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Abstract

This work is devoted to establishing the local-in-time well-posedness of strong
solutions to the three-dimensional compressible primitive equations of atmospheric
dynamics. It is shown that strong solutions exist, are unique, and depend contin-
uously on the initial data, for a short time in two cases: with gravity but without
vacuum, and with vacuum but without gravity.
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1. Introduction

1.1. The Compressible Primitive Equations

The general hydrodynamic and thermodynamic equations (see, e.g., [36]) with
Coriolis force and gravity are used to model the motion and state of the atmosphere,
which is a specific compressible fluid. However, such equations are extremely
complicated and prohibitively expensive computationally. However, since the ver-
tical scale of the atmosphere is significantly smaller than the planetary horizontal
scale, the authors in [17] take advantage, as it is commonly done in planetary scale
geophysical models, of the smallness of this aspect ratio between these two or-
thogonal directions to formally derive the compressible primitive equations (CPE)
from the compressible Navier–Stokes equations. Specifically, in the CPE the ver-
tical component of the momentum in the compressible Navier–Stokes equations is
replaced by the hydrostatic balance equation (1.1)3, below, which is also known
as the quasi-static equilibrium equation. It turns out that the hydrostatic approx-
imation equation is accurate enough for practical applications and has become a
fundamental equation in atmospheric science. It is the starting point of many large
scalemodels in the theoretical investigations and practical weather predictions (see,
e.g., [35]). This has also been observed by meteorologists (see, e.g., [39,44]). In
fact, such an approximation is reliable and useful in the sense that the balance of
gravity and pressure dominates the dynamic in the vertical direction and that the
vertical velocity is usually hard to observe in reality. In many simplified models, it
is assumed that the atmosphere is under adiabatic process and therefore the entropy
remains unchanged along the particle path. In particular, if the entropy is constant in
the spatial variables initially, it remains so in later time. On the other hand, instead
of the molecular viscosity, eddy viscosity is used to model the statistical effect of
turbulent motion in the atmosphere. The observations above and more perceptions
from the meteorological point of view can be found in [39, Chapter 4]. Therefore,
under the above assumptions, one canwrite down the isentropic compressible prim-
itive equations as in (1.1), below. Moreover, we also study the problem by further
neglecting the gravity in (1.2), below. We remark here that, although it does not
cause any additional difficulty, we have omitted the Coriolis force in this work for
the convenience of presentation. That is, the local well-posedness theorems still
work for systems (1.1) and (1.2) with the Coriolis force.

The first mathematical treatment of the compressible primitive equations (CPE)
can be tracked back to Lions, Temam and Wang [35]. Actually, the authors formu-
lated the compressible primitive equations in the pressure coordinates (p-coordina-
tes) and show that in the new coordinate system, the equations are in the form of
classical primitive equations (called primitive equations, or PE hereafter) with the
incompressibility condition. In yet another work [34], the authors modeled the
nearly incompressible ocean by the PE. It is formulated as the hydrostatic approxi-
mation of the Boussinesq equations. The authors show the existence of global weak
solutions and therefore indirectly study the CPE (see, e.g., [32,33] for additional
work by the authors). Notably, the PE have been the subject of intensive mathemati-
cal research. For instance, Guillén-González, Masmoudi and Rodríguez-Bellido in
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[21] study the local existence of strong solutions and global existence of strong solu-
tions for small initial data to the PE. In [47] the authors address the global existence
of strong solutions to PE in a domainwith small depth for restricted large initial data
depending on the depth. In [38], the authors study the Sobolev andGevrey regularity
of the solutions to PE. The first breakthrough concerning the global well-posedness
of PE is obtained by Cao and Titi in [8], in which the authors show the existence of
unique global strong solutions (see, also, [9,22–25,27–29,46] and the references
therein for related study). On the other hand, with partial anisotropic diffusion and
viscosity, Cao, Li and Titi in [3–7,10] establish the global well-posedness of strong
solutions to PE. For the inviscid primitive equations, or hydrostatic incompressible
Euler equations, in [1,26,37], the authors show the short time existence of solutions
in the analytic function space and in Hs space. More recently, the authors in [2,45]
construct finite-time blowup for the inviscid PE in the absence of rotation. Also,
in [20], the authors establish the Gevrey regularity of hydrostatic Navier–Stokes
equations with only vertical viscosity.

Despite the fruitful study of the primitive equations, it still remains interesting
to study the compressible equations. On the one hand, it is a more direct model to
study the atmosphere and perform practical weather predictions. On the other hand,
the former deviation of the PE from the CPE in the p-coordinates did not treat the
corresponding derivation of the boundary conditions. In fact, due to the change of
pressure on the boundary, the appropriate studying domain for the PE should be
evolving together with the flows in order to recover the solutions to the CPE. Thus,
even though the formulation of the PE significantly simplifies the equations of the
CPE, the boundary conditions are more complicated than before in order to study
the motion of the atmosphere. We believe that this might be one of the reasons that
is responsible for the not-completely successful prediction of the weather by using
the PE.

Recently, Gatapov, Kazhikhov, Ersoy, Ngom construct a global weak solution
to some variant of two-dimentional compressible primitive equations in [16,19].
Meanwhile, Ersoy, Ngom, Sy, Tang, Gao study the stability of weak solutions to
the CPE in [17,41] in the sense that a sequence of weak solutions satisfying some
entropy conditions contains a subsequence converging to another weak solution. In
recent work, we show the existence of such weak solutions in [31]. See also [43].

In this and subsequent works, we aim to address several problems concerning
the compressible primitive equations. In this work, we start by studying the local
well-posedness of strong solutions to the CPE. That is, we will establish the local
strong solutions to (1.1) and (1.2), below, in the domain � = �h × (0, 1), with
�h = T

2 = [0, 1]2 ⊂ R
2 being the fundamental periodic domain. In comparison

with the compressible Navier–Stokes equations [18], the absence of evolutionary
equations for the vertical velocity (vertical momentum) causes the main difficulty.
This is the samedifficulty as in the case of thePE. In fact, the procedure of recovering
the vertical velocity is a classical one in the modeling of the atmosphere [39,
Chapter 5]. This is done with the help of the hydrostatic equation, which causes the
stratification of density profiles in the CPE. On the one hand, in (1.1), as onewill see
later, the hydrostatic equation implies that if there is vacuum in the physical domain
�, the sound speed will be at most 1/2-Hölder continuous. Thus the H2 estimate
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of the density is not available in the presence of vacuum. However in (1.2), such an
obstacle no longer exists. For this reason, the local well-posedness established in
this work doesn’t allow vacuum in the presence of gravity, but vacuum is allowed in
the casewithout gravity. On the other hand, the hydrostatic equation does have some
benefits. Indeed, such a relation yields that the density admits a stratified profile
along the vertical direction. This fact will help us recover the vertical velocity from
the continuity equation (see (1.8) and (1.13), below).

In this work, we will first reformulate the compressible primitive equations
(1.1), (1.2) by making use of the stratified density profile. Then we will study the
local well-posedness of the reformulated systems under the assumption that there is
no vacuum initially. This is done via a fixed point argument. Next, in order to obtain
the existence of strong solutions to (1.2) with non-negative density, we establish
some uniform estimates independent of the lower bound of the density. We point
out that in comparison to the compressible Navier–Stokes equations (see, e.g., [12–
15]), we will require H2 estimate of ρ1/2 in order to derive the above mentioned
uniform estimates. Such estimates are not available in the case with gravity (1.1).
To this end, continuity arguments are used to establish the solutions with vacuum.
We also study the continuous dependence on the initial data and the uniqueness of
the strong solutions.

Through out this work, we will use �x := (x, y, z)�, �xh := (x, y)� to represent
the coordinates in � and �h , respectively. In addition, we will use the following
notations to denote the differential operators in the horizontal direction:

∇h := (∂x , ∂y)
�, ∂h ∈ {∂x , ∂y},

divh := ∇h ·,�h := divh ∇h .

The isentropic compressible primitive equations with gravity are governed by
the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + divh (ρv) + ∂z(ρw) = 0 in �,

∂t (ρv) + divh (ρv ⊗ v) + ∂z(ρwv) + ∇h P = μ�hv + μ∂zzv

+ (μ + λ)∇hdivh v in �,

∂z P − ρg = 0 in �,

(1.1)

with P := ργ . We will study in this work only the case when γ = 2 in (1.1) for
the sake of simplifying our presentation. For general γ > 1, we refer to Remark 1,
below.

On the other hand, the isentropic compressible primitive equations without
gravity are governed by the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + divh (ρv) + ∂z(ρw) = 0 in �,

∂t (ρv) + divh (ρv ⊗ v) + ∂z(ρwv) + ∇h P = μ�hv + μ∂zzv

+ (μ + λ)∇hdivh v in �,

∂z P = 0 in �,

(1.2)

with P := ργ and γ > 1.
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In the above systems, (1.1) and (1.2), the viscosity coefficientsμ, λ are assumed
to be strictly positive. Also, (1.1) and (1.2) are supplemented with the following
boundary conditions:

w = 0, ∂zv = 0 on �h × {0, 1}. (1.3)

The rest of this paper will be organized as follows: in section 1.2, we present
a reformulation of (1.1) and (1.2) by making use of the stratified density profiles.
Also, we present the formula for recovering the vertical velocity and the main
theorems of this work. After listing some useful inequalities and notations, we
study in section 2 the existence theory. Next, in section 3 we show the continuous
dependence on the initial data and the uniqueness of strong solutions.

1.2. Reformulation, Analysis and Main Theorems

In this section, we will reformulate (1.1) and (1.2) and point out how to recover
the vertical velocity in terms of the density and the horizontal velocity.

The Case with Gravity and γ = 2 We first consider (1.1). From (1.1)3, one has

ργ−1(�x, t) = γ − 1

γ
gz + ργ−1(�xh, 0, t).

Denote by ξ = ξ(�xh, t) := ργ−1(�xh, 0, t). The continuity equation (1.1)1 implies

∂tξ + v · ∇hξ + (γ − 1)

(

ξ + γ − 1

γ
gz

)

(divh v + ∂zw) + γ − 1

γ
gw = 0.

(1.4)

In particular, since γ = 2, we have ρ(�x, t) = ξ(�xh, t) + 1

2
gz and

(1.1) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tξ + v · ∇hξ +
(

ξ + 1

2
gz

)

divh v + ∂z

(

ξw + 1

2
gzw

)

= 0 in �,
(

ξ + 1

2
gz

)

(∂tv + v · ∇hv + w∂zv) + (2ξ + gz)∇hξ

= μ�hv + μ∂zzv + (μ + λ)∇hdivh v in �,

∂zξ = 0 in �.

(1.5)

Hereafter, we denote, for any f : � �→ R,

f :=
∫ 1

0
f dz, f̃ := f − f . (1.6)

Then averaging over the vertical variable in (1.5)1 yields, thanks to (1.3),

∂tξ + v · ∇hξ + ξdivh v + 1

2
gzdivh v = 0. (1.7)
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Then comparing (1.7) with (1.5)1 implies

∂z(ρw) = ∂z

(

ξw + 1

2
gzw

)

= −ṽ · ∇hξ − ξdivh ṽ − g

2
z̃divh v in �.

Therefore, the vertical velocity w is determined, thanks to the boundary condition
(1.3), by the relation

ρw = (
ξ + 1

2
gz

)
w = −

∫ z

0

(
divh (ξ ṽ) + g

2
z̃divh v

)
dz. (1.8)

System (1.5) is complemented with the initial data

(ξ, v)|t=0 = (ξ0, v0), (1.9)

with ξ0, v0 ∈ H2(�). Also the following compatible conditions are imposed:

ρ0 = ξ0 + 1

2
gz � ρ > 0 in �, and ∂zv0|z=0,1 = 0,

μ�hv0 + μ∂zzv0 + (μ + λ)∇hdivh v0 − (2ξ0 + gz)∇hξ0

− ρ0v0 · ∇hv0 − ρ0w0∂zv0 =: ρ0V1, with V1 ∈ L2(�),

and ρ0w0 = −
∫ z

0

(
divh (ξ0ṽ0) + g

2
˜zdivh v0

)
dz.

