliminated because of u.0/1 D u

.0/
c .

Fig. 4.24 Normalized
tangential stresses during
indentation by a flat stamp
with paraboloidal cap for
dR D 1:2a2 and different
values of the normalized ra-
dius of the stick zone. The
dotted line corresponds to the
case u.0/ D u
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Fig. 4.25 Normalized tan-
gential displacements when
indented by a flat punch
with paraboloidal cap for
dR D 1:2a2 and different
values of the normalized ra-
dius of the stick zone. The
dotted line corresponds to the
case u.0/ D u
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4.6.8 The Conewith Parabolic Cap

The tangential contact between a cone with a rounded tip and an elastic half-space,
shown schematically in Fig. 4.26, was first investigated and solved by Ciavarella
(1999). The profile of the indenter with the conical slope angle � and the value of
b of the radial coordinate at which the conical main body differentiably passes into
the parabolic cap is described by the rule

f .r/ D

8̂
<
:̂
r2 tan �

2b
; r � b;

r tan � � b

2
tan �; r > b:

(4.98)

In Chap. 2 (see Sect. 2.5.12) the following solution for the normal contact problem
was derived:

d.a/ D a tan �
�
1 � sin '0
cos'0

C '0

�
;

FN .a/ D E�a2 tan �
�
'0 C 4

3

1 � sin '0
cos'0

C 1

3
sin '0 cos'0

�
; (4.99)

Fig. 4.26 Tangential contact
between a rigid cone with
a rounded tip and an elastic
half-space
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with

'0 WD arccos
�
b

a

�
; (4.100)

The contact is radius a, the indentation depth d, and normal force FN . The normal
stresses in the contact are described by:

�zz.r I a/ D �E
� tan �
�b

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

2
p
a2 � r2

C b

Z '0

0

.' � 2 tan'/ tan ' d'p
1 � k2 cos2 ' ; r � b;

2
p
a2 � r2

C b

Z arcosh. ar /

0

"
arccos

�
b

r cosh '

�

� 2
q
k2 cosh2 ' � 1

#
d'; b < r � a

(4.101)
and the normal displacements out of contact through the distribution:

w.r I a/ D
2d.a/

�
arcsin

�a
r

�

� tan �

�b

2
4r2 arcsin �a

r

�
� a

p
r2 � a2 C 2b2

'0Z

0

.' � tan'/ tan 'd'

cos'
p
k2 cos2 ' � 1

3
5 ;

r > a: (4.102)

It is assumed that the contact radius does not fall below the value a D b. If a < b,
it is the contact with a paraboloid with the radius of curvature,

R WD b

tan �
; (4.103)

for which the results can be looked up in Sect. 4.6.3. If the normal stress at the edge
of the contact disappears, the contact cannot fully stick at a tangential load. There
are three different cases for the sliding regime:

� partial sliding with c > b
� partial sliding with c � b

� complete sliding

Equations (4.38) can be used to obtain the following solutions to the tangential
contact problem (radius of the stick zone c, tangential indenter displacement u.0/,
tangential force FR , tangential stresses �xz, and half-space displacements u):
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Case 1: Partial Sliding with c > b

u.0/.a; c/ D �E�

G� tan �
�
a

�
1 � sin '0
cos'0

C '0

�
� c

�
1 � sin 0
cos 0

C  0

�	
;

Fx.a; c/ D �E� tan �

"
a2
�
'0 C 4

3

1 � sin '0
cos'0

C 1

3
sin '0 cos'0

�

� c2
�
 0 C 4

3

1 � sin 0
cos 0

C 1

3
sin 0 cos 0

�#
;

�xz.r I a; c/ D �

(
�zz.r I a/� �zz.r I c/; r � c;

�zz.r I a/; c < r � a;

u.r I a; c/ D �E�

G�

(
d.a/� f .r/ �w.r I c/; c < r � a;

w.r I a/� w.r I c/; r > a;
(4.104)

with

 0 WD arccos

�
b

c

�
: (4.105)

In this case (in contrast to the previous section), �zz.r I c/ actually means
�zz.r I a/jaDc . This also applies analogously for all other expressions. There-
fore, all functions that are still open in (4.104) can be looked up in (4.98) to (4.102).
For b D 0 and, therefore, '0 D  0 D �=2; the solutions for the complete cone
from Sect. 4.6.2 are recovered.

