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Abstract
Purpose Moyamoya syndrome (MMS) is a rare intracranial arterial vasculopathy which can occur in neurofibromatosis type 1
(NF1) disease, representing a cause of cerebrovascular reserve (CVR) impairment, possibly leading to ischemic stroke. Here, we
evaluated noninvasive imaging techniques used to assess CVR in MMS patients, describing clinical and imaging findings in
patients affected by MMS-NF1.
Methods Following strict inclusion and exclusion criteria, in this retrospective observational study, we evaluated imaging data of
nine consecutive MMS-NF1 patients (M/F = 5/4, mean age: 12.6 ± 4.0). Subjects underwent a multimodal evaluation of cerebral
vascular status, including intracranial arterial MR Angiography (MRA), MRI perfusion with dynamic susceptibility contrast
(DSC) technique, and 99mTc-hexamethylpropyleneamine oxime (HMPAO) SPECT.
Results In 8 out 9 patients (88.8%, 6/8 symptomatic), time-to-peak maps were correlated with the involved cerebral hemisphere,
while in 6 out 9 patients (66.6%, 5/6 symptomatic), mean transit time (MTT) maps showed correspondence with the affected
cerebrovascular territories. Cerebral blood flow (CBF) calculated using DSC perfusion failed to detect the hypoperfused regions
instead identified by SPECT-CBF in all patients, while MTT maps overlapped with SPECT-CBF data in all cases and time-to-
peak maps in 60.0%.
Conclusions Although SPECT imaging still represents the gold standard for CBF assessment, our results suggest that data
obtained using DSC perfusion technique, and in particularMTTmaps, might be a very useful and noninvasive tool for evaluating
hemodynamic status in MMS-NF1 patients.
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Introduction

Neurofibromatosis type 1 (NF1) is a multisystem autosomal
dominant disorder caused by mutations in the neurofibromin
tumor suppressor gene, mainly affecting eyes, skin, bones,
and central nervous system (CNS) [1, 2]. Cerebral arterial
involvement is a well-recognized feature of this condition,
mostly related to vessel stenosis (2.5–6% of cases) [3, 4],
although less frequent manifestations such as aneurysms or
artero-venous malformations and fistulas could be present in
this disease [2]. Indeed, the most frequent expression of vas-
cular involvement in NF1 patients is a progressive and signif-
icant arteriopathy similar to those observed in moyamoya
(MM) disease (MMD), regarded as MM syndrome (MMS)
[5]. These conditions share a similar diagnostic workflow,
clinical presentation, and outcome after surgical revasculari-
zation [6], with MMS being defined when MM occurs in
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association with a well-recognized condition (such as NF1),
while subjects without known associated risk factors are clas-
sified as MMD patients [5]. Nevertheless, both conditions are
characterized by a progressive intimal proliferation resulting
in luminal obstruction, mostly affecting the supraclinoid inter-
nal carotid arteries (ICAs) and the proximal segment of both
anterior and middle cerebral arteries (ACA, MCA). Similarly
to what described for MMD, in MMS, the development of
tortuous leptomeningeal collateral networks and compensato-
ry dilations of perforating arteries produces the typical angio-
graphic image of “puff of smoke” [7–9]. Despite digital sub-
traction angiography (DSA) is still considered the gold stan-
dard for diagnosis and presurgical evaluation of both MMD
and MMS, MR angiography (MRA) represents a valuable
diagnostic tool in these conditions [10]. Indeed, according to
the “Research Committee for the Diagnosis of MMD in
Japan” guidelines [10], cerebral DSA is not mandatory if
MRA demonstrates ICA or proximal ACA/MCA stenosis.
Moreover, abnormal vascular network with flow voids in the
basal ganglia and, especially, in the Sylvian fissures on T2-
weighted images strengthens the diagnosis of MMD and
MMS [11].