(1.10)

Also, we will denote the bounds

∥
∥ξ0

∥
∥2
H2 � Bg,1,

∥
∥v0

∥
∥2
H2 + ∥

∥V1
∥
∥2
L2 � Bg,2. (1.11)

Theorem 1. Suppose the initial data (ρ0, v0) = (ξ0 + 1
2gz, v0) satisfy (1.11) and

the compatible conditions (1.10). Then there is a unique strong solution (ρ, v) to
system (1.1), with the boundary condition (1.3), in � × (0, T ), for some positive
constant T = T (Bg,1, Bg,2, ρ) > 0. Also, the solution satisfies

ρ ∈ L∞(0, T ; H2(�)), ∂tρ ∈ L∞(0, T ; H1(�)),

v ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)),

∂tv ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)).

Furthermore, for some positive constant C(Bg,1, Bg,2, ρ),

inf
(�x,t)∈�×(0,T )

ρ(�x, t) � 1

2
ρ > 0,

sup
0�t�T

(∥
∥ρ(t)

∥
∥2
H2 + ∥

∥∂tρ(t)
∥
∥2
H1 + ∥

∥v(t)
∥
∥2
H2 + ∥

∥∂tv(t)
∥
∥2
L2

)

+
∫ T

0

(∥
∥v(t)

∥
∥2
H3 + ∥

∥∂tv(t)
∥
∥2
H1

)
dt � C(Bg,1, Bg,2, ρ).



Local Well-Posedness of Strong Solutions 735

Moreover, for any two solutions (ρi , vi ), i = 1, 2 with initial data (ρi,0, vi,0), i =
1, 2 satisfying the conditions mentioned above, we have the following inequality

∥
∥ρ1 − ρ2

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v1 − v2

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥∇(v1 − v2)

∥
∥
L2(0,T ;L2(�))

� Cμ,λ,Bg,1,Bg,2,ρ,T

× (∥
∥ρ1,0 − ρ2,0

∥
∥
L2(�))

+ ∥
∥v1,0 − v2,0

∥
∥
L2(�))

)
,

for some positive constant Cμ,λ,Bg,1,Bg,2,ρ,T .

Remark 1. For general γ > 1, after multiplying (1.4) with

(
ξ + γ−1

γ
gz

ξ

) 2−γ
γ−1

and averaging the resultant in the z-variable, one obtains

γ

g

(
(ξ + γ − 1

γ
g)

1
γ−1 ξ

γ−2
γ−1 − ξ

)
∂tξ + ξ

γ−2
γ−1

(

ξ + γ − 1

γ
gz

) 2−γ
γ−1

v · ∇hξ

+ (γ − 1)ξ
γ−2
γ−1

(

ξ + γ − 1

γ
gz

) 1
γ−1

divh v = 0 in �h .

Consequently, by eliminating ∂tξ from the above equation and (1.4), it follows that

(γ − 1)∂z
((

ξ + γ − 1

γ
gz

) 1
γ−1 w

) = −(γ − 1)
(
ξ + γ − 1

γ
gz

) 1
γ−1 divh v

− (
ξ + γ − 1

γ

) 2−γ
γ−1 v · ∇hξ +

gξ
γ−2
γ−1

(
ξ + γ − 1

γ
gz

) 2−γ
γ−1

γ
((

ξ + γ − 1

γ
g
) 1

γ−1 ξ
γ−2
γ−1 − ξ

)

×
((

ξ + γ − 1

γ
gz

) 2−γ
γ−1

v · ∇hξ + (γ − 1)

(

ξ + γ − 1

γ
gz

) 1
γ−1

divh v

)

.

Therefore, from above, and as in the case when γ = 2, the vertical velocity w can
be represented in the form

w =
∫ z

0
H(divh v, v,∇hξ, ξ) dz′,

similarly to (1.8), for an explicit function H(·). Notably, the arguments and proofs,
below, apply equally, and similar conclusion of Theorem 1 also holds for γ > 1.
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The Case Without Gravity and γ > 1 Concerning system (1.2), since (1.2)3
already yields the independence of the density of the vertical variable, after taking
the vertical average of (1.2)1, as before, one has

∂tρ + divh (ρv) = 0. (1.12)

Comparing (1.12) with (1.2)1 yields, thanks to the boundary condition (1.3), that
the vertical velocity w is determined by the relation

ρw = −
∫ z

0
divh (ρṽ) dz. (1.13)

In particular, by denoting σ := ρ1/2, from (1.12) and (1.13), one has either σ = 0
or

∂tσ + v · ∇hσ + 1

2
σdivh v = 0, (1.14)

σw = −
∫ z

0

(
σ d̃ivh v + 2ṽ · ∇hσ

)
dz. (1.15)

In fact, for (σ, v) regular enough, (1.14), (1.15) hold regardless of whether σ = 0
or not. See also the justification in the beginning of section 3.2.

System (1.2) is complemented with the initial data

(ρ, v)|t=0 = (ρ0, v0), or equivalently (σ, v)|t=0 = (σ0, v0), (1.16)

with σ0 = ρ
1/2
0 , v0 ∈ H2(�), and the initial total mass and physical energy satisfy

0 <

∫

�

ρ0 d�x =
∫

�

σ 2
0 d�x = M < ∞,

0 <

∫

�

ρ0
∣
∣v0

∣
∣2 d�x + 1

γ − 1

∫

�

ρ
γ
0 d�x =

∫

�

σ 2
0

∣
∣v0

∣
∣2 d�x

+ 1

γ − 1

∫

�

σ
2γ
0 d�x = E0 < ∞.

(1.17)

Also the following compatible conditions are imposed:

ρ0 � 0, ∂zv0|z=0,1 = 0,

μ�hv0 + μ∂zzv0 + (μ + λ)∇hdivh v0 − ∇hρ
γ
0 − ρ0v0 · ∇hv0

− ρ0w0∂zv0 =: ρ
1/2
0 h1, with h1 ∈ L2(�),

and ρ0w0 = −
∫ z

0
divh (ρ0ṽ0) dz.

(1.18)

Also, we will denote the bounds

∥
∥σ0

∥
∥2
H2 = ∥

∥ρ
1/2
0

∥
∥2
H2 � B1,

∥
∥v0

∥
∥2
H2 + ∥

∥h1
∥
∥2
L2 � B2. (1.19)
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Moreover, if ρ = σ 2 > 0, (1.2) can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tσ + v · ∇hσ + w∂zσ + 1

2
σ(divh v + ∂zw) = 0 in �,

σ 2(∂tv + v · ∇hv + w∂zv) + ∇hσ
2γ

= μ�hv + μ∂zzv + (μ + λ)∇hdivh v in �,

∂zσ = 0 in �.

(1.20)

Theorem 2. Suppose the initial data (ρ0, v0) = (σ 2
0 , v0) satisfy (1.17), (1.19) and

the compatible conditions (1.18). Then there is a unique strong solution (ρ, v) to
system (1.2), with the boundary condition (1.3), in � × (0, T ∗), for some positive
constant T ∗ = T ∗(B1, B2) > 0. Also, the solution satisfies

ρ1/2 ∈ L∞(0, T ∗; H2(�)), ∂tρ
1/2 ∈ L∞(0, T ∗; H1(�)),

v ∈ L∞(0, T ∗; H2(�)) ∩ L2(0, T ∗; H3(�)), ∂tv ∈ L2(0, T ∗; H1(�))

ρ1/2∂tv ∈ L∞(0, T ∗; L2(�)).

Furthermore, for some positive constant C(B1, B2),

inf
(�x,t)∈�×(0,T ∗)

ρ(�x, t) � 0,

sup
0�t�T ∗

(∥
∥ρ1/2(t)

∥
∥2
H2 + ∥

∥∂tρ
1/2(t)

∥
∥2
H1 + ∥

∥v(t)
∥
∥2
H2 + ∥

∥(ρ1/2vt )(t)
∥
∥2
L2

)

+
∫ T ∗

0

(∥
∥v(t)

∥
∥2
H3 + ∥

∥vt (t)
∥
∥2
H1

)
dt � C(B1, B2).

Moreover, for any two strong solutions (ρi , vi ), i = 1, 2, with initial data (ρi,0,

vi,0), i = 1, 2, satisfying the conditions mentioned above, we have the inequality

∥
∥ρ

1/2
1 − ρ

1/2
2

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥ρ

1/2
1 (v1 − v2)

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥ρ

1/2
2 (v1 − v2)

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥v1 − v2

∥
∥
L2(0,T ∗;L2(�))

+ ∥
∥∇(v1 − v2)

∥
∥
L2(0,T ∗;L2(�))

� Cμ,λ,B1,B2,T ∗
(∥
∥ρ

1/2
1,0 − ρ

1/2
2,0

∥
∥
L2(�))

+ ∥
∥v1,0 − v2,0

∥
∥
L2(�))

)

for some positive constant Cμ,λ,B1,B2,T ∗ .

1.3. Preliminaries

We will use
∣
∣·∣∣, ∥∥·∥∥ to denote norms in �h ⊂ R

2 and � ⊂ R
3, respectively.

After applying Ladyzhenskaya’s and Agmon’s inequalities in �h and �, directly
we have

∣
∣ f

∣
∣
L4 � C

∣
∣ f

∣
∣1/2
L2

∣
∣ f

∣
∣1/2
H1 ,

∣
∣ f

∣
∣
L∞ � C

∣
∣ f

∣
∣1/2
L2

∣
∣ f

∣
∣1/2
H2 ,

∥
∥ f

∥
∥
L3 � C

∥
∥ f

∥
∥1/2
L2

∥
∥ f

∥
∥1/2
H1

(1.21)
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for any function f with bounded right-hand sides. Also,
∣
∣ f

∣
∣
L p ,

∥
∥ f̃

∥
∥
L p � C

∥
∥ f

∥
∥
L p ,

for every p � 1. Considering any quantities A, B, we use the notation A � B to
denote A � CB for some generic positive constantC , which may be different from
line to line. In what follows δ, ω > 0 are arbitrary constants which will be chosen
later in the relevant paragraphs to be adequately small. Cq represents a positive
constant depending on the quantity q. We will also need the following classical
inequality:

Lemma 1. Let 2 � p � 6, and ρ � 0 such that 0 <
∫

�
ρ d�x = M < ∞, and∫

�
ργ d�x � E0, for some γ ∈ (1,∞). Then one has

∥
∥ f

∥
∥
L p � C

∥
∥∇ f

∥
∥
L2 + C

∥
∥ρ1/2 f

∥
∥
L2 (1.22)

for some constant C = C(M, E0), provided the right-hand side is finite.