Case 2: Partial Sliding with c � b

The principle of Ciavarella and Jäger demands at this point that the solution of the
tangential contact problem is given by the difference of solutions of the following
two normal contact problems: firstly, the normal indentation by the indenter defined
in (4.98) up to a contact radius a, and secondly, the normal indentation of the same
indenter up to a contact radius c � b. The latter corresponds to a normal contact
with a paraboloid, since only the parabolic tip of the indenter is in contact. So the
tangential solution we are looking for is:

u.0/.a; c/ D �E�

G� tan �
�
a

�
1 � sin '0
cos'0

C '0

�
� c2

b

	
;

Fx.a; c/ D �E� tan �
�
a2
�
'0 C 4

3

1 � sin '0
cos'0

C 1

3
sin '0 cos'0

�
� 4c3

3b

	
;

�xz.r I a; c/ D �

8<
:
�zz.r I a/C 2E�

�b
tan �

p
c2 � r2; r � c;

�zz.r I a/; c < r � a;

u.r I a; c/ D �E�

G�

(
d.a/� f .r/� wp.r I c/; c < r � a;

w.r I a/� wp.r I c/; r > a;
(4.106)
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Fig. 4.27 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a when
indenting by a cone with a
rounded tip

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c/a

u
/u

c(0
)

b/a = 0 1.
b/a = 0 5.
b/a = 0 9.

(0
)

Fig. 4.28 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a when
indenting by a cone with a
rounded tip
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with the displacement:

wp.r I c/ D c2

�b
tan �

"�
2 � r2

c2

�
arcsin

�c
r

�
C

p
r2 � c2
c

#
: (4.107)

Case 3: Complete Sliding
The solution here is a result of inserting c D 0 into solutions (4.106).

Figure 4.27 and 4.28 show the normalized values of the global contact sizes u.0/

and FR as a function of the normalized radius of the stick zone. For small values of
b, one recognizes very well the limiting case of the ideal cone.

The curves of the normalized tangential stresses for individual normalized values
of the two radii b and c are shown in Figs. 4.29 and 4.30. It is immediately apparent
that for small values of b the curves of the ideal cone can be found. However, one
also sees that the dependency for c > b only weakly depends on b. For example,
the curve of c D 0:9a and b D 0:5a is almost exactly that of the ideal cone at
c D 0:9a, despite the rather large value of b.
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Fig. 4.29 Normalized
tangential stresses in the
indentation by a cone with
a rounded tip for b D 0:1a

and different values of the
normalized radius of the stick
zone
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Fig. 4.30 Normalized
tangential stresses in the
indentation by a cone with
a rounded tip for b D 0:5a

and different values of the
normalized radius of the stick
zone
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4.6.9 The Paraboloid with Parabolic Cap

The method in this problem is completely analogous to that of the previous sections.
The indenter profile can be described by the function:

f .r/ D

8̂
<̂
ˆ̂:

r2

2R1
; r � b;

r2 � h2
2R2

; r > b:

(4.108)

Here, R1 is the radius of curvature of the parabolic cap, and R2 is the radius of the
parabolic base body (see Fig. 4.31). The continuity of f implies

h2 D b2
�
1 � R2

R1

�
(4.109)
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Fig. 4.31 Tangential contact
between a rigid paraboloid
with parabolic cap and an
elastic half-space
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for the length h. The normal contact problem with a contact radius a 	 b, the
indentation depth d, the normal forceFN , and the normal stresses and displacements
of the half-space �zz and w is described by the relations:

d.a/ D a2

R1
C a

R�
p
a2 � b2;

FN .a/ D 2E�

3

�
2a3

R1
C 1

R�
�
2a2 C b2

�p
a2 � b2

	
;

�zz.r I a/ D �E
�

�

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

2
p
a2 � r2
R1

C
aZ

b

�
2x2 � b2� dx

R�p
x2 � b2px2 � r2 ; r � b;

2
p
a2 � r2
R1

C
aZ

r

�
2x2 � b2� dx

R�p
x2 � b2px2 � r2 ; b < r � a;

w.r I a/ D wP .r I aIR D R1/CwPS.r I aIR D R�/; r > a; (4.110)

derived in Sect. 2.5.13. Here, wP and wPS denote the displacements in the indenta-
tion by a complete or truncated paraboloid:

wP .r I aIR1/ D a2

�R1

"�
2 � r2

a2

�
arcsin

�a
r

�
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p
r2 � a2
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#
;

wPS.r I aIR�/ D 2a

�R�
p
a2 � b2 arcsin

�a
r

�

� 1

�R�

"
.r2 � b2/ arcsin

 p
a2 � b2p
r2 � b2

!
�

p
a2 � b2

p
r2 � a2

#
:

(4.111)
R� is an effective radius, which is described by the relation:

R� D R1R2

R1 �R2 : (4.112)

For a < b, we have a contact with a pure paraboloid with the radius of curvatureR1,
for which the results can be looked up in Sect. 4.6.3. The solution of the tangential

http://dx.doi.org/10.1007/978-3-662-58709-6_2


4.6 Explicit Solutions for Axially Symmetric Tangential Contact Problems 163

contact problem in the three cases already introduced in the previous section is
as follows (all open functions in (4.113) and (4.114) can be taken from (4.108)
to (4.112). u.0/ denotes the tangential displacement of the rigid indenter, c the
radius of the stick zone, FR the tangential force, �xz the tangential stresses, and u
the tangential displacements on the surface of the half-space).

Case 1: Partial Sliding with c > b

u.0/.a; c/ D �E�

G�

�
a2

R1
C a

R�
p
a2 � b2 � c2

R1
� c

R�
p
c2 � b2

�
;

Fx.a; c/ D 2�E�

3

"
2a3

R1
C 1

R� .2a
2 C b2/

p
a2 � b2

� 2c3

R1
� 1

R� .2c
2 C b2/

p
c2 � b2

#
;

�xz.r I a; c/ D �

(
�zz.r I a/� �zz.r I c/; r � c;

�zz.r I a/; c < r � a;

u.r; a; c/ D �E�

G�

(
d.a/� f .r/ � w.r I c/; c < r � a;

w.r I a/� w.r I c/; r > a:
(4.113)

Case 2: Partial Sliding with c � b

u.0/.a; c/ D �E�
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�
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R1

	
;

�xz.r I a; c/ D �

8<
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�zz.r I a/C 2E�

�R1

p
c2 � r2; r � c;

�zz.r I a/; c < r � a;

u.r I a; c/ D �E�

G�

(
d.a/� f .r/ � wp.r I cIR1/; c < r � a;

w.r I a/� wp.r I cIR1/; r > a:
(4.114)

Case 3: Complete Sliding
The solution arises here by inserting c D 0 into (4.114).

One obtains the usual limiting cases for this indenter profile: for R1 D R2,
respectively R� ! 1, the solution of Cattaneo and Mindlin from Sect. 4.6.3 can
be used, for R1 ! 1 the solution of the truncated paraboloid from Sect. 4.6.6 and
for b D 0 the solution of Cattaneo and Mindlin with radius R2.

Now let us visualize some of the results obtained from this. For the sake of
simplicity, let us choose R1 D R�. However, all of the effects characteristic of the
indenter profile described in this section occur with this limitation.
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Fig. 4.32 Normalized tan-
gential displacement as a
function of the normalized
radius of the stick zone for
different values b=a when
indented by a paraboloid with
parabolic cap with R1 D R�
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Fig. 4.33 Normalized tan-
gential force as a function of
the normalized stick radius
for different values b=a when
indented by a paraboloid with
parabolic cap with R1 D R�
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In Figs. 4.32 and 4.33 the normalized global tangential displacement u.0/ and the
normalized tangential force Fx are shown as a function of the normalized radius of
the stick zone for different values of b. As always, one recognizes the characteristic
limiting cases. In addition, one observes a kink at c D b, which has not yet appeared
in the previous sections. This kink is due to the fact that the profile at r D b is not
continuously differentiable and yet radii of the stick zone c < b are possible. This
combination has not yet occurred in this chapter, or the kink corresponding to the
transition to complete sliding of the contact.

Some normalized curves of the tangential stresses are shown in Figs. 4.34
and 4.35. As in the case of the cone with a rounded tip, the curves for c > b

barely differ from the dependencies for the ideal body; in this case the paraboloid
from Sect. 4.6.3. In particular, the tangential stresses for c > b—in contrast to the
normal stresses—are not singular at r D b.
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Fig. 4.34 Normalized
tangential stresses when
indented by a paraboloid
with paraboloidal cap for
R1 D R�, b D 0:1a and
different values of the nor-
malized radius of the stick
zone
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Fig. 4.35 Normalized
tangential stresses when
indented by a paraboloid
with paraboloidal cap for
R1 D R�, b D 0:5a and
different values of the nor-
malized radius of the stick
zone
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4.6.10 The Cylindrical Flat Punch with a Rounded Edge

The tangential contact problem of a flat cylindrical punch with rounded corners
and an elastic half-space (see Fig. 4.36) was first solved by Ciavarella (1999). The
indenter profile has the shape

f .r/ D
8<
:
0; r � b;

