
The effect of consecutive ambient air pollution on the hospital
admission from chronic obstructive pulmonary disease
in the Chengdu region, China

Yi Zhang1,2
& Ziyue Wang1,2

& Yu Cao1,2
& Lifu Zhang1,2

& GuanWang1,2
& Fangjie Dong3

& Ren Deng4
& Baogen Guo5

&

Li Zeng6
& Peng Wang7

& Ruimei Dai8 & Yu Ran1,2
& Wenyi Lyu1,2

& Peiwen Miao9
& Steven Su10

Received: 26 October 2020 /Accepted: 11 February 2021
# The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Hospitalisation risks for chronic obstructive pulmonary disease (COPD) have been attributed to ambient air pollution worldwide.
However, a rise in COPD hospitalisations may indicate a considerable increase in fatality rate in public health. The current study
focuses on the association between consecutive ambient air pollution (CAAP) and COPD hospitalisation to offer predictable
early guidance towards estimates of COPD hospital admissions in the event of consecutive exposure to air pollution. Big data
analytics were collected from 3-year time series recordings (from 2015 to 2017) of both air data and COPD hospitalisation data in
the Chengdu region in China. Based on the combined effects of CAAP and unit increase in air pollutant concentrations, a quasi-
Poisson regression model was established, which revealed the association between CAAP and estimated COPD admissions. The
results show the dynamics and outbreaks in the variations in COPD admissions in response to CAAP. Cross-validation and mean
squared error (MSE) are applied to validate the goodness of fit. In both short-term and long-term air pollution exposures, Z test
outcomes show that the COPD hospitalisation risk is greater for men than for women; similarly, the occurrence of COPD hospital
admissions in the group of elderly people (> 65 years old) is significantly larger than that in lower age groups. The time lag
between the air quality and COPD hospitalisation is also investigated, and a peak of COPD hospitalisation risk is found to lag 2
days for air quality index (AQI) and PM10, and 1 day for PM2.5. The big data-based predictive paradigm would be a measure for
the early detection of a public health event in post-COVID-19. The study findings can also provide guidance for COPD
admissions in the event of consecutive exposure to air pollution in the Chengdu region.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is one of the
most common chronic respiratory diseases (CRDs) that gener-
ally cause limitations in lung airflow (Sadatsafavi and Sin
2015). The progression of COPD is the major burden of mor-
bidity, disability, and premature mortality for public health
worldwide (Thom 1989; Mannino and Buist 2007; Yin et al.
2016). The WHO has shown that approximately 91% of the
total world’s population lives in places where the air pollutant
level exceeds the threshold of ambient air pollution limits and
suffers from a threat to respiratory health (Chen et al. 2013).
Microscopic pollutants mostly formed by fossil fuel combus-
tion are key factors associated with respiratory diseases, partic-
ularly with COPD. Specifically, PM2.5 with an aerodynamic
diameter between 2.5 and 2.8 microns is confirmed as a cause
of COPD (González et al. 2019). The WHO estimates that in
2016, exposure to PM2.5 causes 4.2 million premature deaths
worldwide (91% of which occur in low- and middle-income
countries), while 18% of mortality is due to COPD and acute
lower respiratory infections (Sadatsafavi and Sin 2015; Chen
et al. 2013; Sin et al. 2006). Current studies on air pollution-
related COPD are often analysed based on the recorded data of
hospital admissions, which can effectively present the temporal
information from exposure to air pollution to a clinical presen-
tation of COPD (Qiu et al. 2019; Zhu et al. 2019; Qiu et al.
2018; Lin et al. 2018; Qiu et al. 2013; Bai et al. 2019).
However, little studies related to the consecutive effect of am-
bient air pollution on COPD hospitalisations have been ad-
dressed. More importantly,WHO has identified that respiratory
health is correlated with short- or long-term exposure to air
pollutants (Peng et al. 2020; Sun et al. 2018).

According to WHO reports in 2016, the annual mean par-
ticulate matter concentration of the largest cities has exceeded
10 μg/m3 (WHO air quality guideline) and had a more than
5% annual increase during 1998–2012 (Chen et al. 2013;
Organization WH 2016). For instance, Chengdu had heavy
PM2.5 pollution (> 35 μg/m3) from 1998 to 2012 (Han et al.
2015). In the post-COVID-19 era, public health is the priority
of both the public and governments around the world, and
therefore, the predictive early guidance for the underlying
hospitalisation burden is required in current hospital systems
to reasonably allocate medical resources before any public
events occur (Fang et al. 2011; Halpern et al. 2003).