Proof. This is standard. See, e.g., [18, Lemma 3.2]. ��

2. Associated Linear Systems and Existence Theory

In this section, we will establish the local existence theory of (1.1) and (1.2). To
do this, we will first study the local existence of solutions to (1.5) and (1.20) via the
Schauder–Tchonoff fixed point theorem capitalizing on some a priori estimates. In
fact, under the assumption that

ρ0 =
⎧
⎨

⎩

ξ0 + 1

2
gz in the case with gravity

(σ0)
2 in the case without gravity

> ρ > 0, (2.1)

we will first introduce linear systems and the function spaces Y associated with
(1.5) and (1.20) with some given input states (ξo, vo) and (σ o, vo), respectively,
in section 2.1 and 2.2. Here, Y are compactly embedded in some corresponding
spacesV. Also, we will show that the maps T : X �→ X, for some convex bounded
subsets X of Y, given by

(ξo, vo) � (ξ, v) in the case with gravity, and

(σ o, vo) � (σ, v) in the case without gravity,

are well-defined; observing that X are convex subsets of Y and hence compact in
V. We will use the same notations X,Y,V, T to denote the convex bounded sets,
the compact function spaces, the embedded function spaces and the constructed
maps in both cases. We summarize the relevant regularity estimates in section
2.3 and show that the Schauder-Tchonoff fixed point theorem will yield the ex-
istence of solutions to (1.5) and (1.20) in the corresponding set. Recall that the
Schauder-Tchonoff fixed point theorem states that for a Banach space V with a
convex compact subset X ⊂ V , if F : X �→ X is continuous, then F has at
least one fixed point in X . In our case, we will take X = X and V = V :=
{(ξ, v)|ξ, v ∈ L∞(0, T ; L2(�)),∇v ∈ L2(0, T ; L2(�))} in the case with gravity,
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or V = V := {(σ, v)|σ, v ∈ L∞(0, T ; L2(�)),∇v ∈ L2(0, T ; L2(�))} in the
case without gravity, with the corresponding norms.

We will only sketch the key steps in this paper. For more detailed calculation,
we refer to our preprint [30].

2.1. The Case with Gravity and γ = 2

2.1.1. Associated Linear Inhomogeneous System Consider a finite positive
time T , which will be determined later. LetY = YT be the function space defined
by

Y = YT :={(ξ, v)|ξ ∈ L∞(0, T ; H2(�)), ∂tξ ∈ L∞(0, T ; H1(�)),

v ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)),

∂tv ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�))},
(2.2)

with the norm
∥
∥(ξ, v)

∥
∥
Y

:=∥
∥ξ

∥
∥
L∞(0,T ;H2(�))

+ ∥
∥∂tξ

∥
∥
L∞(0,T ;H1(�))

+ ∥
∥v

∥
∥
L∞(0,T ;H2(�))

+ ∥
∥v

∥
∥
L2(0,T ;H3(�))

+ ∥
∥∂tv

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥∂tv

∥
∥
L2(0,T ;H1(�))

.

Notice that, thanks to the Aubin compactness theorem (see, e.g., [42, Theorem 2.1]
and [11,40]), every bounded subset of Y is a compact subset of the space

V = VT := {(ξ, v)|ξ, v ∈ L∞(0, T ; L2(�)),∇v ∈ L2(0, T ; L2(�))}, (2.3)

with the norm
∥
∥(ξ, v)

∥
∥
V

:=∥
∥ξ

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v

∥
∥
L2(0,T ;H1(�))

.
(2.4)

Let X = XT be a bounded subset of Y defined by

X =XT := {
(ξ, v) ∈ Y|(ξ, v)|t=0 = (ξ0, v0), ∂zv|z=0,1 = 0, ∂zξ = 0,

ξ + 1

2
gz � 1

2
ρ > 0, sup

0�t�T

∥
∥ξ(t)

∥
∥2
H2 � 2M0, sup

0�t�T

∥
∥∂tξ(t)

∥
∥2
H1 � C2,

sup
0�t�T

{∥∥v(t)
∥
∥2
H2 + ∥

∥∂tv(t)
∥
∥2
L2} +

∫ T

0

(
∥
∥v(t)

∥
∥2
H3

+ ∥
∥∂tv(t)

∥
∥2
H1

)

dt � C1M1
}
,

(2.5)

where M0, M1 are the bounds of initial data in (2.9) and C1 = C1(M0, μ, λ, ρ),
C2 = C2(M0,C1M1) are given below in (2.34), (2.17), respectively. Notice, for
(ξ, v) ∈ X,

∫ 1

0

(
divh (ξ ṽ) + g

2
z̃divh v

)
dz = 0.
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Let (ξo, vo) ∈ X. The following inhomogeneous linear system is inferred from
(1.5) using (ξo, vo) as an input:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tξ + vo · ∇hξ + ξdivh vo + g

2
zdivh vo = 0 in �,

(ξo + 1

2
gz)(∂tv + vo · ∇hv

o + wo∂zv
o) + (2ξo + gz)∇hξ

o

= μ�hv + μ∂zzv + (μ + λ)∇hdivh v in �,

∂zξ = 0 in �.

(2.6)

Here wo is given by (1.8) with (ξo, vo) instead of (ξ, v), i.e.,

ρowo = (ξo + 1

2
gz)wo := −

∫ z

0

(
divh (ξoṽo) + g

2
˜zdivh vo

)
dz. (2.7)

Notice that (2.6)1 is inferred from (1.7). For details, see the deviation from (1.5) to

(1.8). Hereafter, denote by ρo := ξo + 1

2
gz . The initial and boundary conditions

for the linear system (2.6) are given by

(ξ, v)|t=0 = (ξ0, v0), ∂zv|z=0,1 = 0. (2.8)

The compatible conditions in (1.10) are still imposed and we require
∥
∥ξ0

∥
∥2
H2 � M0,

∥
∥v0

∥
∥2
H2 + ∥

∥V1
∥
∥2
L2 � M1. (2.9)

Recall that V1 is given in (1.10), essentially, V1 = vt |t=0.
Then the map T , in this case, is defined as

T : (ξo, vo) � (ξ, v), (2.10)

where (ξ, v) is the unique solution to the linear system (2.6) with (ξo, vo) ∈ X. We
claim that T is a well defined map from X to X, which is the consequence of the
following two propositions:

Proposition 1. For given (ξo, vo) ∈ C∞(�×[0, T ])∩XT , there is a unique strong
solution (ξ, v) ∈ YT of system (2.6)with the initial and boundary conditions (2.8).

Suppose, in addition, that ξ0, v0 ∈ H3(�). One will have the following regu-
larity of the unique solution (ξ, v) of system (2.6):

ξ ∈ L∞(0, T ; H3(�)), ∂tξ ∈ L∞(0, T ; H2(�)),

v ∈ L∞(0, T ; H3(�)) ∩ L2(0, T ; H4(�)),

∂tv ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)).

(2.11)

Proposition 2. Consider the initial data with the bounds M0, M1 in (2.9) and
(ξo, vo) ∈ X = XT . There is a Tg = Tg(M0, M1, μ, λ, ρ) > 0 sufficiently small
such that for any T ∈ (0, Tg), there exists a unique solution to (2.6). Moreover, the
solution belongs to X = XT . Therefore, for any such T , the map T in (2.10) is a
well defined map from X into X.

We omit the proof of Proposition 1, and refer to [30] for the details. The existence of
solutions in Proposition 2 follows from Proposition 1 and a standard approximating
argument.We only show the required a priori estimates in the rest of this subsection,
which are sufficient to establish Proposition 2. See Propositions 3 and 4, below.



Local Well-Posedness of Strong Solutions 741

2.1.2. A Priori Estimates for the Inhomogeneous Linear System Hereafter,
we assume that the solution (ξ, v) to the linear system (2.6) is smooth enough so
that the following estimates are rigorous.

We start by establishing some estimates for the solutions of (2.6)1. In particular,
we will establish the following:

Proposition 3. There exists a T ′ = T ′(M0,C1M1, ρ) > 0 sufficiently small such
that for any T ∈ (0, T ′], the solution ξ to (2.6)1 satisfies that

ξ + 1

2
gz � 1

2
ρ; sup

0�t�T

∥
∥ξ(t)

∥
∥2
H2 � 2M0; sup

0�t�T

∥
∥∂tξ(t)

∥
∥2
H1 � C2,

where M0 is as in (2.9).

The lower bound for ξ

In order to derive the lower bound of ξ , we employ the following Stampaccia-
like argument. Let M = M(t) > 0 be a nonnegative integrable function to be
determined later. Consider η = η(x, y, t) := ξ − ρ + ∫ t

0 M(s) ds. Then according
to (2.6)1, η satisfies the equation

∂tη + vo · ∇hη + ηdivh vo = −(ρ −
∫ t

0
M(s) ds)divh vo

− g

2
zdivh vo + M(t).

Let

1{η<0} =
{
1 whenever {η < 0},
0 otherwise,

and denote by η− := −η1{η<0} � 0. Observe that since ξ ∈ H1(� × [0, T ]), so is
η−. Thus, one has

d

dt

∫

�h

η− d�xh =
∫

{η<0}

(

(ρ −
∫ t

0
M(s) ds)divh vo + g

2
zdivh vo − M(t)

)

d�xh .

Now, let 0 < M(t) := C max{∣∣divh vo
∣
∣
L∞ ,

∣
∣zdivh vo

∣
∣
L∞} � C

∥
∥vo

∥
∥
H3 < ∞,

a.e.,, for some constant C > 0. Then the integrand on the right-hand side of the
above equation satisfies

(

ρ −
∫ t

0
M(s) ds

)

divh vo + g

2
zdivh vo − M(t)

� 1

C

(

ρ + C
∫ T

0

∥
∥vo

∥
∥
H3(s) ds + g

2

)

M(t) − M(t) < 0,

provided C is large enough and T is small enough such that

1

C

(
ρ + 1 + g

2

)
< 1, and

C
∫ T

0

∥
∥vo

∥
∥
H3(s) ds � CT 1/2(

∫ T

0

∥
∥vo

∥
∥2
H3(s) ds

)1/2
< 1.
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Therefore, we have

d

dt

∫

�h

η− d�xh � 0 a.e.,

which, after integrating over [0, t0] for any t0 ∈ [0, T ], thanks to the fact η−(0) ≡ 0,
yields

∫

�h

η−(t0) d�xh � 0. (2.12)

Hence η− = 0 in �h × [0, T ]. That is, η(t) = ξ(t) − ρ + ∫ t
0 M(s) ds � 0 and

ξ(t) + 1

2
gz > ξ(t) � ρ − C

∫ T

0

∥
∥vo

∥
∥
H3(s) ds

� ρ − CC1/2
1 M1/2

1 T 1/2 � 1

2
ρ

(2.13)

for t ∈ [0, T ], T � T1, with T1 = T1(C1M1, ρ) sufficiently small.
The H2(�) norm for ξ

Applying the standard H2 estimate of linear transport equations to (2.6)1 yields,
since

∣
∣ξ

∣
∣
H2 = ∥

∥ξ
∥
∥
H2 ,

d

dt

∥
∥ξ

∥
∥2
H2 � C

∥
∥vo

∥
∥
H3

∥
∥ξ

∥
∥2
H2 + C

∥
∥vo

∥
∥
H3

∥
∥ξ

∥
∥
H2 .

Thanks to the Grönwall and the Hölder inequalities, one has

sup
0�t�T

∥
∥ξ(t)

∥
∥2
H2 � 1

4
sup

0�t�T

∥
∥ξ

∥
∥2
H2 + C2C1M1e

2CC1/2
1 M1/2

1 T 1/2
T

+ eCC
1/2
1 M1/2

1 T 1/2
M0.

(2.14)

Then for T ∈ (0, T2] with T2(M0,C1M1) sufficiently small, (2.14) yields

sup
0�t�T

∥
∥ξ(t)

∥
∥2
H2 � 2M0. (2.15)

The H1(�) norm for ∂tξ Using equation (2.6)1, ∂tξ can be represented in terms
of the spatial derivatives of ξ, vo. Then applying the Hölder and the Sobolev em-
bedding inequalities implies

∥
∥∂tξ

∥
∥2
H1 � C

∥
∥vo

∥
∥2
H2

∥
∥ξ

∥
∥2
H2 + C

∥
∥vo

∥
∥2
H2 � C2, (2.16)

where C2 = C2(M0,C1M1) is given by

C(1 + 2M0)C1M1 =: C2. (2.17)

Proof of Proposition 3. By choosing T ′ = min{T1, T2}, the proof of Proposition 3
follows from (2.13), (2.15) and (2.16). ��
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Next, we show

Proposition 4. There exists a T ′′ = T ′′(M0, M1,C1,C2, ρ) ∈ (0,∞), sufficiently
small, such that for every T ∈ (0, T ′′], the solution v to (2.6)2 satisfies

sup
0�t�T

(
∥
∥v(t)

∥
∥2
H2 + ∥

∥vt (t)
∥
∥2
L2) +

∫ T

0

(
∥
∥v(t)

∥
∥2
H3 + ∥

∥vt (t)
∥
∥2
H1

)

dt � C1M1.