Although different grades of hemodynamic insufficiency
occur in these conditions, clinical symptoms might or might
not be present when diagnosis is reached [12]. Usually, the
initial manifestations are related to the occurrence of ischemic
events, often multiple and recurrent due to the development of
the steno-occlusive lesions hallmark of this condition [13].
Transient ischemic attacks have also been reported, especially
in pediatric population [14], while hemorrhagic events are
more common in adults [15]. Along with symptoms related
to the occurrence of ischemic events, patients can also present
with headache, which has been reported to be a common clin-
ical finding of this condition [16] that may improve after a
successful revascularization surgery [17]. For these reasons
and to avoid serious and invalidating complications, it is im-
portant to immediately recognize MMS. In this light, both
single-photon emission computed tomography (SPECT) with
acetazolamide challenge and positron emission tomography
(PET) examinations represent valuable tools to assess cerebro-
vascular reserve (CVR) and hemodynamic impairment inMM
patients, providing quantitative measures of different cerebral
perfusion variables [18, 19]. These include the relative cere-
bral blood flow and volume (rCBF and rCBV, respectively),
the oxygen extraction fraction (OEF) and the regional
cerebral metabolic rate for oxygen (rCMRO2), all pa-
rameters that help in selecting patients at higher risk
of stroke and therefore requiring a revascularization sur-
gery, given their association with severe hypoperfusion
and marked hemodynamic failure [20].

Nevertheless, these imaging procedures are known to be
relatively invasive, exposing young patients to ionizing radi-
ation. For this reason, in recent years, less invasive perfusion

techniques using MRI have been proposed, such as arterial
spin labeling (ASL), dynamic susceptibility contrast perfusion
weighted imaging (DSC-PWI), or CO2-triggered blood-
oxygen-level-dependent (BOLD) functional MRI, reported
to have a similar effectiveness to evaluate CVR in both
MMD andMMS patients [21, 22]. Indeed, it has been recently
reported that MR-derived perfusion parameters (namely, the
mean transit time (MTT)) negatively correlated with CVR
measured with SPECT and acetazolamide challenge in
MMD patients, suggesting that DSC-MRI may provide valu-
able information about the CVR in these patients [21].

Given this background, the aim of the study was to expand
the current knowledge about the evaluation of CVR in MMS-
NF1 patients, by (i) describing clinical and imaging findings
in subjects undergoing a multimodal imaging evaluation; (ii)
investigating a possible role of noninvasive imaging tech-
niques, such as DSC-PWI, in the evaluation of CVR in
MMS-NF1 patients; and (iii) comparing SPECT and MRI
derived cerebral perfusion parameters in a subgroup of
patients.

Material and methods

Participants

In this retrospective observational study, we reviewed data of
NF1 patients clinically evaluated between January 2007 and
December 2017 at two Referral Centers (University “Luigi
Vanvitelli,” Naples, Italy, and University “Federico II”,
Naples, Italy). Inclusion criteria were the following: diagnosis
of NF1 according to the recommendations of the National
Institutes of Health [23], availability of MRI acquisition, di-
agnosis of MMS suspected on the MRA data according to the
available guidelines [10], and availability of both MRA and
DSC-PWI sequences. On the other hand, subjects with the
presence of other neurological conditions extending beyond
the spectrum of NF1 or with significant artifacts on the neu-
roradiological images were excluded from this work.

The study was carried out in compliance with the Helsinki
Declaration, with all patients that provided a written consent
to execution of the imaging exams and for any clinical re-
search purposes. In case of subjects with less than 18 years,
the legal guardians provided the required written consent.

MRI data acquisition and processing

Brain MR scans were all performed on the same 1.5 T scanner
(Gyroscan Intera, Philips Medical System, Best, Netherlands)
at a single center. Along with clinical T1-weighted, T2-
weighted, fluid attenuated inversion recovery (FLAIR), and
diffusion weighted imaging (DWI) sequences, MR protocol
included a 3D time-of-flight (TOF) MRA for the study of the
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circle ofWillis (TR: 22 ms; TE: 7 ms; Flip Angle: 20°; matrix:
304 × 194; slice thickness: 1.4 mm) and a DSC-PWI sequence
(TR: 760 ms; TE: 30 ms; Flip Angle: 40°; matrix: 128 × 128;
slice thickness: 7 mm; 18 axial slices; 70 volumes; acquisition
time: 100 s; temporal resolution: 1.5 s). Before the DSC-PWI
sequence, a pre-bolus of 1 cc of Gd-DTPA (Gadobutrol,
Gadovist®, Bayer) was administrated to correct T1-
weighted leakage phenomenon. The DSC-PWI sequence
was obtained as follows: 9 dynamic series were acquired be-
fore injection, followed by 61 volumes after administration of
0.1 mmol/Kg of Gd-DTPA and a saline flush of 25 mL
(2.5 ml/s). DSC-PWI data were then processed offline using
Olea Sphere MR perfusion software program, v.3.0 (Olea
Medical, La Ciotat, France) with a Bayesian probabilistic
method, with automated multiple arterial input function
(AIF) selection, to obtain CBF, CBV, MTT, and TTP maps.