Most current studies only investigated non-consecutive fac-
tors (e.g., ambient air pollutant concentrations (Jo et al. 2018;
Halonen et al. 2008; Peacock et al. 2011), sociodemographic
characteristics (Schikowski et al. 2014a; Çiftçi et al. 2014;
Lindberg et al. 2006), and climate environment (Qiu et al.

2013; Krahnke et al. 2013; Hoffmann et al. 2018)). On the other
hand, studies that examined the effects of long-term exposure to
air pollution have been focusing on the mean concentration of
air pollutants over the course of several years. Their findings
cannot provide effective guidance to predict the association
between periodic Consecutive Ambient Air Pollution (CAAP)
and COPD hospitalisations. The effects of continuous exposure
to air pollution in relation to the increase in COPD-related
hospital admissions have not been well investigated.
Moreover, since cross-regional differences exist in COPD-
related hospital admissions, big data analytics derived from a
single regional population are necessary to estimate COPD
hospitalisations under specific CAAP conditions. In the present
study, a Chengdu-based time series analysis is employed to
examine COPD hospital admissions in relation to daily
CAAP. As reported by (Ning et al. 2019; Qiao et al. 2015;
Zhang et al. 2020), because of its low-lying basin topography,
Chengdu is especially susceptible to the risk of the consecu-
tiveness of ambient air pollution. Based on our preliminary
studies (Zhang et al. 2020), CAAP was confirmed as an inde-
pendent key variable for the hospital admission of COPD in the
Chengdu region China. Following this idea, the effect of CAAP
on the hospital admission from COPD will be modelled and
estimated in this study.

Methods

Study sites

In urban districts of Chengdu city, air pollutant monitoring
stations were located at 8 meteorological observatories for
the real-time availability of ambient air pollutant measure-
ments. Medical Record Homepage (MRH) data across 936
public hospitals in Chengdu were used in the analysis.
Notably, the study sites were located not only in the main
urban area of Chengdu but also in the surrounding jurisdic-
tions. With a special concern of MRH data ethics, all per-
sonal privacy information (e.g., name, ID, and hospital
name) has been removed from the study. COPD admission
data were excluded from the current study if either
International Classification of Diseases (ICD) codes or the
diagnosis date in the diagnosis report is not properly en-
tered. Such air pollutant concentration data was excluded
if it is less than 25% of interquartile range (IQR) or more
than 75% of IQR. Figure 1 shows the locations and num-
bers of air pollutant monitoring stations and hospitals in the
Chengdu region.
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Data collection

The primary diagnosis of COPDwas individually recorded on
the MRH online system. All hospitals are obligated to upload
MRH data periodically to the Health and Family Planning
Commission of Chengdu. The University of Electronic
Science and Technology of China (UESTC) and its owned
enterprise, Chengdu UESTC Goldisc Multimedia
Technology Co., Ltd., were approved for the use of data.
From the 3-year database records (2015–2017), a total of
111,740 COPD admissions were authorized for the use of this
study. The hospital admissions for COPD diseases included
COPD with acute lower respiratory tract infection (J44.0),
COPD with acute exacerbation (J44.1), other specified
COPD (J44.8), chronic bronchitis with emphysema
(J44.801, J44.803), chronic asthmatic bronchitis (J44.802,
J44.804), chronic bronchiolitis (J44.805), chronic obstructive
bronchitis (J44.806), and unspecified COPD (J44.9). For each
admission, the date of admission, the primary diagnosis (ICD-
10 codes and texts), gender, and age were extracted for the
study.

The air quality data in which the AQI index exceeds 100,
referred to as AQI level 3 in Ambient Air Quality Standard of
China 2012 (AAQSC-2012), are labelled as the air-polluted
data and extracted for the big data-related analyses. CAAP is
defined as such circumstance where an AQI index is

consecutively more than 100 in the number of days
(Table 1). Then, the CAAP data of different durations were
integrally saved as time series data. These data included the
pollutant concentrations for PM2.5, PM10, SO2, NO2, CO, O3,
and AQI. The ambient air quality data in the region of
Chengdu were acquired from a publicly accessible web
source, namely, the China National Environmental
Monitoring Center (http://www.cnemc.cn/).

