
7Transversely Isotropic Problems

7.1 Introduction

A transversely isotropic medium is a medium which has a favored direction and
is isotropic in the plane perpendicular to this direction. Among crystalline media,
all materials with a hexagonal crystal system belong to this class: they are elasti-
cally isotropic in the plane perpendicular to the hexagonal axis. Fiber composites
with the fibers arranged in parallel in one direction also represent a transversely
isotropic medium, which is isotropic in the plane perpendicular to the fiber direc-
tion (see Fig. 7.1). Many functional materials exhibiting a preferred direction can
also be classified as such, e.g., some piezo-electric materials. We can find many
more examples in biological media.

A linear transversely isotropic medium is fully defined by five elastic constants.
For the definition of these constants using the elastic moduli and coefficients of
transverse contraction, see Fig. 7.1. If we call the axis of symmetry of the medium
“z”, the axes “x” and “y” are “equivalent” and they can be defined arbitrarily in the
plane spanned by these two axes.

Fig. 7.1 Demonstration of
the symmetry and definition
of elastic constants of a trans-
versely isotropic medium
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Turner (1980) described the relationship between the deformation tensor and the
stress tensor using the matrix of compliance coefficients:
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is the linear symmetric deformation tensor and ui is the displacement vector. Here,
E is the elasticity modulus of the medium in the plane perpendicular to the axis of
symmetry, E=� is the elasticity modulus in the direction of the axis of symmetry,
�H is the Poisson’s ratio in the plane perpendicular to the axis of symmetry, and
�V is the Poisson’s ratio when stress is applied along the symmetry axis. GV D
E=.2 C 2�/ is the shear modulus for shear parallel to the axis of symmetry; note
that � has no immediate physical meaning. Additionally, it should be noted that
the shear modulus in the plane of symmetry is given by the usual equation GH D
E=.2 C 2�H /.

Inverting the system of equations leads to the presentation via the matrix of stiff-
ness coefficients:
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The elastic constants can be written in Voigt notation, as follows:

C11 D E.� � �2V /

.� � ��H � 2�2V /.1 C �H /
;
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C33 D .1 � �H /E
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using the moduli and Poisson’s ratios.

7.2 Normal Contact Without Adhesion

For the complete formulation of the contact mechanical problem in its integral form,
it is sufficient to know the fundamental solution, independent of the class of sym-
metry of the medium. The fundamental solution for transversely isotropic media
was found by Michell (1900). He demonstrated that the normal displacement w of
the surface of a transversely isotropic elastic half-space under the effect of a force
Fz acting on the origin is given by the equation:
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r
; (7.5)

where r is the distance in-plane to the acting point of the force. The equation has
the same form as the corresponding fundamental solution for the case of isotropic
media, as shown in (2.2). It simply requires the following definition of the effective
elasticity modulus:
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As such, Michell (1900) concluded that:

It appears, therefore, that the law of depression is the same as for an isotropic solid; conse-
quently, the applications of this law, which were made by Boussinesq and Hertz to problems
concerning isotropic bodies in contact, may be at once extended to the acolotropic solids
here considered, with the limitation that the normal to the plane of contact must be an axis
of elastic symmetry.

Of course, the effective elasticity modulus can also be expressed by the components
of the compliance matrix:
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In the case of an isotropic continuum (� D 1, �V D �H D �), this expression is
reduced to the known equation E� D E=.1 � �2/.

The integral formulation of (2.3) for the frictionless contact mechanical problem
is based exclusively on the fundamental solution. Therefore, all solutions from
Chap. 2 are equally valid for transversely isotropic media.

When two transversely isotropic bodies are in contact, the effective modulus is
used instead of (7.6):

1

E� D 1

E�
1

C 1

E�
2

; (7.8)

where E�
1 and E�

2 represent the effective elastic moduli of the two media.
Likewise, due to the identical fundamental solutions, applying the MDR to a

transversely isotropic medium simply requires substituting the effective elasticity
modulus by the expressions presented in (7.6) and (7.8). All other transformation
rules of the MDR remain unchanged.

Therefore, the non-adhesive normal contact problem for a transversely isotropic
medium is identical to the corresponding contact problem of an isotropic contin-
uum. This applies to the displacement field of the surface of the body and the
pressure distribution in the immediate surface, but not to the deformation and stress
distribution in the interior of the half-space. Consequently, there is no need for
special consideration to be given to all normal contact problems for transversely
isotropic media. We will simply refer to the results from Chap. 2, which are equally
valid for transversely isotropic media.

Further information, particularly concerning the calculation of the stresses in the
interior of the transversely isotropic half-space (which, again, do not coincide with
those of the isotropic case), can be found in a paper by Yu (2001).

For a historical perspective, the paper by Conway (1956) is worth mentioning.
Notably, it describes how, due to the form of the fundamental solution (7.5) by
Michell (1900), the calculation method for any (isotropic) axially symmetric nor-
mal contact problem by Schubert (1942) can also be applied to the corresponding
contact problem of transversely isotropic media.