SPECT-CBF data acquisition and processing

Data of rCBF from SPECT acquisitions were obtained after
slow bolus intravenous injection of 51.8 MBq/Kg of 99mTc-
HMPAO (Ceretec®, Amersham, UK), according to the pro-
cedural guidelines of the European Association of Nuclear
Medicine [24]. The radiotracer was injected with the patient
lying in supine position with eyes closed in a dimly lit, quiet
room. Cerebral activity was recorded in step-and-shoot mode
using a dual-head gamma camera equipped with a general
purpose, low energy, parallel-hole collimator (E-cam,
Siemens Medical Systems). Images were acquired with a
128 × 128 matrix for 360 degrees evaluation with a circular
orbit. A total of 60 frames were taken at 6-degree intervals of
30 s for each with a total acquisition time of 30 min. The data
were reconstructed with filtered back projection using a
Butterworth filter (cutoff 1, order 10), and corrected for atten-
uation using Chang’s algorithm on transaxial images (attenu-
ation factor 0.120 cm−1). Coronal and sagittal slices were cal-
culated with the original transaxial images.

Image evaluation

To evaluate the ability of imaging techniques in the detection
of vascular alterations in MMS-NF1 patients, images were
analyzed as follows.

All MRI data were evaluated in consensus by two neuro-
radiologists with more than 8 and 20 years of experience in the
field of neuroimaging, blinded to the clinical and nuclear med-
icine findings, and were asked to establish and report which
cerebral artery was more affected by stenosis, also reporting
abnormal signal regions on perfusion maps.

Similarly, SPECT images were reviewed in consensus by
two experienced nuclear medicine physicians, also with more
than 5 and 25 years of experience in the field of neuroimaging,
blinded to the clinical diagnosis and MRI findings. Using the

cerebellum activity as the reference region for visual inspec-
tion, hypoperfused cortical structures were identified.

Finally, to evaluate the correlation between MRI and
SPECT data, the two most experienced neuroradiologist and
nuclear medicine physicians evaluated in consensus both im-
aging data.

Results

Following inclusion and exclusion criteria (Fig. 1), from data
available in a cohort of 620 NF1 patients, images of 9 subjects
were evaluated in this study (M/F = 5/4, mean age: 12.6 ±
4.0 years, age range: 7–21 years) (Table 1). Furthermore, a
SPECT-CBF scan, obtained within 3 months from the MRI,
was available in 5 out of 9 patients. Finally, 4 subjects
underwent a DSA before a surgical indirect revascularization
by encephalo-duro-arterio-myo-synangiosis (EDAMS)
procedure.

At the MRI examination, all patients (100.0%) showed the
presence of a vascular narrowing affecting either the ICA or
the MCA, while in 3 subjects (33.3%), an involvement of the
posterior circulation was also present. The presence of collat-
erals was found in 6 patients (66.7%), with an increase in
CBV values at the level of the subarachnoid spaces of the
ipsilateral stenotic artery that was found in 5/9 cases
(55.6%), due to vessel compensatory dilation phenomena.
On the other hand, in only 2/9 cases (22.2%), CBV
maps showed a significant signal reduction due to
chronic hypoperfusion, mainly associated to atrophy
and gliosis, while in 3/9 patients (33.3%), no significant
asymmetry was found on the CBV maps. Interestingly,
in one subject, a complex pattern of cerebral perfusion
was found, made of both increased and decreased signal
within the same hemisphere. While MRI-CBF was not
useful to detect hypoperfused regions, SPECT-CBF was
decreased on the same side of the affected vessel in 3/5
patients (60.0%). Finally, MTT maps overlapped with
the side of the affected cerebrovascular territory in 6/9
subjects (66.7%), while TTP maps were even more cor-
related with the affected side, showing a concordance in
8/9 of the cases (88.9%).