The consecutive polluted dates and data across all 3-year
air quality data were manually extracted. The COPD admis-
sion data were divided into two conditions, air-polluted and
non-air-polluted admissions. In each calendar year, the annual
mean of COPD admissions of non-air-polluted days was set as
a reference level in case of any cross-year errors. Then, based
on the annual time series, the lag of the appearance of COPD
admission in response to the corresponding air-polluted time
series was estimated. For instance, a lag of 2 days means that
the COPD data paired with the CAAP-based air data is select-
ed by 2 days after the first consecutive air-polluted day.

To investigate the subgroup robustness, data from con-
tinuous exposure to pollution were divided into short-term
(2–9 days) and long-term (more than 10 days) air pollution
exposures. Both short-term and long-term effects were
analysed based on age (0–65 years, and > 65 years) and
gender (male and female). The Z test was applied to provide
statistical significance in subgroup analyses.

Fig. 1 The locations and numbers of air pollutant monitoring stations and
public hospitals in Chengdu. The red star indicates 8 real-time monitoring
stations in meteorological observatories, i.e., Sanwa Kiln, Shilidian,
Junping Street, Liangjiaxiang, Shahepu, Lingyan Temple, Caotang

Temple, and Jinquan Lianghe. The colour bar represents the number of
public hospitals in CBD, suburbs, and townships in Chengdu (Zhang
et al. 2020).
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Statistical analysis

The Poisson distribution test was used to estimate a series of
COPD time series and found an over-dispersed Poisson dis-
tribution across the extracted CAAP-based COPD samples.
First, a basic model was built by fitting quasi-Poisson regres-
sion in the generalized additive model (GAM) with basic at-
tributable factors, that is, calendar time (CT), day-of-week
(DoW), and public holiday (PH). The optimization procedure
in GAM was taken based on the back-fitting algorithm
(Dominici et al. 2002; Stieb et al. 2003). The base model
can be expressed as:

log E Y tð Þ½ � ¼ αþ ns CT; df ¼ 7

year

� �
þ DoWþ PH ð1Þ

where E(Yt) represents daily COPD hospital admissions
on day t, α is the intercept, ns(·) is the natural cubic spline
function, and df is the degree of freedom. Since the quan-
tity of AQI values was assumed as a threshold to discrim-
inate if the daily ambient air condition was polluted
(Table 1), we applied the Spearman correlation test to
assess the correlation between AQI and other air pollutant
concentrations (PM2.5, PM10, SO2, NO2, CO, and O3).
The air pollutants that are significantly correlated with
the AQI will be considered as the individual attributable
factors. The effects caused by the individual attributable
factors can be depicted as:

log E Y tð Þ½ � ¼ αþ β Ct−ið Þ þ ns CT; df ¼ 7

year

� �
þ DoWþ PH

ð2Þ

where β(·) is the log relative risk of COPD hospital admis-
sions associated with a unit increase in the concentration of
ambient air pollutant (Ct − i), and i is the lag in days. With an i-
lag day pattern, the COPD data of the candidate day paired
with one day’s air pollutant concentration data lagged i days
behind the day of the air pollutant concentration data. Based
on Eq. (2), the joint effect between consecutive air-polluted
days (Dt − i) and a unit increase of Ct − i was added, which can
be described as:

log E Y tð Þ½ � ¼ αþ γ Ct−i;Dt−ið Þ þ ns CT ; df ¼ 7

year

� �
þ DoWþ PH

ð3Þ

where γ(·) is the log relative risk of COPD hospital admis-
sions when a unit increase of Ct − i and Dt − i are interactively
affected. By solving Eq. (3), the COPD morbidity burden can
be estimated by:

HAt ¼ N � exp ξ �ΔCt−ið Þ−1½ � ð4Þ

where HAt is the number of COPD hospital admissions attrib-
uted to bothCt − i andDt − i,N is the reported number of COPD
admissions in 2015–2017 Chengdu, ξ is the model coefficient
on joint effect estimated from Eq. (3), and ΔCt − i is the con-
centration difference between the actual concentration and
annual mean concentration on day t-i. Based on Eq. (4), addi-
tional analyses for sex, age, and day lag pattern were also
conducted.