.r � b/2
2R

; r > b;
(4.115)

with the radius of curvature R of the rounded corner and the radius b of the flat
punch surface. The solution of the normal contact problem can be found in Chap. 2
(Sect. 2.5.14). As usual, a denotes the contact radius, d the indentation depth, and

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 4.36 Tangential contact
between a rigid flat cylin-
drical punch with rounded
corners and an elastic half-
space
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The stresses and displacements in the normal direction are:
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With a tangential loading of the contact, the radius of the stick zone cannot fall
below the value of c D b, since the contact will begin to slide completely at this
value. However, this makes it very easy to specify the solution of the tangential
contact problem (u.0/ denotes the tangential displacement of the rigid indenter, c
the radius of the stick zone, Fx the tangential force, �xz the tangential stresses, and
u the tangential displacements at the surface of the half-space). With help from the
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Fig. 4.37 Normalized tan-
gential displacement as
a function of the normal-
ized radius of the stick zone
for different values b=a when
indenting with a flat punch
with a rounded edge
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Fig. 4.38 Normalized tan-
gential force as a function of
the normalized radius of the
stick zone for different val-
ues b=a when indenting with
a flat punch with a rounded
edge
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general relations (4.38), one obtains:
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� c3 �sin 0.4 � cos2  0/ � 3 0 cos 0
 �
;

�xz.r I a; c/ D �

(
�zz.r I a/� �zz.r I c/; r � c;
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(4.119)
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Fig. 4.39 Normalized tan-
gential stresses in contact
for different values of the
normalized radius of the
stick zone c=a, while in-
denting with a flat punch
with rounded corners with
b D 0:49a
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Fig. 4.40 Normalized tan-
gential stresses in contact
for different values of the
normalized radius of the
stick zone c=a, while in-
denting with a flat punch
with rounded corners with
b D 0:84a
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The solution for complete sliding is achieved by inserting c D b into (4.119).
In Figs. 4.37 and 4.38 the tangential displacement and force are shown in nor-

malized variables as functions of the normalized radius of the stick zone. Some
curves of the tangential stresses are shown as an example in Figs. 4.39 and 4.40.
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4.7 Adhesive Tangential Contact

In JKR theory, the equilibrium configuration of an adhesive contact is determined
by minimizing the total energy of the system, which consists of the energy of the
elastic deformation of the contact partners, the surface energy, and the work from
external forces. Since this total energy does not depend on the tangential displace-
ment, the JKR contact does not formally possess any “tangential strength”. Strictly
speaking, the absence of friction is one of the assumptions of the JKR solution,
since it uses the solutions of the frictionless normal contact problem as its building
blocks. Yet the lack of tangential strength of adhesive contacts is obviously con-
tradicted by experimental results. The physical cause of this contradiction lies in
the heterogeneous structure found at the microscopic scale (or at the atomic scale,
at the very least) of any real interface. This heterogeneity leads to a finite contact
strength (or static friction) in the tangential direction.

In this subsection, we will restrict ourselves to the simplest model of an adhesive
tangential contact problem, with a conveniently defined “adhesion” in the normal
direction and “friction” in the horizontal direction. This problem can be considered
a generalization of the theory of Cattaneo and Mindlin to include adhesive con-
tacts. We assume that the adhesive forces have sufficient range to be considered
“macroscopic” with regards to the friction forces in the contact. In other words, we
operate under the assumption that the adhesive forces create additional macroscopic
pressure in the contact which, according to Coulomb’s law of friction, leads to in-
creased friction forces. Since both the normal and the tangential contact problem of
two elastic bodies can be reduced to the contact between a rigid body and an elastic
half-space (with modified material properties), we will consider—without loss of
generality—the case of a rigid indenter in contact with an elastic half-space.

For the adhesive forces, we use the model of Dugdale where the adhesive pres-
sure remains constant up to a certain distance h between the surfaces and abruptly
drops to zero after that distance (3.147). The theory of adhesive contacts for this
particular interaction was created by Maugis and is featured in Sect. 3.8 of this
book. Therefore, the following theory can also be viewed as a generalization of the
theory by Maugis relating to adhesive tangential contacts.