When SPECT imaging was performed, concordance of
both CBV and TTP measured with MRI was found in 3/5
cases (60.0%). Interestingly, among all the DSC-PWI vari-
ables, the one providing the highest concordance with
SPECT findings was the MTT, showing concordance in all
cases (5/5 patients, 100.0%).

Two examples of imaging findings are shown in Figs. 2
and 3, while a complete description of all clinical and imaging
subjects, with corresponding selected radiological features, is
available in Supplementary Materials.
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Discussion

In this case series, we report 9 NF1 patients with vascular
involvement undergoingMRI, MRA, and DSC-PWI, describ-
ing findings and correlations between these different parame-
ters and reporting two cases of NF1 patients with primitive
involvement of the vertebro-basilar system, a finding not de-
scribed yet in literature, to the best of our knowledge.
Furthermore, in 5 subjects, SPECT-CBF data were obtained,
andwe correlated cerebral perfusion parameters from different
imaging techniques, suggesting a possible role of DSC-PWI
and, in particular of MTT maps, in the radiological evaluation
of these patients.

In NF1 patients, MMS is usually characterized by unilater-
al stenosis of distal ICA and its branches, whereas progression
to bilateral involvement is reported in literature with a variable
incidence (10–100%) [25]. Although both the anterior and the
posterior circulations can be affected, the anterior system is
usually more frequently and precociously involved [26, 27].
MRI, with particular reference to MRA, is a useful and non-
invasive imaging technique that allows for the diagnosis and
the follow-up of MMS-NF1 patients [25]. In particular, sev-
eral authors have examined the accuracy of MRA in the eval-
uation of vascular involvement in NF1 patients, reporting a
sensitivity and specificity for ICA, ACA, and MCA stenosis
close to 100% [28].

In MM patients, dilation of compensatory pial and medul-
lary vessel anastomosis plays a critical role to compensate the
decreased brain perfusion pressure [29]. This phenomenon is

recognizable on MRI, corresponding to subarachnoid
hyperintensity on FLAIR images and leptomeningeal en-
hancement after gadolinium administration. These findings,
known as “ivy sign” and “medullary streaks,” respectively
[30, 31], positively correlate to the CVR reduction and to
the onset of ischemic symptoms [32]. In our sample, of the 3
patients with both “ivy sign” and “medullary streaks,” 2 sub-
jects showed clinical symptoms referable to cerebral hypoper-
fusion (patient #1, with migraine and dizziness, and patient
#9, with history of epilepsy and left hemiparesis), while pa-
tient #2, despite being clinically asymptomatic, already devel-
oped an ischemic stroke in the right caudate nucleus, ipsilat-
eral to the ivy sign and to the arterial stenosis.

Cerebral perfusion imaging is crucial in MM patients for the
evaluation of hemodynamic variations, before and after surgery
[33, 34]. Different MRI techniques can be used for the study of
cerebral perfusion, including ASL and DSC-PWI [35]. Despite
ASL represents a less invasive technique compared to DSC-
PWI, given the absence of contrast administration, it is known
to be limited by different factors. In particular, given that the
time between labeling in the feeding arteries and the arrival of
labeled blood in tissue (arterial transit time, ATT) have a sig-
nificant effect on theASL signal and inMMD, theATTmay be
prolonged, this could lead to a focal intravascular signal arti-
facts, with subsequent underestimation of CBF [36]. This lim-
itation, coupled to the notion that NF1 patients are usually
affected by CNS neoplasms requiring contrast administration
for a proper clinical evaluation, still limits the integration of
ALS in clinical practice, indirectly strengthening the role of

Fig. 1 The flow diagram showing patient selection
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Fig. 3 Imaging findings in patient #9. Occlusion of the right intracranial
ICA is evident on MRA (a). The right frontal lobe appears shrunken and
hyperintense on T2-weighted images (b–c), due to the chronic
hypoperfusion. Contrast-enhanced T1-weighted sequence shows
ipsilateral leptomeningeal enhancement and MM vessels (d). Reduction

of CBF (e) and CBV (f) of the right atrophic frontal lobe was observed,
with increase of the whole right hemisphere on TTP (g) and MTT (h)
maps. Please note the marked signal increase on the same maps among
the remaining right hemisphere