Regarding the extracted consecutive air-polluted data,
PM2.5 and PM10 were correlated to the AQI (Spearman
correlation coefficient above 0.7, shown in Table 4).
However, other air pollutants (SO2, NO2, CO, and O3) were
not attributable to the AQI and did not attain the pollution
level defined in AAQSC-2012. Thus, the single-pollutant
model was fitted merely with adjustment for AQI, PM2.5,
and PM10.

The quasi-Poisson regression was used to obtain
Chengdu-specific estimates. All statistical analyses were
conducted in R software (version 3.2.2, R Development
Core Team, Vienna, Austria). The outlier was replaced by
the closest value among the maximum, minimum, median,
and 75th and 25th percentiles. The results were reported as
percentage changes with 95% confidence intervals in daily
hospital admissions to an incremental increase in AQI,
PM2.5, and PM10 concentrations.

In this study, the 3-year data on air pollutant concen-
trations and COPD hospitalisations from 2015 to 2017
we r e u s ed . Bo t h a i r qu a l i t y d a t a and COPD
hospitalisation data under CAAP were identified and la-
belled (Siddiqi and Chong-Xian 1984). All indices of am-
bient air pollutant concentrations (i.e., PM2.5, PM10, sul-
fur dioxide (SO2), nitrogen dioxide (NO2), carbon mon-
oxide (CO), ozone (O3), and AQI) were statistically
analysed. Spearman correlations in various consecutive
air pollution durations were also provided. A quasi-
Poisson regression model was used to estimate COPD
admissions in terms of consecutive air-polluted days, air
pollutant concentrations, calendar time, and day of week.
The age, gender, and lag effects on COPD hospitalisations
under CAAP were estimated for the specific Chengdu
region.

Results

Table 1 shows the Chinese technical regulation on ambient air
quality complied by AAQSC-2012, which has been adopted
in the selection criteria of CAAP in this study design. Table 2
shows the quantities and percentages of the gender, age,
number of days when air pollutant levels exceeded the pol-
luted levels for each air pollutant, and category of COPD. A
total of 65,104 patients were male, and 41.74% were fe-
male. Elderly individuals comprised the main group, and
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81.65% of patients were aged above 65 years old. In total,
303 days were classified as air-polluted in the 3-year data-
base, in which PM2.5 exceeded the polluted level for 245
days and PM10 exceeded the corresponding index for 175
days. In terms of the categories of COPD, COPD with acute
exacerbation (J44.1) constituted 64.98% of all COPD
hospitalisations, followed by chronic obstructive emphyse-
ma bronchitis with acute exacerbation (J44.101), which
constituted 16.04%.

Table 3 shows the results of descriptive statistics for the
concentration of ambient air pollutants and COPD

hospitalisations. Notably, both the median concentration
and the mean concentration of AQI, PM2.5, and PM10

exceeded the criteria defined in AAQSC-2012 (100, 75
μg/m3, 150 μg/m3, respectively); thus, PM2.5 and PM10

were considered the main contributors to ambient air pol-
lution. COPD with acute exacerbation (J44.1) was by an
interquartile range of 162 more prevalent than the other
specific COPDs, indicating an acute reaction to exposure
to ambient air pollution (Marsh et al. 2008).

Table 4 shows the results of the correlation analysis for
concentrations of ambient air pollutants with each other

Table 2 Statistical results of gender, age, air pollutant concentrations, and cause-specific COPDs with ambient air pollution conditions based on the
total 3-year (2015–2017) air data and hospital admission data recordings in Chengdu

Category Quantities Percentage in the total
three-year dataset (%)

Category** Quantities Percentage in the
total three-year dataset (%)

Gender Male 65104 58.26 J44.0 4019 3.60

Female 46636 41.74 J44.1 72609 64.98

Age (years old) < 44 686 0.61 J44.101 17924 16.04

45–64 19819 17.74 J44.8 182 0.16

≥ 65 91235 81.65 J44.801 and J44.803 5204 4.66

Days of air pollutant concentrations
exceed the polluted level*

AQI 303 27.67 J44.802 and J44.804 2431 2.18

NO2 (ug/m
3) 52 4.75 J44.805 179 0.16

PM2.5

(ug/m3)
245 22.37 J44.806 273 0.24

PM10 (ug/m
3) 175 15.98 J44.9 8919 7.98

SO2 (ug/m
3) 0 0 - - -

CO (ug/m3) 0 0 - - -

*The statistical results were calculated by averaging the daily ambient air pollutant concentration data reached AQI level 3 referred to Table 1