Horizontal spatial derivative estimates for v

Applying ∂hh to (2.6)2 will yield

ρo∂t∂hhv − μ�h∂hhv − μ∂zz∂hhv − (μ + λ)∇hdivh ∂hhv

= −2∂hρ
o∂t∂hv − ∂hhρ

o∂tv − ∂hh(ρ
ovo · ∇hv

o) − ∂hh(ρ
owo∂zv

o)

− ∂hh((2ξ
o + gz)∇hξ

o),

(2.18)

where ρo = ξo + 1
2gz. After taking the inner product of (2.18) with ∂hhv and

integrating by parts, one has

d

dt

{
1

2

∫

�

ρo
∣
∣∂hhv

∣
∣2 d�x

}

+
∫

�

(

μ
∣
∣∇h∂hhv

∣
∣2 + μ

∣
∣∂hhzv

∣
∣2 + (μ + λ)

× ∣
∣divh ∂hhv

∣
∣2

)

d�x = −
∫

�

(

2∂hρ
o∂t∂hv · ∂hhv + ∂hhρ

o∂tv · ∂hhv

)

d�x

+ 1

2

∫

�

∂tρ
o
∣
∣∂hhv

o
∣
∣2 d�x +

∫

�

∂h(ρ
ovo · ∇hv

o) · ∂hhhv d�x

+
∫

�

∂h(ρ
owo∂zv

o) · ∂hhhv d�x +
∫

�

∂h((2ξ
o + gz)∇hξ

o) · ∂hhhv d�x

=:
5∑

i=1

Ii . (2.19)

While we only will omit the detailed estimates, which are standard, we list below
the estimates for the Ii terms (see [30] for details). We will use the fact

∥
∥ρo

∥
∥2
H2 �

C
∥
∥ξo

∥
∥2
H2 + Cg2 � CM0 + C ,

∥
∥∂tρ

o
∥
∥2
L2 = ∥

∥∂tξ
o
∥
∥2
L2 � C2. Also, hereafter the

estimates hold for every δ, ω > 0 which will be chosen later to be adequately small.
Correspondingly, Cδ,Cω,Cδ,ω are some positive constants depending on δ, ω:

I1 � δ
∥
∥∂hhv

∥
∥2
H1 + ω

∥
∥vt

∥
∥2
H1 + Cδ,ω(M2

0 + 1)(
∥
∥v

∥
∥2
H2 + ∥

∥∂tv
∥
∥2
L2).

I2 � ω
∥
∥vo

∥
∥2
H3 + CωC

2
2C1M1.

I3 � δ
∥
∥∂hhv

∥
∥2
H1 + Cδ(M0 + 1)C2

1M
2
1 .

I5 � δ
∥
∥∂hhv

∥
∥2
H1 + Cδ(M

2
0 + 1).
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In order to estimate I4, we shall plug in (2.7). One has

I4 =
∫

�

∂h(ρ
owo)∂zv

o · ∂hhhv d�x +
∫

�

ρowo∂hzv
o · ∂hhhv d�x

= −
∫ 1

0

∫

�h

[∫ z

0

[
∂hdivh (ξoṽo) + g

2
˜zdivh ∂hvo

]
dz′∂zvo · ∂hhhv

]

d�xh dz

−
∫ 1

0

∫

�h

[∫ z

0

[
divh (ξoṽo) + g

2
˜zdivh vo

]
dz′∂hzvo · ∂hhhv

]

d�xh dz
=: I ′

4 + I ′′
4 .

Then applying the Minkowski and the Sobolev embedding inequalities yields

I ′′
4 = −

∫ 1

0

∫ z

0

∫

�h

[
divh (ξoṽo) + g

2
˜zdivh vo

]
(�xh, z′, t)

× [
∂hzv

o · ∂hhhv
]
(�xh, z, t) d�xh dz′ dz

�
∫ 1

0

(
∣
∣∇hξ

o
∣
∣
L4

∣
∣ṽo

∣
∣
L∞ + ∣

∣ξo
∣
∣
L∞

∣
∣∇̃hvo

∣
∣
L4 + ∣

∣∇̃hvo
∣
∣
L4

)

dz′

×
∫ 1

0

∣
∣∂hzv

o
∣
∣
L4

∣
∣∂hhhv

∣
∣
L2 dz � (

∥
∥ξo

∥
∥
H2 + 1)

∥
∥vo

∥
∥3/2
H2

∥
∥vo

∥
∥1/2
H3

× ∥
∥∂hhv

∥
∥
H1 � δ

∥
∥∂hhv

∥
∥2
H1 + ω

∥
∥vo

∥
∥2
H3 + Cδ,ω(M2

0 + 1)C3
1M

3
1 ,

and, similarly,

I ′
4 � δ

∥
∥∂hhv

∥
∥2
H1 + ω

∥
∥vo

∥
∥2
H3 + Cδ,ω(M2

0 + 1)C3
1M

3
1 ,

where we have employed (1.21). Summing up the above inequalities, with δ small
enough, yields the following estimate

d

dt

∥
∥
√

ρo∂hhv
∥
∥2
L2 + cμ,λ

∥
∥∂hhv

∥
∥2
H1 � ω(

∥
∥∂tv

∥
∥2
H1 + ∥

∥vo
∥
∥2
H3)

+ CωH(M0,C1M1,C2)(
∥
∥v

∥
∥2
H2 + ∥

∥∂tv
∥
∥2
L2 + 1).

Hereafter,Hwill be used to denote a polynomial quantity of its arguments (i.e., the
norms of the initial data and ξo, vo) which may be different from line to line. Also
cμ,λ,Cω denote positive constants depending on μ, λ and ω, respectively. Similar
arguments also hold for the lower order derivatives. Then after suitable choice of
ω, one has

d

dt

(∥
∥
√

ρov
∥
∥2
L2 + ∥

∥
√

ρo∇hv
∥
∥2
L2 + ∥

∥
√

ρo∇2
hv

∥
∥2
L2

) + cμ,λ

(∥
∥v

∥
∥2
H1

+ ∥
∥∇hv

∥
∥2
H1 + ∥

∥∇2
hv

∥
∥2
H1

)
� ω

(∥
∥∂tv

∥
∥2
H1 + ∥

∥vo
∥
∥2
H3

)

+ CωH(M0,C1M1,C2)
(∥
∥v

∥
∥2
H2 + ∥

∥∂tv
∥
∥2
L2 + 1

)
.

(2.20)

Time derivative estimates for v
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Applying ∂t to (2.6)2 yields

ρo∂tvt − μ�hvt − μ∂zzvt − (μ + λ)∇hdivh vt = −∂tρ
o∂tv

− ∂t (ρ
ovo · ∇hv

o) − ∂t (ρ
owo∂zv

o) − ∂t ((2ξ
o + gz)∇hξ

o).
(2.21)

Consequently, one has

d

dt

1

2

∫

�

ρo
∣
∣∂tv

∣
∣2 d�x +

∫

�

(

μ
∣
∣∇hvt

∣
∣2 + μ

∣
∣∂zvt

∣
∣2 + (μ + λ)

∣
∣divh vt

∣
∣2

)

d�x

= −1

2

∫

�

∂tρ
o
∣
∣vt

∣
∣2 d�x −

∫

�

∂t (ρ
ovo · ∇hv

o) · ∂tv d�x

−
∫

�

∂t (ρ
owo∂zv

o) · ∂tv d�x −
∫

�

∂t ((2ξ
o + gz)∇hξ

o) · ∂tv d�x

=:
9∑

i=6

Ii . (2.22)

Then applying similar estimates as before to the right-hand side of (2.22) (see [30]
for details) and making use of the fact that wo is given by (2.7), one has

d

dt

∥
∥
√

ρovt
∥
∥2
L2 + cμ,λ

∥
∥vt

∥
∥2
H1 � ω

(∥
∥vo

∥
∥2
H3 + ∥

∥∂tv
o
∥
∥2
H1

)

+ CωH(M0,C1M1,C2)
(∥
∥∂tv

∥
∥2
L2 + 1

)
.

(2.23)

Vertical derivative estimates for v

Taking the inner product of (2.6)2 with vt and applying similar estimates as
before to the resultant implies

d

dt

(
μ

∥
∥∇hv

∥
∥2
L2 + μ

∥
∥∂zv

∥
∥2
L2 + (μ + λ)

∥
∥divh v

∥
∥2
L2

) + ∥
∥
√

ρovt
∥
∥2
L2

� H(M0,C1M1,C2, ρ).

(2.24)

On the other hand, (2.6)2 can be written as

μ∂zzv − ρo∂tv = −μ�hv − (μ + λ)∇hdivh v + ρovo · ∇hv
o

+ ρowo∂zv
o + (2ξo + gz)∇hξ

o.
(2.25)

Taking the inner product of (2.25) with ∂t∂zzv and applying similar estimates as
before will yield,

d

dt
(μ

∥
∥∇h∂zv

∥
∥2
L2 + μ

∥
∥∂zzv

∥
∥2
L2 + (μ + λ)

∥
∥divh ∂zv

∥
∥2
L2)

+ cμ,λ

∥
∥
√

ρo∂zvt
∥
∥2
L2 � ω

∥
∥vo

∥
∥2
H3

+ CωH(M0,C1M1,C2, ρ)(
∥
∥vt

∥
∥2
L2 + 1).

(2.26)

Next, applying ∂ ∈ {∂x , ∂y, ∂z} to (2.25) yields
μ∂∂zzv − ρo∂vt = ∂ρo∂tv − μ�h∂v − (μ + λ)∇hdivh ∂v

+ ∂(ρovo · ∇hv
o) + ∂(ρowo∂zv

o) + ∂((2ξo + gz)∇hξ
o).

(2.27)



746 Xin Liu & Edriss S. Titi

This implies

μ
∥
∥∂∂zzv

∥
∥
L2 �

∥
∥∇2

hv
∥
∥
H1 + (M1/2

0 + 1)(
∥
∥vt

∥
∥
H1 + M1/2

0 + C1M1)

+ ∥
∥∂(ρowo)∂zv

o
∥
∥
L2 + ∥

∥ρowo∂∂zv
o
∥
∥
L2 .

Also, by employing the Minkowski’s inequality, one obtains

∥
∥∂h(ρ

owo)∂zv
o
∥
∥2
L2 �

∫ 1

0

∣
∣∂h(ρ

owo)
∣
∣2
L2

∣
∣∂zv

o
∣
∣2
L∞ dz

�
(∫ 1

0

(∣
∣∇2

h (ξ
oṽo)

∣
∣
L2 + ∣

∣˜∇2
hv

o
∣
∣
L2

)
dz′

)2

×
∫ 1

0

∣
∣∂zv

o
∣
∣
H1

∣
∣∂zv

o
∣
∣
H2 dz

� (
∥
∥ξo

∥
∥2
H2 + 1)

∥
∥vo

∥
∥3
H2

∥
∥vo

∥
∥
H3 � ω

∥
∥vo

∥
∥2
H3 + Cω(M2

0 + 1)C3
1M

3
1 ,

and, similarly,

∥
∥ρowo∂∂zv

o
∥
∥2
L2 � ω

∥
∥vo

∥
∥2
H3 + Cω(M2

0 + 1)C3
1M

3
1 ,

∥
∥∂z(ρ

owo)∂zv
o
∥
∥2
L2 � (M0 + 1)C2

1M
2
1 .