Fig. 2 Imaging findings in patient #1. FLAIR image (a) shows “ivy sign”
in the subarachnoid spaces of the left cerebral hemisphere (arrows) which
corresponds to linear enhancement on contrast enhanced T1-weighted
sequence (b). MR angiography maximum intensity projection (c)
showing left ICA occlusion (related to the presence of a trigeminal
neurofibroma infiltrating the cavernous sinus) and multiple MM stenoses
on the right distal ICA, A1 segments, and left P3 and P4 segments.

Multiple thin collaterals were observed in the right sylvian fissure and
in the quadrigeminal cistern (arrows on d). On DSC-PWI, CBF (e) is
symmetric, while CBV (f) and TTP (g) maps show an increase in the left
hemisphere. TTP (g), with an increase in MTT (H) at the level of the left
parietal lobe. Finally, SPECT demonstrates left cerebral hemisphere
hypoperfusion (I)
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DSC-PWI as a noninvasive technique to evaluate cerebral per-
fusion in NF1 patients.

When we evaluated the possible correlation between cere-
bral perfusion data as measured by SPECT and MRI, we
found that MRI-CBF was not useful to detect hypoperfused
regions which were conversely identified by SPECT-CBF in 3
of 5 patients (60%). This discrepant result is in line with some
[37] but not all [38] the previous studies that investigated the
relationship between CBF measured by the two different im-
aging techniques. A possible explanation to this discrepancy
could be researched in the different methodological principles
underlying CBF measurements. In particular, while SPECT
uses a lipophilic tracer to assess CBF which crosses the
brain-blood barrier and permeate into the brain [39], gadolin-
ium used in PWI-MRI is confined in cerebral vessels [40].
Given that the presence of collaterals introduces a well-
known delay and dispersion of the contrast agent bolus in
DSC-PWI, their presence introduce an underestimation of
CBF (sometimes reported as reaching almost 40%), making
this perfusion map less accurate [41].

In our cases, CBVwas increased ipsilaterally to the occlud-
ed vessels in 5 patients (55%), in agreement with the previous
reports [42–44]. Arterial dilation, secondary to cerebral hypo-
perfusion, represents the compensatory mechanism underly-
ing the high signal observable in the cerebral subarachnoid
spaces in MM patients. The discrepancy in subjects with pre-
served CBF, but increased CBV, may be explained by the
presence of an early stage cerebral hemodynamic failure
[45]. Indeed, when arterial stenosis reduces cerebral perfusion
pressure, cerebral arterioles dilate to maintain CBF, leading to
an increase in CBV with a preserved CBF. With further re-
duction in cerebral perfusion pressure, arterioles reach the
maximum dilatation, and therefore, the CBV stop increasing
and a decrease in CBF happens [45]. It has been suggested an
inverse correlation between MTT and CVR as measured via
SPECT with acetazolamide challenge [20], thus representing
a noninvasive method to evaluate CVR. In this light, although
being limited by a small number of samples, our results partly
resemble those available in literature, with MTT maps corre-
lating with SPECT data in all cases. As previously reported
[46], these results suggest that MTT is sensitive to cerebral
hemodynamic alterations, with its increase that have a signif-
icant reliability in the detection of CVR impairment.

Different limitations should be taken into account in
this study, mainly related to the small sample size of
our population. In particular, although some results are
potentially interesting (namely, the correlation between
MTT maps and SPECT data), we are aware that these
findings are reported in a very small group of patients,
that did not even allow for a proper statistical analysis.
For this reason, future prospective studies, conducted on
larger and heterogeneous populations, are strongly rec-
ommended, to further confirm our results.

Nevertheless, our results suggest that DSC-PWI could rep-
resent a useful noninvasive technique to evaluate hemody-
namic impairment in MMS-NF1 patients. In particular, MTT
maps have demonstrated a very good overlap with the CBF as
measured using SPECT, thus encouraging for further studies
to confirm a possible role of this perfusion parameter in the
radiological evaluation of these patients.
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