**The cause-specific COPD codes refer to the ICD code released in 2013

Table 1 Technical regulation on ambient air quality (#HJ633-2012) followed by AAQSC-2012 and implemented from January 1, 2016

AQI AQI
level

Pollution
level

Health impact Suggestions and measures

0~50 1 Good None of health implications Normal outdoor activities

51~100 2 Moderate Air quality is acceptable, but may have weak
health impacts for allergic people

Outdoor activities should be limited for the small groups of allergic
people

101~150 3 Lightly
polluted

Mild exacerbation and irritating symptoms are
occurred in susceptible and healthy people,
respectively

Children, elders, and patients who suffer from heart or respiratory
problems should reduce long-time, high-intensity outdoor
activities

151~200 4 Moderately
polluted

Further exacerbated in susceptible groups, and
may influence the cardiorespiratory system of
healthy people

Children, elders, and patients who suffer from heart or respiratory
problems should avoid long-time, high-intensity outdoor
activities; moderate reductions of outdoor activities for normal
people

200~300 5 Heavily
polluted

Symptoms for cardiorespiratory patients are
significantly exacerbated, and commonly
appeared in healthy people

Children, elders, and patients who suffer from heart or respiratory
problems should stay at an indoor environment, and stop
outdoor activities; normal people reduce outdoor activities

> 300 6 Severely
polluted

Healthy people have strong symptoms and
decrease exercise tolerance; earlier appearance
for underlying diseases

Children, elders, and patients who suffer from heart or respiratory
problems should stay at an indoor environment and avoid
physical activities; normal people avoid outdoor activities
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when the air was deemed polluted on 2 or more consecutive
days. A significant positive correlation was confirmed in
PM2.5, PM10, NO2, SO2, CO with AQI in the short-term
pollution (less than 9 days), and PM2.5, PM10, NO2, CO
with AQI in the long-term pollution (more than 9 days).
Among these, it was notable that PM2.5 and PM10 were
strongly positively correlated with the AQI variable in both
short-term and long-term polluted effects.

Figure 2 shows the daily estimates of COPD hospital
admissions in response to consecutive days of ambient air
pollution with a 2-day lag using the joint model illustrated
in Eq. 3. Compared with estimated admissions in the first
outbreak (present on the second day), those in the second
outbreak (presented on the 13th–19th, 9th–17th day, and

14th–28th days for PM2.5, PM10, and AQI, respectively)
were much higher than the reference level (black horizontal
line).

The ten cross-validations were performed to verify the
goodness of fit and accuracy of the quasi-Poisson regression
model (Eq. 3). In each repetition, a third of the data were
randomly chosen to train the model, and the remaining data
were used to test the model. The ten cross-validation results
(Table 5) showed that the mean squared errors (MSEs) for
AQI, PM2.5, and PM10 in the mean of repetitions were 0.06,
0.04, and 0.03, respectively. Figure 3 indicates the real COPD
admission records (red) and the estimated COPD admissions
(blue) derived from the quasi-Poisson regression model with
CAAP illustrated in Eq. 3.

Figure 4 shows the estimated changes over 95% confi-
dence intervals in percentage deviations (%) of daily COPD
admissions associated with 10-unit concentration increase of
individual variables (PM2.5, PM10, and AQI) in short-term and
long-term durations. The results by age group varied for dif-
ferent conditions. The short-term consecutive pollution signif-
icantly caused higher estimated changes than the long-term
effect for both of two-age groups in the PM2.5 model (0–65
years old: 3.84% (95% CI: 2.65%, 5.03%) vs. 3.64% (95%
CI: 2.15%, 5.13%), above 65 years old: 4.64% (95% CI:
3.84%, 5.44%) vs. 4.30% (95% CI: 3.32%, 5.28%)).
However, the long-term effects in PM10 and AQI (0–65 years
old: 2.57% (95% CI: 1.31%, 3.83%) and 4.06% (95% CI:
2.74%, 5.38%), above 65 years old: 2.82% (95% CI: 1.94%,
3.70%) and 4.70% (95% CI: 3.62%, 5.78%)) were