Therefore, we have

∥
∥∂zzv

∥
∥2
H1 � C

∥
∥∇2

hv
∥
∥2
H1 + C(M0 + 1)

∥
∥vt

∥
∥2
H1 + ω

∥
∥vo

∥
∥2
H3

+ CωH(M0,C1M1,C2).
(2.28)

Proof of Proposition 4. From (2.20), (2.23), (2.24) and (2.26), there is a constant
cμ,λ,ρ such that

d

dt
Eg(t) + cμ,λ,ρ

(∥
∥v

∥
∥2
H1 + ∥

∥∇hv
∥
∥2
H1 + ∥

∥∇2
hv

∥
∥2
H1 + ∥

∥vt
∥
∥2
H1

)

� ω
∥
∥vt

∥
∥2
H1 + ω

(∥
∥vo

∥
∥2
H3 + ∥

∥vot

∥
∥2
H1

)

+ CωH(M0,C1M1,C2, ρ)(Eg(t) + 1),

(2.29)

where

Eg(t) := ∥
∥
√

ρov
∥
∥2
L2 + ∥

∥
√

ρo∇hv
∥
∥2
L2 + ∥

∥
√

ρo∇2
hv

∥
∥2
L2

+ ∥
∥
√

ρovt
∥
∥2
L2 + μ

∥
∥∇v

∥
∥2
L2 + (μ + λ)

∥
∥divh v

∥
∥2
L2

+ μ
∥
∥∇∂zv

∥
∥2
L2 + (μ + λ)

∥
∥divh ∂zv

∥
∥2
L2 .

(2.30)

Notice that for some positive constants Ci,μ,λ,ρ,M0 , i = 1, 2, depending on μ, λ,

ρ, M0, we have

C1,μ,λ,ρ,M0(
∥
∥v

∥
∥2
H2 + ∥

∥vt
∥
∥2
L2) � Eg(t) � C2,μ,λ,ρ,M0(

∥
∥v

∥
∥2
H2 + ∥

∥vt
∥
∥2
L2).

(2.31)
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For 0 < ω � cμ,λ,ρ

2 , one infers from (2.29), that

d

dt
Eg(t) � ω(

∥
∥vo

∥
∥2
H3 + ∥

∥vot

∥
∥2
H1) + CωH(M0,C1M1,C2, ρ)(Eg(t) + 1).

Therefore, applying the Grönwall’s inequality yields

sup
0�t�T

Eg(t) � eCωH(M0,C1M1,C2,ρ)T
(

Eg(0) + ω

∫ T

0
(
∥
∥vo

∥
∥2
H3 + ∥

∥vot

∥
∥2
H1) dt

+
∫ T

0
CωH(M0,C1M1,C2, ρ) dt

)

� eCωH(M0,C1M1,C2,ρ)T
(

C2,μ,λ,ρ,M0M1

+ ωC1M1 + CωH(M0,C1M1,C2, ρ)T

)

, whereωis as above.

Now, we integrate with respect to the time variable inequality (2.29). It follows,
since 0 < ω <

cμ,λ,ρ

2 , that

cμ,λ,ρ

2

∫ T

0

(
∥
∥v

∥
∥2
H1 + ∥

∥∇hv
∥
∥2
H1 + ∥

∥∇2
hv

∥
∥2
H1 + ∥

∥vt
∥
∥2
H1

)

dt � Eg(0) + Eg(t)

+ ω

∫ T

0

(
∥
∥vo

∥
∥2
H3 + ∥

∥vot

∥
∥2
H1

)

dt + CωH(M0,C1M1,C2, ρ)

∫ T

0

(Eg(t) + 1
)
dt

�
(

2 + TCωH(M0,C1M1,C2, ρ)

)

eCωH(M0,C1M1,C2,ρ)T

×
(

C2,μ,λ,ρ,M0M1 + ωC1M1 + CωH(M0,C1M1,C2, ρ)T

)

.

Additionally, from (2.28), we have
∫ T

0

∥
∥∂zzv

∥
∥2
H1 dt � C

∫ T

0

(
∥
∥∇2

hv
∥
∥2
H1 + (M0 + 1)

∥
∥vt

∥
∥2
H1

)

dt

+ ωC1M1 + CωH(M0,C1M1,C2)T .

Therefore, we conclude that

sup
0�t�T

(
∥
∥v(t)

∥
∥2
H2 + ∥

∥vt (t)
∥
∥2
L2) +

∫ T

0

(
∥
∥v

∥
∥2
H3 + ∥

∥vt
∥
∥2
H1

)

dt

� C−1
1,μλ,ρ,M0

sup
0�t�T

Eg(t) +
∫ T

0

(
∥
∥v

∥
∥2
H1 + ∥

∥∇hv
∥
∥2
H1 + ∥

∥∇2
hv

∥
∥2
H1

+ ∥
∥vt

∥
∥2
H1

)

dt +
∫ T

0

∥
∥∂zzv

∥
∥2
H1 � (M0 + 1)

(

C3,μ,λ,ρ,M0

+ CωH(M0,C1M1,C2, ρ)T

)

× eCωH(M0,C1M1,C2,ρ)T
(

C2,μ,λ,ρ,M0M1

+ ωC1M1 + CωH(M0,C1M1,C2, ρ)T

)

+ ωC1M1

+ CωH(M0,C1M1,C2, ρ)T,

(2.32)
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for some positive constant C3,μ,λ,ρ,M0 , depending on μ, λ, ρ, M0. Now fix ω =
1
2 min{ cμ,λ,ρ

2 , 1
C1

} and let T ∈ (0, T ′′], where T ′′ = T ′′(M0, M1,C1,C2, ρ) is
small enough and satisfying

CωH(M0,C1M1,C2, ρ)T ′′ � min{1, M1}.
Then (2.32) yields

sup
0�t�T

(
∥
∥v(t)

∥
∥2
H2 + ∥

∥vt (t)
∥
∥2
L2) +

∫ T

0

(
∥
∥v

∥
∥2
H3 + ∥

∥vt
∥
∥2
H1

)

dt � C1M1,

(2.33)

where C1 is given by

C1 := (M0 + 1)(C3,μ,λ,ρ,M0e + e)(C2,μ,λ,ρ,M0 + 2) + 2. (2.34)

This concludes the proof. ��

2.2. The Case Without Gravity and γ > 1

Consider a finite positive time T , which will be determined later. LetY = YT

be the function space defined by

Y = YT :={(σ, v)|σ ∈ L∞(0, T ; H2(�)), ∂tσ ∈ L∞(0, T ; H1(�)),

v ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)),

∂tv ∈ L∞(0, T ; L2(�))L2(0, T ; H1(�))}.
(2.35)

Notice that, thanks to Aubin compactness theorem (see [42, Theorem 2.1] and
[11,40]), every bounded subset of Y is a compact subset of the space

V = VT := {(σ, v)|σ, v ∈ L∞(0, T ; L2(�)),∇v ∈ L2(0, T ; L2(�))}.
(2.36)

Let X = XT be a bounded subset of Y defined by

X =XT :=
{

(σ, v) ∈ Y|(σ, v)|t=0 = (σ0, v0), ∂zv|z=0,1 = 0, ∂zσ = 0,

σ 2 � 1

2
ρ > 0, sup

0�t�T

∥
∥σ(t)

∥
∥2
H2 � 2M0, sup

0�t�T

∥
∥∂tσ(t)

∥
∥2
H1 � C2,

sup
0�t�T

(
∥
∥v(t)

∥
∥2
H2 + ∥

∥vt (t)
∥
∥2
L2

)

+
∫ T

0

(
∥
∥v

∥
∥2
H3 + ∥

∥∂tv
∥
∥2
H1

)

dt

� C1M1

}

,

(2.37)
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where ρ is the positive lower bound of initial density profile as in (2.1), for
some positive constants C1 = C1(M0, μ, λ, ρ), C2 = C2(M0,C1M1). Notice,

for (σ, v) ∈ X,
∫ 1
0 divh (σ 2ṽ) dz = 0. Let (σ o, vo) ∈ X. The linear system inspired

by (1.20) with (σ o, vo) as an input is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tσ + vo · ∇hσ + 1

2
σdivh vo = 0 in �,

ρo∂tv + ρovo · ∇hv
o + σ oσ owo∂zv

o + 2γ (σ o)2γ−1∇hσ
o

= μ�hv + μ∂zzv + (μ + λ)∇hdivh v in �,

∂zσ = 0 in �,

(2.38)

where ρo = (σ o)2 and wo is determined, as in (1.15), by

σ owo := −
∫ z

0

(

σ odivh ṽo + 2ṽo · ∇hσ
o
)

dz. (2.39)

The initial and boundary conditions for system (2.38) are given by

(σ, v)|t=0 = (σ0, v0) = (ρ
1/2
0 , v0), ∂zv|z=0,1 = 0. (2.40)

Here, in addition to the compatible conditions in (1.18), we require ρ0 � ρ > 0

, for some positive constant ρ as in (2.1). Also, we denote by V1 := h1/ρ
1/2
0 .

Recall that h1 is given in (1.18). Then V1 ∈ L2(�) and we require
∥
∥σ0

∥
∥2
H2 �

M0,
∥
∥v0

∥
∥2
H2 + ∥

∥V1
∥
∥2
L2 � M1. Essentially V1 = vt |t=0.

Then the map T , in the case without gravity, is defined as

T : (σ o, vo) � (σ, v), (2.41)

where (σ, v) is the unique solution to (2.38) for given (σ o, vo) ∈ X.

Proposition 5. There is a Tv = Tv(M0, M1, μ, λ, ρ) > 0, sufficiently small, such
that for every T ∈ (0, Tv], there is a unique solution (σ, v) to (2.38) in the set
X = XT . Therefore, for such T , the map T defined in (2.41) is a well defined map
from X into X.

The proof is similar as Proposition 1 and Proposition 2 in section 2.1 and therefore
is omitted.

2.3. Existence Theory

In this subsection, wewill establish the existence of solutions for (1.1) and (1.2)
for given corresponding initial data and boundary conditions.
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2.3.1. The CaseWith Gravity and γ = 2, butWithout Vacuum Wewill apply
the Schauder-Tchonoff fixed point theorem to establish the existence of strong
solutions to (1.1). With Proposition 2, it is sufficient to verify that T , defined by
(2.10), is continuous inV = VT given in (2.3), where the norm is given by

∥
∥(ξ, v)

∥
∥
V

:=∥
∥ξ

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v

∥
∥
L2(0,T ;H1(�))

.
(2.4)

In order to show this, let M0 = Bg,1, M1 = Bg,2 in XT and T ∈ (0, Tg],
with Tg given in Proposition 2. Here Bg,1, Bg,2 are given in (1.11). We denote
(ξo1 , vo1), (ξ

o
2 , vo2) ∈ XT and

(ξ1, v1) = T (ξo1 , vo1), (ξ2, v2) = T (ξo1 , vo1).

Denote by ξ12 := ξ1 − ξ2, v12 := v1 − v2, ξ
o
12 := ξo1 − ξo2 , vo12 := vo1 − vo2 .

Then (ξ12, v12)|t=0 = 0. By taking the differences of the equations satisfied by
(ξi , vi ), i = 1, 2, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tξ12 + vo1 · ∇hξ12 + ξ12divh vo1 + vo12 · ∇hξ2 + ξ2divh vo12

+ g

2
zdivh vo12 = 0,

ρo
1∂tv12 − μ�hv12 − μ∂zzv12 − (μ + λ)∇hdivh v12 = −ξo12∂tv2

− ∇h(ξ
o
12(ρ

o
1 + ρo

2 )) − ξo12v
o
1 · ∇hv

o
1 − ρo

2v
o
12 · ∇hv

o
1

− ρo
2v

o
2 · ∇hv

o
12 − (ρo

1w
o
1 − ρo

2w
o
2)∂zv

o
1 − ρo

2w
o
2∂zv

o
12.