7.3 Normal Contact with Adhesion

As explained in the previous section, the non-adhesive, frictionless normal contact
problem for a transversely isotropic medium is identical to the corresponding con-
tact problem for an isotropic continuum. It merely requires redefining the effective
elasticity modulus according to (7.6) or (7.7). Additionally, in Chap. 3 of this book,
it was shown that the adhesive, frictionless normal contact problem can be reduced
to the corresponding non-adhesive contact. Therefore, the adhesive normal con-
tact problems of isotropic and transversely isotropic media are also equivalent to
the respective isotropic problems, regarding both their relationships of the global
contact quantities (normal force, indentation depth, and contact radius), as well as
the stresses in the contact surface, and the displacements of the medium’s surface.

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_3
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Consequently, there is no need for special consideration to be given to adhesive
normal contact problems of transversely isotropic media. Here we will simply refer
to the results in Chap. 3 of this book. Taking into account the aforementioned cor-
responding definition of the effective elasticity modulus, the results directly apply
to transversely isotropic contacts.

An overview of the history of work done in the field of adhesive contacts of
transversely isotropic media can be found in an article by Borodich et al. (2014).

7.4 Tangential Contact

Turner (1980) provided a general expression for the surface displacement of a trans-
versely isotropic elastic half-space under the effect of an arbitrarily directed force
acting on the surface of the half-space at the origin. He used the matrix of compli-
ance coefficients, as seen in (7.1).

According to Turner, the simultaneous effect of a normal force FN and a tangen-
tial force Fx in the x-direction generates the surface displacements
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For an isotropic medium, � D 1, ˛ D ˇ D 1, � D .1�2�/=.2�2�/, ı D �=.1��/,
and " D .1 � �/=G; (7.9) can then be reduced to the form provided by Landau and
Lifshitz (1944, 1959):
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The normal and tangential contact problems are independent of one another for a
vanishing � in (7.9), i.e., when

1 � �H

1 C �H

� � �2V
�V 2

D 1: (7.12)

The criterion for the decoupling of the normal and tangential contact problem in the
case of an isotropic continuum is reduced to the requirement of incompressibility
(� D 1=2) of the deformable contact partner. In the case that both media are linear-
elastic and transversely isotropic, the quantity �1 � �2 must vanish:
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7.4.1 “Cattaneo–Mindlin” Approximation for the Transversely
Isotropic Contact

Assuming a decoupling of the normal and tangential contact problem (� D 0), and
neglecting the surface displacement in the direction perpendicular to the direction
of force action (as assumed by the solution by Cattaneo and Mindlin in Chap. 4),
(7.9) and (7.11) can be simplified to:
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for a transversely isotropic medium and to:
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for an isotropic medium. It is easy to see that the expression for the tangential
displacements in a transversely isotropic medium exactly matches the one for an
isotropic medium for the values " D 2.1 � �2/=E and ı D �=.1 � �/.

Solving for E and � gives � D ı
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shear modulus, we obtain:
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Similarly, achieving identical normal displacements for both transversely isotropic
and isotropic media requires the effective moduli to follow the expressions

E� D 2

˛"
: (7.17)
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Inserting the definitions of ı, ˛, and " from (7.10) yields the following result:
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(7.18)
which, for the isotropic continuum (� D 1, �V D �H D �), takes on the usual form
of:

G� D 2E
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Inserting the definitions of ˛ and " from (7.10) into (7.17) leads to the expression
previously formulated in (7.7).

Taking this into consideration, this proves the equivalence of the fundamental
solutions for the normal contact problem and the tangential contact problem in the
Cattaneo–Mindlin approximation for isotropic and transversely isotropic continua.
Therefore, using definitions (7.16), (7.17), (7.18), and (7.7) of the effective moduli,
all results from Chaps. 2, 3, and 4 regarding the relationships of the macroscopical
displacements, forces, contact radii, and stress distributions carry over. Only the
stresses in the interior of the medium require special consideration.

The ratio of normal to tangential stiffness of a no-slip contact is given by:
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which (in the isotropic case) is reduced to the Mindlin ratio:
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7.5 Summary of the Calculation of Transversely Isotropic
Contacts

Once again, we will provide a summary of the approach to solving contact problems
of transversely isotropic media.

The quantities defined at the surface of the medium are listed below:

� Normal force
� Contact radius
� Indentation depth
� Distribution of normal stresses and normal displacements at the surface
� The quantities previously listed for the adhesive contact in the JKR approxima-

tion
� Tangential force in contact with friction in the “Cattaneo–Mindlin approxima-

tion”

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_4
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� Macroscopical tangential displacement in contact with friction in the “Cattaneo–
Mindlin approximation”

� Distribution of tangential stresses and tangential displacements at the surface in
the “Cattaneo–Mindlin approximation”

Transversely isotropic media exhibit exactly the same behavior as isotropic media.
The only required change involves inserting the effective elasticity modulus (de-
fined in (7.6) and equivalently in (7.7)) or the effective shear modulus defined in
(7.18), respectively. The MDR method is also valid without restriction, unchanged
from the case of isotropic media.
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