Table 4 Spearman correlation analysis across key ambient air
pollutants in terms of short- and long-term effects of CAAP

Variables CAAP durative days

Short-term (2~9 days) Long-term (10~28 days)

PM2.5 and AQI 0.876** 0.848**

PM10 and AQI 0.869** 0.835**

NO2 and AQI 0.436** 0.369**

SO2 and AQI 0.266** − 0.116

CO and AQI 0.684** 0.437**

O3 and AQI − 0.316** − 0.208

**p < 0.01

Fig. 2 Estimates of changes in COPD admissions in response to CAAP
days. The percentage change (%) in daily hospitalisation was calculated
by dividing the number of COPD admissions on certain CAAP day by the

number of COPD admissions on the first CAAP day. For instance, the
percentage change in the 10th CAAP day was a ratio of the number of
admissions on the 10th CAAP day over that on the first CAAP day
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significantly greater than the short-term effect (0–65 years old:
2.53% (95% CI: 1.34%, 3.72%) and 3.92% (95% CI: 2.60%,
5.24%), above 65 years old: 2.76% (95% CI: 2.00%, 3.53%)
and 4.17% (95% CI: 3.18%, 5.15%)). Similar trends can be
found in the estimates between male and female groups. In
PM2.5 estimates, the short-term effects in both males and fe-
males were higher long-term effects. Due to the influence of
PM10, the AQI in short-term pollution is lower than that in
long-term pollution. In addition, the results of the Z test
showed that different age and gender groups have significant
differences in most instances.

Figure 5 shows the average estimates of the association
between individual variables and COPD admissions on differ-
ent day lags. The observed results indicated a similar lag pat-
tern in PM10 and AQI, for which lag2 generates the highest
estimates. For each 10-unit increase of PM10 and AQI, it can
be observed that increments of admissions on the previous 2
days are 2.66% (95% CI: 2.05%, 3.67%) and 3.56 (95% CI:

2.65%, 4.47%), respectively. An earlier response for PM2.5 in
lag1 showed the outcome with the highest estimate change of
admissions, 4.74% (95% CI: 3.76%, 5.72%).

Discussion

The association between the ambient air pollutant concentra-
tion and the number of COPD hospitalisations has been
extensively researched in health informatics, environmental
regulation, and big data analytics (Schikowski et al. 2014b;
Chen et al. 2004; Garshick 2014). The results illustrated that
ambient air pollution can significantly influence the morbid-
ity of COPD, which is certainly indicated by COPD hospital
admissions (Garshick 2014; Wang et al. 2015; Lee et al.
2007). However, few studies have investigated the estimates
of COPD hospitalisations under CAAP. Furthermore, the
phenomenon of CAAP in developing countries is still quite

Table 5 MSE (mean squared
error) for cross-validation of the
regression model

Ambient air
pollutants

1 2 3 4 5 6 7 8 9 10 Mean of MSE

AQI 0.06 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.23 0.03 0.06

PM2.5 0.04 0.01 0.06 0.04 0.03 0.02 0.04 0.01 0.03 0.16 0.04

PM10 0.03 0.02 0.02 0.02 0.02 0.03 0.05 0.04 0.05 0.02 0.03

Fig. 3 The estimates of COPD admissions (in comparison to the real COPD records). The estimated outcomes were based on the quasi-Poisson
regression model with CAAP, and the real outcomes were given from the Chengdu 3-year databases for both CAAP and COPD hospitalisations
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Fig. 4 Associations between PM2.5/PM10/AQI concentrations and COPD hospitalisations in short-term (2–9 CAAP days) and long-term (10–18 CAAP
days) effects by age and gender using a single air pollutant model with a lag of 2 days (lag2)

Fig. 5 Averaged percentage change (%) in daily COPD admissions per
10-unit increase in PM2.5, PM10, and AQI concentrations on different lag
days in Chengdu city, 2015–2017. For instance, lag1 represented that the