(2.42)

Now we perform standard L2 estimates for (2.42). Take the L2-inner product of
(2.42)1 with 2ξ12 and take the L2-inner product of (2.42)2 with 2v12. Then applying
similar estimates as before yields, together with the Grönwall inequality, that

sup
0�t�T

(
∥
∥ξ12(t)

∥
∥2
L2 + ∥

∥v12(t)
∥
∥2
L2) +

∫ T

0

∥
∥∇v12(t)

∥
∥2
L2 dt

� CM0,C1M1,C2,ρ

(

sup
0<t<T

(
∥
∥ξo12

∥
∥2
L2 + ∥

∥vo12

∥
∥2
L2) +

∫ T

0

∥
∥∇vo12

∥
∥2
L2 dt

)

.

(2.43)

This implies the continuity of T in V. Therefore, after applying the fixed point
theorem mentioned before, we have the following:

Proposition 6. Consider

(ρ0, v0) = (ξ0 + 1

2
gz, v0),

given in (1.9) satisfying (1.10) and (1.11). There is a positive constant T depending
on the initial data such that there is a strong solution (ρ, v) = (ξ + 1

2gz, v) to (1.1)
(or equivalently (1.5)) with the boundary conditions (1.3) and with (ξ, v) ∈ XT .
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2.3.2. The Case With Vacuum and γ > 1, but Without Gravity When ρ0 �
ρ > 0, the existence of strong solutions to (1.2) follows from the estimates in
section 2.2 and similar arguments to those in section 2.3.1. In fact, taking M0 =
B1, M1 = B2 + ρ−1B2, we have the following:

Proposition 7. Suppose that (1.17), (1.18), (1.19) hold for the given initial data
(1.16)withρ0 � ρ > 0. Then there is a positive constant T , depending on the initial
data and ρ, such that there exists a strong solution (ρ, v) = (σ 2, v) to (1.2) (or
equivalently (1.20)) satisfying the boundary conditions (1.3) and that (σ, v) ∈ XT .

In the following, we shall present some estimates independent of ρ and show
that for a given non-negative initial density ρ0 � 0, there are strong solutions to
equations (1.2). We will use here the notation σ 2 = ρ and the alternative form of
equations (1.20), as well as (1.2). Meanwhile, let us assume that

∥
∥σ0

∥
∥
H2 = ∥

∥ρ
1/2
0

∥
∥
H2 � K1,

∥
∥v0

∥
∥
H2 + ∥

∥h1
∥
∥
L2 � K2,

(2.44)

for given K1, K2 > 0. Recall essentially h1 = (σvt )|t=0 from (1.18). Also, taking
inner product of (1.2)2 with v yields, the conservation of physical energy

1

2

∫

�

ρ
∣
∣v

∣
∣2 d�x + 1

γ − 1

∫

�

ργ d�x +
∫ T

0

∫

�

(

μ
∣
∣∇v

∣
∣2 + (μ + λ)

∣
∣divh v

∣
∣2

)

d�x

= 1

2

∫

�

ρ0
∣
∣v0

∣
∣2 d�x + 1

γ − 1

∫

�

ρ
γ
0 d�x < ∞,

(2.45)

where (1.2)1 is also applied. Also, integrating (1.2)1 over � × (0, T ) yields the
conservation of total mass

0 <

∫

�

ρ d�x =
∫

�

ρ0 d�x = M < ∞. (2.46)

These facts are important when applying (1.22) in what follows.
A priori assumptions

Let (σ, v) be the solution to (1.20) given in Proposition 7. We assume first, for
some constants Cd � K 2

2 , Td (may depend on ρ),

sup
0�t�Td

(∥
∥v(t)

∥
∥2
H2 + ∥

∥σvt (t)
∥
∥2
L2

) +
∫ Td

0

(
∥
∥v

∥
∥2
H3 + ∥

∥vt
∥
∥2
H1

)

dt < Cd .

(2.47)

In what follows, we will derive some a priori estimates independent of ρ. Also,
we set T ∈ (0, Td ] to be determined later. We emphasize that the smallness of T
in what follows is independent of ρ.
ρ-independent lower bound: non-negativity of ρ

We will use the same Stampaccia-like argument as before to derive the lower
bound of ρ. Consider

η = η(x, y, t) := ρ

inf �xh∈�h ρ0(�xh) − 1 +
∫ t

0
2
∣
∣divh v(s)

∣
∣
L∞ ds, for t ∈ [0, Td ].
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Due to (1.12), η satisfies

∂tη + v · ∇hη + ηdivh v = (
∫ t

0
2
∣
∣divh v(s)

∣
∣
L∞ ds − 1

) × divh v

+ 2
∣
∣divh v(s)

∣
∣
L∞ � −2

∣
∣divh v

∣
∣ + 2

∣
∣divh v

∣
∣
L∞ � 0,

for every t ∈ [0, T ] with T ∈ (0, T1], and T1 sufficiently small such that

2
∫ t

0

∣
∣divh v(s)

∣
∣
L∞ ds � 2C

∫ t

0

∥
∥v(s)

∥
∥
H3 ds

� 2CT 1/2(
∫ t

0

∥
∥v(s)

∥
∥2
H3 ds

)1/2 � 2CC1/2
d T 1/2

1 � 1

2
.

Denote by η− := −η1{η<0} � 0. Then multiplying the above equation with
−1{η<0} and integrating the resultant in the spatial variable yield

d

dt

∫

�h

η− d�xh � 0.

Hence, η− = 0 in �h × (0, T ], since η−(0) ≡ 0. Therefore, η � 0 and

ρ = inf
�xh∈�h

ρ0(�xh) × (
η + 1 −

∫ t

0
2
∣
∣divh v(s)

∣
∣
L∞ ds

)

� inf
�xh∈�h

ρ0(�xh) × (
0 + 1 − 1

2

) = 1

2
inf

�xh∈�h

ρ0(�xh).
(2.48)

ρ-independent estimate: H2(�) for σ = ρ1/2

After performing standard H2 estimate of (1.14) and applying the Grönwall
inequality to the result, one has

sup
0�t�T

∥
∥σ(t)

∥
∥2
H2 � eC

∫ T
0

∥
∥v

∥
∥
H3 dt

∥
∥σ0

∥
∥2
H2 � eCC

1/2
d T 1/2

K 2
1 < 2K 2

1 , (2.49)

for all T ∈ (0, T2], provided T2 is sufficiently small.
ρ-independent estimate: H1(�) for σt

It directly follows from (1.14) that

∥
∥∂tσ(t)

∥
∥
H1 � C

∥
∥v(t)

∥
∥
H2

∥
∥σ(t)

∥
∥
H2 �

√
2CC1/2

d K1 =: K ′
3, (2.50)

for all t ∈ [0, T ].
ρ-independent estimate: L2(�) for vt

Taking the time derivative of (1.20)2 yields

σ 2∂tvt − μ�hvt − μ∂zzvt − (μ + λ)∇hdivh vt = −2σ∂tσ∂tv

− ∂t (σ
2v · ∇hv) − ∂t (σ

2w∂zv) − ∂t∇hσ
2γ .

(2.51)
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Taking the L2-inner product of (2.51) with ∂tv gives

1

2

d

dt

∥
∥σvt

∥
∥2
L2 + μ

∥
∥∇hvt

∥
∥2
L2 + μ

∥
∥∂zvt

∥
∥2
L2 + (μ + λ)

∥
∥divh vt

∥
∥2
L2

= −
∫

�

σ∂tσ
∣
∣vt

∣
∣2 d�x −

∫

�

∂t (σ
2v · ∇hv) · vt d�x

−
∫

�

∂t (σ
2w∂zv) · vt d�x +

∫

�

∂tσ
2γ divh vt d�x =:

4∑

i=1

Li . (2.52)

Then one has the following estimates to the terms in the right-hand side of (2.52)
(see [30] for details):

L1 �
∥
∥∂tσ

∥
∥
L2

∥
∥σvt

∥
∥
L3

∥
∥vt

∥
∥
L6 �

∥
∥∂tσ

∥
∥
L2

∥
∥σvt

∥
∥1/2
L2

∥
∥σ

∥
∥1/2
L∞

∥
∥vt

∥
∥3/2
L6

� δ
∥
∥∇vt

∥
∥2
L2 + CδCd(K

2
1K

′4
3 + 1).

L2 �
∥
∥∂tσ

∥
∥
L2

∥
∥v

∥
∥
L∞

∥
∥∇hv

∥
∥
L6

∥
∥σvt

∥
∥
L3 + ∥

∥σvt
∥
∥
L3

∥
∥∇hv

∥
∥
L6

∥
∥σvt

∥
∥
L2

+ ∥
∥σ

∥
∥
L∞

∥
∥v

∥
∥
L∞

∥
∥∇hvt

∥
∥
L2

∥
∥σvt

∥
∥
L2 � δ

∥
∥∇vt

∥
∥2
L2

+ Cδ(Cd + 1)(K 2
1Cd + K1K

′
3C

2
d + 1).

L4 �
∥
∥σ

∥
∥2γ−1
L∞

∥
∥∂tσ

∥
∥
L2

∥
∥∇vt

∥
∥
L2 � δ

∥
∥∇vt

∥
∥2
L2 + CδK

4γ−2
1 K ′2

3 .

We have applied above the Hölder inequality and (1.22). Notice that σ = ρ1/2 and
that the conservations of energy and mass (2.45), (2.46) hold. In order to estimate
L3 term, we substitute (1.13) and integrate by parts. Then

L3 = −
∫

�

∂t (ρw)∂zv · vt d�x −
∫

�

ρw∂zvt · vt d�x

= −
∫ 1

0

∫

�h

[(∫ z

0
(σ 2ṽ)t dz

′
)

· ∇h(∂zv · vt )

]

d�xh dz

+
∫ 1

0

∫

�h

[(∫ z

0
divh (σ 2ṽ) dz′

)

× (
∂zvt · vt

)
]

d�xh dz =: L ′
3 + L ′′

3.

Now we use (1.21), the Minkowski and Hölder inequalities,

L ′
3 = −

∫ 1

0

∫

�h

[(∫ z

0

(
σ ṽt + 2σt ṽ

)
dz′

)

· (∇h∂zv · σvt + σ∇hvt · ∂zv)

]

d�xh dz

�
∫ 1

0

(∣
∣σ ṽt

∣
∣
L2 + ∣

∣σt
∣
∣
L2

∣
∣̃v

∣
∣
L∞

)

dz′ ×
∫ 1

0

(
∣
∣σ

∣
∣
L∞

∣
∣∇h∂zv

∣
∣
L4

∣
∣vt

∣
∣
L4

+ ∣
∣σ

∣
∣
L∞

∣
∣∇hvt

∣
∣
L2

∣
∣∂zv

∣
∣
L∞

)

dz �
∫ 1

0

(
∣
∣σ ṽt

∣
∣
L2 + ∣

∣σt
∣
∣
L2

∣
∣̃v

∣
∣
H2

)

dz′

×
∫ 1

0

∣
∣σ

∣
∣
H2

∣
∣∂zv

∣
∣1/2
H1

∣
∣∂zv

∣
∣1/2
H2

∣
∣vt

∣
∣
H1 dz �

∥
∥σ

∥
∥
H2(

∥
∥σvt

∥
∥
L2

+ ∥
∥σt

∥
∥
L2

∥
∥v

∥
∥
H2)

∥
∥v

∥
∥1/2
H2

∥
∥v

∥
∥1/2
H3 (

∥
∥σvt

∥
∥
L2 + ∥

∥∇vt
∥
∥
L2)

� δ
∥
∥∇vt

∥
∥2
L2 + ω

∥
∥v

∥
∥2
H3 + Cδ,ωCd(K

4
1 (K ′4

3 + 1)C2
d + 1),
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and, similarly,

L ′′
3 � δ

∥
∥∇vt

∥
∥2
L2 + Cδ(K

10
1 C4

d + K 10/3
1 C2

d ).