Let us consider a rigid indenter with a three-dimensional axially symmetric pro-
file f .r/ and the corresponding MDR transformed profile g(x). The profile g(x) is
initially pressed into the Winkler foundation, which are defined by the MDR rules,
by d and subsequently displaced by u.0/ in the tangential direction. The correspond-
ing adhesive normal contact problem was solved in Sect. 3.8, from which the entire
notation is inherited. For a sufficiently small rigid body displacement, the springs
near the edge of the contact (contact radius a) slip while the springs in the interior
zone (with the radius c) remain sticking. The radius c of the stick zone is given by
the equation:

G�u.0/ D �
�
2�0

p
b2 � c2 CE� Œd � g.c/�

�
; (4.121)

http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_3
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which sets the tangential force at the position c equal to the product of the normal
force and the coefficient of friction. The total tangential force is calculated by
integrating over all springs in the contact:

Fx D 2

cZ

0

G�u.0/dx C 2�

aZ

c

qz.x/dx

D 2G�u.0/c C 2�

aZ

c

�
2�0

p
b2 � x2 CE�Œd � g.x/�

�
dx

D 2G�u.0/c C 2��0

h
x

p
b2 � x2 C b2 arcsin

x

b

iˇ̌
ˇa
c

C 2�E�d.a � c/ � 2�E�
aZ

c

g.x/dx: (4.122)

The first term to the right-hand side is the contribution of the inner stick zone
(rigid translation u.0/). The second term is a contribution from springs in the slip
zone (distributed load in the normal direction consisting of the elastic component
E�Œd � g.x/� and adhesive component 2�0

p
b2 � x2 given by (3.148), and multi-

plied with the coefficient of friction). Radius b of the interaction zone is determined
from the equations of the normal contact problem which are listed in Sect. 3.8.

A complete theory of the tangential contact problem under those assumptions
can be found in (Popov and Dimaki 2016). Here our consideration only deals with
the limiting case of very short-range adhesive interactions (i.e., the parameter h is
much smaller than all other characteristic system measures). This limiting case
corresponds to the JKR approximation for the adhesive normal contact. The differ-
ence between the contact radius a and the radius of the adhesive interaction b > a

should, therefore, remain small:

" D b � a � a; b: (4.123)

In this approximation (see (3.160)),

" D �hE�

4�0
: (4.124)

For the normal contact problem, expanding by the small parameter " yields (see
(3.161)):

d � g.a/�
r
2�a��

E� ;

FN;JKR.a/ � 2E�
aZ

0

Œd � g.x/�dx; (4.125)

http://dx.doi.org/10.1007/978-3-662-58709-6_3
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http://dx.doi.org/10.1007/978-3-662-58709-6_3
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with
�� D �0h; (4.126)

which represent the exact JKR solution for an arbitrary axially symmetric profile.
Substituting b D a C " with " from (4.124) into (4.121), and expanding to the

lowest order of " gives:

G�u.0/

�
D
q
4�20 .a

2 � c2/C 2�aE��� �p
2�aE���

CE�Œg.a/� g.c/�: (4.127)

This equation determines the relationship between the radius of the stick zone c and
the tangential body displacement u.0/. It shows that even arbitrarily small tangential
displacements induce partial slip in a narrow peripheral zone. This is in complete
analogy to the case of the non-adhesive contact. The critical tangential displacement
for the transition from partial to complete slip is calculated by setting c D 0:
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: (4.128)

The approximation yields the tangential force:
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D c

q
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C ��0a
2

�
1 � 2

�
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� 2E�
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c

g.x/dx: (4.129)

At the onset of complete slip (c D 0) it is:

Fx

�
D ��0a

2 C 2E�ag.a/� ap2�aE��� � 2E�
aZ

0

g.x/dx

D �0�a
2 C 2E�

aZ

0

Œd � g.x/� dx D �a2�0 C FN;JKR.a/; (4.130)

where FN;JKR.a/ represents the solution of the adhesive normal contact problem in
JKR approximation.

The final (4.130) could be written directly without the preceding calculations
since the expression in parentheses .�a2�0 C FN;JKR.a// is simply the total com-
pressive force in the contact (sum of the elastic force and the additional adhesive
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compressive force). According to Coulomb’s law of friction, the tangential force
for complete slip is equal to the total compressive force of the contacting surfaces
multiplied with the coefficient of friction (independent of the particular pressure
distribution in the contact).

4.7.1 The Paraboloid

A parabolic profile Qz D f .r/ D r2=.2R/ implies g.x/ D x2=R, and (4.127)
and (4.129) take on the following form:

G�u.0/

�
D
q
4�20 .a

2 � c2/C 2�aE��� �p
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C 4

3

E�

R

�
a3 � c3� : (4.131)
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