COPD data of the candidate day paired with 1 day’s air pollutant
concentration data lagged 1 day behind the day of the air pollutant
concentration data; lag2 denoted 2 days after
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common, which may be a significant cause for medical bur-
den in hospital systems (Mannino and Buist 2007; Fang
et al. 2011; Li et al. 2016; Mehrotra et al. 2009; Sullivan
et al. 2000). In the Chengdu region China, this phenomenon
was also often publicly reported, compared with earlier stud-
ies for estimates of COPD hospitalizations with ambient air
pollution (Zhu et al. 2019; Qiu et al. 2018), the major ad-
vantages of investigating CAAP-correlated COPD hospitali-
zations are to provide more reliable and accurate estimate for
COPD admissions during the situation of CAAP. This study
used the health big data tools to investigate the COPD
hospitalisations and the corresponding consecutive air-
polluted days in a specific region in China. Based on previ-
ous studies, a quasi-Poisson regression model was
employed, which was structured by GAM and solved by
the back-fitting algorithm (Lindberg et al. 2006; Dominici
et al. 2002). General attributable factors (e.g., air pollutant
concentrations, DOW, CT, and PH) were adopted for the
model establishment since they have been validated as the
key factors associated with COPD hospitalisations (Qiu
et al. 2018). Moreover, the consecutive air-polluted days
Dt − i (Eq. 3) were also defined as a joint effect with the
concentration of ambient air pollutant Ct − i. With the joint
model in Eqs. 3 and 4, the estimates of COPD
hospitalisations under the condition of CAAP were built.

Figure 2 quantitatively depicts the dynamic trends of
COPD admissions in response to consecutive ambient air-
polluted days based on the quasi-Poisson regression model
(Eq. 3). The findings showed that an initial outbreak of
COPD admissions would emerge from the second CAAP
day. After the initial surge, the hospital burden gradually
decreased, as seen on the 3rd–10th days (PM2.5), the 3rd–
7th days (PM10), and 3rd–9th days (AQI), meaning that the
accumulative effects from the initial outbreak were gradu-
ally processing by hospitals. However, a subsequent out-
break of COPD admissions would eventually occur from
the 11th to 19th days (PM2.5), the 8th to 17th days
(PM10), and the 10th to 28th days (AQI), because CAAP
was still lasting and its accumulative effects were causing
the emergence of the second outbreak. The model output
can reflect the tendency of COPD admissions in response to
CAAP, and provide early guidance for the underlying out-
breaks of COPD admissions.

Figure 5 shows the Chengdu average estimates of the as-
sociations between CAAP-based ambient air pollutants
(PM2.5, PM10, and AQI) and COPD admissions on different
lag days. Specifically, based on Eq. 4, lag day 2 generated the
highest estimates for both PM10 and AQI. Therefore, the lag 2
was set to the quasi-Poisson regression model for predictive
values demonstrated in Fig. 3.

The lag effect also was reported in national and sub-regions
in China. National average percentage change in daily hospital
admissions for cause-specific cardiovascular diseases per 10

μg/m3 increase in PM2.5 concentrations in 184 Chinese cities
during 2014–2017 was found that lag day 0 had the highest
estimates for cardiovascular disease, ischaemic heart disease,
heart failure, heart rhythm disturbances, and ischaemic stroke
(Tian et al. 2019). Jinjun Ran et al. investigated effects of
ambient benzene and toluene on COPD hospitalizations in
Hong Kong from April 1, 2011 to December 31, 2014, and
found that the cumulative 1-day lag effects of mean benzene
and toluene have a significant percent excess risk (Ran et al.
2019). Hong Qiu et al. found that lag 3 day was greatest for
exposure to PM10, NO2, and SO2 corresponding to the in-
crease of COPD admissions, lag 2 day for O3 (Qiu et al. 2013).
Li Peng et al. assessed the associations between particle num-
ber concentrations (PNCs) and COPD in Shanghai China
from 2019 to 2011, and illustrated lag 0 was most prominent
between PNCs and COPD, lag 1 particularly for particle size
of 0.28–0.5 μm and lag 2 for 0.25–0.28μm (Peng et al. 2020).
Multi-city studies in Beijing, Shanghai, Guangzhou, and
Hong Kong found that estimates of PM10 and NO2 for
COPD had statistical significance and decreased from lag 0
to lag 4 (Meng et al. 2013).