After summing the above inequalities, (2.52) implies

d

dt

∥
∥σvt

∥
∥2
L2 + cμ,λ

∥
∥∇vt

∥
∥2
L2 � ω

∥
∥v

∥
∥2
H3 + CωH(K1, K

′
3,Cd), (2.53)

where, as before, H denotes a polynomial quantity of its arguments.
ρ-independent estimate: spatial derivatives of v

Nowwe are able to derive the estimates on the spatial derivatives of v. Standard
L2 estimate of (1.20)2 yields that

d

dt

∥
∥σv

∥
∥2
L2 + cμ,λ

∥
∥∇v

∥
∥2
L2 � C

∥
∥σ 2γ

∥
∥2
L2 � CH(K1). (2.54)

Furthermore, taking the L2-inner product of (1.20)2 with vt yields, after applying
similar estimates as before,

d

dt
(μ

∥
∥∇hv

∥
∥2
L2 + μ

∥
∥∂zv

∥
∥2
L2 + (μ + λ)

∥
∥divh v

∥
∥2
L2) + ∥

∥σvt
∥
∥2
L2

� H(K1,Cd).

(2.55)

Next we estimate the second order spatial derivatives. Taking the L2-inner product
of (1.20)2 with ∂zzvt yields

1

2

d

dt
(μ

∥
∥∇h∂zv

∥
∥2
L2 + μ

∥
∥∂zzv

∥
∥2
L2 + (μ + λ)

∥
∥divh ∂zv

∥
∥2
L2) + ∥

∥σ∂zvt
∥
∥2
L2

= −
∫

�

∂z(σ
2v · ∇hv) · ∂zvt d�x −

∫

�

∂z(σ
2w∂zv) · ∂zvt d�x =: L8 + L9.

(2.56)

At the same time, taking the L2-inner product of (1.20)2 with �hvt yields

1

2

d

dt
(μ

∥
∥∇2

hv
∥
∥2
L2 + μ

∥
∥∇h∂zv

∥
∥2
L2 + (μ + λ)

∥
∥∇hdivh v

∥
∥2
L2)

+ ∥
∥σ∇hvt

∥
∥2
L2 = −2

∫

�

(
σ∇hσ · ∇hvt

) · vt d�x

−
∫

�

∇h(σ
2v · ∇hv) : ∇hvt d�x −

∫

�

∇h(σ
2w∂zv) : ∇hvt d�x

−
∫

�

∇2
hσ

2γ : ∇hvt d�x =:
13∑

i=10

Li . (2.57)

Applying similar estimates as before to the right-hand sides of (2.56) and (2.57)
yields, after summing up the results,

d

dt
(μ

∥
∥∇2

hv
∥
∥2
L2 + 2μ

∥
∥∇h∂zv

∥
∥2
L2 + μ

∥
∥∂zzv

∥
∥2
L2

+ (μ + λ)
∥
∥∇divh v

∥
∥2
L2) + ∥

∥σ∇vt
∥
∥2
L2

� ω(
∥
∥∇vt

∥
∥2
L2 + ∥

∥v
∥
∥2
H3) + CωH(K1,Cd).

(2.58)
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Finally, we provide estimates for the third spatial derivative of v. Applying ∂ ∈
{∂x , ∂y, ∂z} to (1.20)2 yields

μ�h∂v + μ∂zz∂v + (μ + λ)∇hdivh ∂v = ∂(σ 2vt ) + ∂(σ 2v · ∇hv)

+ ∂(σ 2w∂zv) + ∂∇hσ
2γ .

(2.59)

Taking the L2-inner product of (2.59) with �h∂v, for ∂ ∈ {∂h, ∂z}, and integrating
by parts imply, after applying the Cauchy-Schwarz inequality,

∥
∥∇3v

∥
∥2
L2 �

∥
∥∇(σ 2vt )

∥
∥2
L2 + ∥

∥∇(σ 2v · ∇hv)
∥
∥2
L2 + ∥

∥∇(σ 2w∂zv)
∥
∥2
L2

+ ∥
∥∇2

hσ
2γ

∥
∥2
L2 . (2.60)

Then, similarly to (2.28), noticing the fact that w are given by (1.15), (2.60) yields
∥
∥v

∥
∥2
H3 �

∥
∥∇3v

∥
∥2
L2 + Cd � CK 4

1

∥
∥∇vt

∥
∥2
L2 + H(K1,Cd), (2.61)

where Cd is as in (2.47)
We summarize the estimates obtained, so far, in this section in the following:

Proposition 8. Consider the solution (σ, v) = (ρ1/2, v) to (1.2) with the bound
(2.47) and initial data satisfying (1.17), (2.44). There is a positive constant T ∗ =
T ∗(Cd , K1, K2), sufficiently small, such that (σ, v) admits the following bounds,
for T = min{T ∗, Td},

inf
(�x,t)∈�×[0,T ]

ρ(�x, t) � 1

2
inf
�x∈�

ρ0 > 0, sup
0�t�T

∥
∥σ(t)

∥
∥
H2 � 2K1,

sup
0�t�T

∥
∥∂tσ(t)

∥
∥
H1 � K3,

sup
0�t�T

(∥
∥v(t)

∥
∥2
H2 + ∥

∥(σvt )(t)
∥
∥2
L2

) +
∫ T

0

(
∥
∥v(t)

∥
∥2
H3 + ∥

∥vt (t)
∥
∥2
H1

)

dt � K 2
4 ,

where K4 = √
2Cμ,λK2, K3 = CK1K4 are given in (2.63) and (2.64). Notably,

the bounds in these estimates depend only on the initial bounds K1, K2 and do not
depend on the lower bound of density. Also, the smallness of T ∗ does not depend
on ρ, even though Td may depend on ρ.

Proof. Denote by

E(t) := ∥
∥σvt

∥
∥2
L2 + ∥

∥σv
∥
∥2
L2 + μ

∥
∥∇v

∥
∥2
L2 + (μ + λ)

∥
∥divh v

∥
∥2
L2

+ μ
∥
∥∇2

hv
∥
∥2
L2 + 2μ

∥
∥∇h∂zv

∥
∥2
L2 + μ

∥
∥∂zzv

∥
∥2
L2

+ (μ + λ)
∥
∥∇divh v

∥
∥2
L2 .

(2.62)

Then from (2.53), (2.54), (2.55) and (2.58), we have

d

dt
E(t) + cμ,λ

(∥
∥∇vt

∥
∥2
L2 + ∥

∥∇v
∥
∥2
L2 + ∥

∥σvt
∥
∥2
L2 + ∥

∥σ∇vt
∥
∥2
L2

)

� ω
(∥
∥v

∥
∥2
H3 + ∥

∥∇vt
∥
∥2
L2

) + CωH(K1, K
′
3,Cd).
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Then integrating the above inequality yields, for T ∈ (0, Td ], where Td is as in
(2.47),

sup
0�t�T

E(t) + cμ,λ

∫ T

0

(
∥
∥∇vt

∥
∥2
L2 + ∥

∥∇v
∥
∥2
L2 + ∥

∥σvt
∥
∥2
L2

+ ∥
∥σ∇vt

∥
∥2
L2

)

dt � E(0) + ωCd + CωTH(K1, K
′
3,Cd).

Then together with (2.61), we have, after choosing ω small enough and then T
sufficiently small,

sup
0�t�T

(∥
∥v(t)

∥
∥2
H2 + ∥

∥σvt (t)
∥
∥2
L2

) +
∫ T

0

(
∥
∥v

∥
∥2
H3 + ∥

∥vt
∥
∥2
H1

)

dt

� Cμ,λK
2
2 + ωCdCμ,λ(K

4
1 + 1) + CωTH(K1, K

′
3,Cd)

� 2Cμ,λK
2
2 =: K 2

4 ,

(2.63)

where we have employed inequality (1.22) and the fact for some positive constant
Cμ,λ > 0 we have

C−1
μ,λ(

∥
∥v

∥
∥2
H2 + ∥

∥σvt
∥
∥2
L2) � E(t) � Cμ,λ(

∥
∥v

∥
∥2
H2 + ∥

∥σvt
∥
∥2
L2).

Then plugging in (2.63) back into (2.50) implies
∥
∥∂tσ

∥
∥
H1 � CK4K1 =: K3. (2.64)

Thus the conclusion is drawn from (2.48), (2.49), (2.63) and (2.64). ��
Existence of strong solutions with vacuum but no gravity and γ > 1

Now we are in the place to remove the strict positivity (of the initial density
profile) assumption in Proposition 7. In order to do so, we introduce a sequence
of approximating initial data (ρ0,n, v0,n) satisfying, in addition to (1.17), (1.18),
(1.19),

ρ0,n � 1

n
> 0,

such that

ρ
1/2
0,n → ρ

1/2
0 , v0,n → v0

in H2(�), as n → ∞, where (ρ0, v0) (or equivalently (σ0, v0)) is given in (1.16)
satisfying (1.18) and (1.19).

We require that the initial physical energy and total mass given in (1.17) with
ρ0, v0 replaced by ρ0,n, v0,n satisfy

0 <

∫

�

ρ0,n d�x = M < ∞,

0 <

∫

�

ρ0,n
∣
∣v0,n

∣
∣2 d�x + 1

γ − 1

∫

�

ρ
γ
0,n d�x � E0 + 1 < ∞,
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uniformly in n, so that when we apply inequality (1.22), the constant in the inequal-
ity is independent of n.

Now we apply Proposition 7 with the initial data (ρ0,n, v0,n). Indeed, consider
M0 = B1, M1 = B2 + nB2. Then Proposition 7 guarantees that there is a T1 =
T1(n, B1, B2) such that (1.2) admits a strong solution (ρn, vn) = (σ 2

n , vn) satisfying

sup
0�t�T1

∥
∥σn(t)

∥
∥2
H2 � 2B1, sup

0�t�T1

∥
∥∂tσn(t)

∥
∥2
H1 � C1(B1, B2, n),

sup
0�t�T1

(∥
∥vn(t)

∥
∥2
H2 + ∥

∥∂tvn(t)
∥
∥2
L2

) +
∫ T1

0

(∥
∥vn(t)

∥
∥2
H3 + ∥

∥∂tvn(t)
∥
∥2
H1

)
dt

� C2(B1, B2, n), and ρn = σ 2
n � 1

2n
.

Sequently, we apply Proposition 8 with K1 = B1/2
1 , K2 = 2B1/2

2 , Cd = (1 +
2n)C2(B1, B2, n) and Td = T1. It yields that there is a T2 = T2(B1, B2, n) � T1
such that the following bounds are satisfied

sup
0�t�T2

∥
∥σn(t)

∥
∥
H2 � 2B1/2

1 , sup
0�t�T2

∥
∥∂tσn(t)

∥
∥
H1 � C3(B1, B2),

sup
0�t�T2

(∥
∥vn(t)

∥
∥2
H2 + ∥

∥(σnvn,t )(t)
∥
∥2
L2

)

+
∫ T2

0

(∥
∥vn(t)

∥
∥2
H3 + ∥

∥vn,t (t)
∥
∥2
H1

)
dt � C4(B1, B2),

and inf
(�x,t)∈�×[0,T2]

ρn � 1

2n
.