Based on the above discussions, the CAAP was an-
other essential individual risk factor linked to COPD
hospitalisations, particularly in specific regions. In addi-
tion, the age and gender subgroups were also investigat-
ed in the context of CAAP. The finding in age sub-
groups was consistent with the conclusions made by
most previous studies (Lindberg et al. 2006; Tian
et al. 2019; Chang et al. 2005; Zeger et al. 2000) and
has been confirmed to be mainly due to the weakness
of immune and respiratory systems caused by ageing
and comorbidities. Previous studies (Qiu et al. 2018)
concluding that men are slightly more likely to be
hospitalised from COPD, although there is no statistical
significance, differed from the results of our studies.
This may be due to the larger proportion of smokers
among men than among women. Smoking did not lead
to a rise of hospital admission in a short-term exposure
of air pollution but would cause an aggravated effect in
a long-term exposure of air pollution. The different cor-
related influences in gas and particles for COPD admis-
sions in Chengdu have been previously reported in (Qiu
et al. 2018). Due to the inadequate sample size limited
by the CAAP selection criteria, the air pollutants (i.e.,
NO2 and O3) cannot be estimated by the quasi-Poisson
regression model. The implications of temperature and
relative humidity on COPD exacerbation have also been
addressed in (Qiu et al. 2018).

The regression model had the following advantages for
estimating COPD hospitalisations under CAAP: (1) the
criteria for ambient air pollution followed AAQSC-2012
(Table 1), which was more suitable for the relative analyses
of the Chengdu region; (2) the COPD admission provided
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from the electronic medical record of inpatients was more
sensitive than the COPD morbidity (adopted in most previ-
ous studies (Peng et al. 2020; Kaji et al. 2014; Asche et al.
2008)) for the investigation of interactions between air pol-
lution and COPD; (3) only the most correlated air pollutants
(i.e., PM2.5 and PM10) can be selected for the model, which
are significantly related and contributed to the AQI; (4) the
reference COPD admission was set annually in order to
avoid variability across multiple years; (5) although the
study focused on the CAAP condition in a specific
Chengdu region (especially from November to March of
the following year), the methods proposed in this study
were also applicable for other regions.

The limitations of this study are as follows: first, the mean
daily concentration (approx. 24 h), compared to the peak con-
centration hour of a day, was selected to represent the air
pollutant concentration for a certain day. However, due to its
property of dynamic variations across 24 h, it might still ob-
scure the true value of a day somehow. Second, individual
factors such as smoking, occupation, and previous medical
history related to the respiratory system were not considered
in the study. Third, the diagnosed outcomes with false posi-
tives or false negatives may be inevitable, especially in small-
scale hospitals in China (Hong-Wei and Infection DO 2019;
Weiß et al. 2010; Guoliang 2012). Last but not least, the study
samples also included districts where there were no monitor-
ing stations. The reason why those districts outside the city
centre were selected are because (1) Chengdu city centre and
its administrative affiliated districts together (uncovering
areas) are a whole plain located in a low-lying basin topogra-
phy. And thus, the air pollution phenomenon is often simul-
taneous in this area; (2) the top (city- and province-level)
public hospitals almost are located in Chengdu city centre,
and people who resided in this area always would like to visit
those hospitals for the diagnosis analysis of COPD; (3) it was
supposed for local government to establish non-redundant
monitoring stations in representations of the dynamical ambi-
ent air quality, as well as serve a predictive early guidance to
not only the city area, but also its administrative affiliated
districts.

Conclusion

This study investigated the association between CAAP and
COPD hospitalisation based on 3-year data in Chengdu,
China, from January 2015 to December 2017. The data were
extracted based on AAQSC-2012. The statistical results
showed that PM2.5 and PM10 were the most correlated air pol-
lutants with the AQI index in both short-term and long-term
exposures. The outcomes estimated by the established quasi-
Poisson regression model showed that the initial outbreak of
COPD admissions occurred on the second consecutive air-

polluted day, and a subsequent larger outbreak was followed
by a decreased hospital burden. The model outputs were also
compared with the real statistical results and validated via ten
cross-validations. Age over 65 years old caused a higher risk
for COPD admissions, while men had greater COPD admis-
sions than women. The lag pattern showed a relatively stable
day lag in the appearance of COPD admissions. The big data
analytics in the study can be useful for the development of
predictable early guidance for COPD hospitalisations under
the CAAP condition.
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