(2.65)

Next, let (σn, vn)|t=T2 as a new initial data for (1.2). The same arguments as
above yield the bound (2.65) with lower bound of ρn replaced by 1

4n , B1 replaced by
4B1 and B2 replaced by C4(B1, B2). That is, for some δT = δT (B1, B2, n) > 0,

inf
(�x,t)∈�×(T2,T2+δT )

ρn � 1

4n
, sup

T2<t<T2+δT

∥
∥σn(t)

∥
∥
H2 � 4B1/2

1 ,

sup
T2<t<T2+δT

∥
∥∂tσn(t)

∥
∥
H1 � C3(4B1, C4(B1, B2)),

sup
T2<t<T2+δT

(∥
∥vn(t)

∥
∥2
H2 + ∥

∥σnvn,t (t)
∥
∥2
L2

)

+
∫ T2+δT

T2

(
∥
∥vn(t)

∥
∥2
H3 + ∥

∥vn,t (t)
∥
∥2
H1

)

dt

� C4(4B1, C4(B1, B2)).

Now we apply Proposition 8 with Td = T2 + δT and Cd = C4(4B1, C4(B1, B2))

in the time interval (0, Td). This will yield that there is a T ∗ = T ∗(B1, B2) and
T3 := min{T ∗, T2 + δT }, the bounds in (2.65) hold with T2 replaced by T3.

If T3 = T ∗, we have got an existence time independent of n and this finishes
the job. Otherwise, let (σn, vn)|t=T3 as a new initial data and repeat the arguments
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above to get the bounds in (2.65) with T2 replaced by T4 := min{T ∗, T3 + δT } =
min{T ∗, T2 + 2δT }. Keep repeating this process, one will eventually get that there
is a m ∈ Z

+ sufficiently large that Tm := min{T ∗, T2 + (m − 2)δT } = T ∗.
Therefore, we have got a sequence of approximating solutions (ρn, vn) =

(σ 2
n , vn) with a uniform existence time T ∗ independent of n for the approximating

initial data (ρ0,n, v0,n) constructed above. In particular, (σn, vn) satisfies the bounds
in (2.65) with T2 replaced by T ∗. Thus by taking n → ∞, it is straightforward to
check that we have got a strong solution (ρ, v) = (σ 2, v) to (1.2). In fact, we have
the following:

Proposition 9. Consider the initial data (ρ0, v0) (or equivalently (σ0, v0)) given
in (1.16) satisfying (1.17), (1.18) and (1.19). There is a constant T ∗ > 0 such that
there exists a solution (ρ, v) = (σ 2, v) to equation (1.2) satisfying

σ ∈ L∞(0, T ∗; H2(�)), ∂tσ ∈ L∞(0, T ∗; H1(�)),

v ∈ L∞(0, T ∗; H2(�)) ∩ L2(0, T ∗; H3(�)), ∂tv ∈ L2(0, T ∗; H1(�))

σ∂tv ∈ L∞(0, T ∗; L2(�)),

(2.66)

and

sup
0�t�T ∗

∥
∥σ(t)

∥
∥
H2 � 2B1/2

1 , sup
0�t�T ∗

∥
∥∂tσ(t)

∥
∥
H1 � C3(B1, B2),

sup
0�t�T ∗

(∥
∥v(t)

∥
∥2
H2 + ∥

∥(σvt )(t)
∥
∥2
L2

) +
∫ T ∗

0

(∥
∥v(t)

∥
∥2
H3 + ∥

∥vt (t)
∥
∥2
H1

)
dt

� C4(B1, B2), and inf
(�x,t)∈�×[0,T ∗]

ρ � 0,

(2.67)

for some constant C3 = C3(B1, B2), C4 = C4(B1, B2).

3. Continuous Dependence on Initial Data and Uniqueness

In this section, we will show the continuous dependence of the solutions of
(1.1) and (1.2) on the initial data. This will also imply the uniqueness of strong
solutions constructed in Proposition 6 and Proposition 9.

3.1. The Case With Gravity and γ = 2, but Without Vacuum

Consider two sets of initial data (ρi,0, vi,0) = (ξi,0 + 1
2gz, vi,0), i = 1, 2, in

(1.9) for (1.1) satisfying (1.10), (1.11). Denote (ρi , vi ) = (ξi + 1
2gz, vi ), i = 1, 2,

as the corresponding strong solutions constructed in Proposition 6 in the interval
[0, T ] for some T > 0. Then we have (ξi , vi ) ∈ XT , i = 1, 2. Throughout this
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section we will denote the constant C > 0 which may be different from line to line
and depends on μ, λ, Bg,1, Bg,2, ρ, T . Also, we will use the notations

ξ12 := ξ1 − ξ2, v12 := v1 − v2,

ξ12,0 := ξ1,0 − ξ2,0, v12,0 := v1,0 − v2,0.

Taking the difference of the equations satisfied by (ξi , vi ), i = 1, 2, as in (2.42),
then (ξ12, v12) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tξ12 + v1 · ∇hξ12 + ξ12divh v1 + v12 · ∇hξ2 + ξ2divh v12

+ g

2
zdivh v12 = 0,

ρ1∂tv12 − μ�hv12 − μ∂zzv12 − (μ + λ)∇hdivh v12 = −ξ12∂tv2

− ∇h(ξ12(ρ1 + ρ2)) − ξ12v1 · ∇hv1 − ρ2v12 · ∇hv1

− ρ2v2 · ∇hv12 − (ρ1w1 − ρ2w2)∂zv1 − ρ2w2∂zv12.

Then after applying standard L2 estimates to the above system and applying the
Grönwall’s inequality to the resultant, one can show the following:

Proposition 10. Given two sets of initial data (ρi,0, vi,0) = (ξi,0 + 1
2gz, vi,0), i =

1, 2, satisfying (1.10) and (1.11), the corresponding strong solutions (ρi , vi ) =
(ξi + 1

2gz, vi ), i = 1, 2, of (1.1) constructed in Proposition 6 in the interval [0, T ],
for some T > 0, satisfy

∥
∥ρ1 − ρ2

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥v1 − v2

∥
∥
L∞(0,T ;L2(�))

+ ∥
∥∇(v1 − v2)

∥
∥
L2(0,T ;L2(�))

� Cμ,λ,Bg,1,Bg,2,ρ,T

× (
∥
∥ρ1,0 − ρ2,0

∥
∥
L2(�))

+ ∥
∥v1,0 − v2,0

∥
∥
L2(�))

).

In particular, if ρ1,0 = ρ2,0, v1,0 = v2,0, we have ρ1 = ρ2, v1 = v2 in [0, T ].

3.2. The Case With Vacuum and γ > 1, but Without Gravity

First, we claim that any solution (ρ, v) = (σ 2, v) to (1.2) satisfying (2.66) with
the bounds in (2.67) will also satisfy the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tσ + v · ∇hσ + 1

2
σdivh v = 0 in �,

σw = − ∫ z
0 σ d̃ivh v + 2ṽ · ∇hσ dz in �,

σ 2∂tv + σ 2v · ∇hv + σσw∂zv + ∇hσ
2γ

= μ�hv + μ∂zzv + (μ + λ)∇hdivh v in �,

∂zσ = 0 in �.

(1.2’)

To show this claim,wefirst consider the non-degenerate variableρ+ε = σ 2+ε,
for some constant ε > 0. From (1.12), one has

∂t (ρ + ε) + v · ∇h(ρ + ε) + (ρ + ε)divh v − εdivh v = 0.
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Then after dividing (ρ + ε)1/2, one has

2∂t (ρ + ε)1/2 + 2v · ∇h(ρ + ε)1/2 + (ρ + ε)1/2divh v

− ε

(ρ + ε)1/2
divh v = 0.

(3.1)

Now it is easy to verify that (3.1) will converge to (1.2’)1 in the sense of distribution,
as ε → 0. On the other hand, from (1.13), one has

σ 2w = −σ

∫ z

0

(
σ d̃ivh v + 2ṽ · ∇hσ

)
dz.

We define

σwσ := −
∫ z

0
σ d̃ivh v + 2ṽ · ∇hσ dz.

Then σσwσ = ρw and we will use hereafter the notation σw = σwσ . As before
it is easy to verify that (1.2’)3 is equivalent to (1.2’)2 in the sense of distribution.
Summing up the facts above, we have shown that the solutions to (1.2) satisfying
the (2.66) regularity with the bounds in (2.67) are also solutions to (1.2’).

Consider two sets of initial data (ρi,0, vi,0) = (σ 2
i,0, vi,0), i = 1, 2, in (1.16)

for (1.2) satisfying (1.18) and (1.19). Denote (ρi , vi ) = (σ 2
i , vi ), i = 1, 2, as the

corresponding strong solutions constructed in Proposition 9 in the interval [0, T ∗],
for some T ∗ > 0. Then we have (σi , vi ), i = 1, 2, satisfying the bounds in (2.67).
Also (σi , vi ), i = 1, 2, are solutions to (1.2’). Throughout this section, we will
denote the constant C > 0 which may be different from line to line and depends
on μ, λ, B1, B2, T ∗. Also, we will use the notations

σ12 := σ1 − σ2, v12 := v1 − v2,

σ12,0 := σ1,0 − σ2,0, v12,0 := v1,0 − v2,0.

Taking the difference of the equations satisfied by (σi , vi ), i = 1, 2, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tσ12 + v1 · ∇hσ12 + 1

2
σ12divh v1 + v12 · ∇hσ2

+ 1

2
σ2divh v12 = 0,

σ 2
1 ∂tv12 − μ�hv12 − μ∂zzv12 − (μ + λ)∇hdivh v12

= −σ12(σ1 + σ2)∂tv2 − ∇h
(
σ12

σ
2γ
1 − σ

2γ
2

σ1 − σ2

)

− σ12(σ1 + σ2)v2 · ∇hv2 − σ 2
1 v12 · ∇hv2

− σ 2
1 v1 · ∇hv12 − σ12σ2w2∂zv2 − σ1(σ1w1 − σ2w2)∂zv2

− σ1σ1w1∂zv12,

σiwi = − ∫ z
0

(
σi d̃ivh vi + 2ṽi · ∇hσi

)
dz, i = 1, 2.

(3.2)
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Then as before, one can derive

sup
0�t�T ∗

(∥
∥σ12(t)

∥
∥2
L2 + C ′

μ,λ

∥
∥(σ1v12)(t)

∥
∥2
L2

) +
∫ T ∗

0

∥
∥∇v12

∥
∥2
L2 dt

� C
(∥
∥σ12,0

∥
∥2
L2 + C ′

μ,λ

∥
∥σ1,0v12,0

∥
∥2
L2

)
� C

(∥
∥σ12,0

∥
∥2
L2 + ∥

∥v12,0
∥
∥2
L2

)
.

Therefore, after employing (1.22) and noticing the fact that we can interchange
(σ1, v1), (σ2, v2) in the previous arguments, we will have the following:

Proposition 11. Given two sets of initial data (ρi,0, vi,0) = (σ 2
i,0, vi,0), i = 1, 2,

for (1.2) satisfying (1.17), (1.18) and (1.19), the corresponding strong solutions
(ρi , vi ) = (σ 2

i , vi ), i = 1, 2, constructed in Proposition 9 in the interval [0, T ∗],
for some T ∗ > 0, satisfy

∥
∥σ1 − σ2

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥σ1(v1 − v2)

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥σ2(v1 − v2)

∥
∥
L∞(0,T ∗;L2(�))

+ ∥
∥v1 − v2

∥
∥
L2(0,T ∗;L2(�))

+ ∥
∥∇(v1 − v2)

∥
∥
L2(0,T ∗;L2(�))

� Cμ,λ,B1,B2,T ∗
(∥
∥σ1,0 − σ2,0

∥
∥
L2(�))

+ ∥
∥v1,0 − v2,0

∥
∥
L2(�))

)
.

In particular, if ρ1,0 = ρ2,0, v1,0 = v2,0, we have ρ1 = ρ2, v1 = v2 in [0, T ∗].

3.3. Proofs of the Main Theorems

Theorem 1 follows from Proposition 6 and Proposition 10. Theorem 2 follows
from Proposition 9 and Proposition 11.
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