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Abstract: A series of new halogen-free dicationic ionic liquids (ILs) with different alkyl chain lengths were 

prepared, and the relationship between the alkyl chain length, physicochemical and tribological properties of 

ILs, and their role as neat lubricant for steel–steel friction pairs, was investigated. Evaluation of stability during 

hydrolysis and copper strip corrosion test results show that synthetic ILs are stable and not corrosive to metal 

contacts, due to the halogen-free anions. The friction and wear test results indicate that ILs with long alkyl 

chains have excellent friction-reducing and anti-wear properties, especially at high temperatures. Based on the 

surface three-dimensional (3D) profiles, electrical contact resistance, scanning electron microscopy (SEM), energy 

dispersive X-ray spectroscopy (EDS), and the X-ray photoelectron spectrometry (XPS) analysis of the worn 

surfaces of steel discs, we can conclude that the efficiency of ILs is due to the formation of high quality tribofilms 

that consist of both tribochemical reaction and ordered absorption films. 
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1  Introduction 

Friction and wear result in energy wastage and 

shorten the service life of mechanical components [1]. 

The reasonable use of liquid lubricants is one of the 

most effective ways to prevent friction and wear. In 

general, liquid lubricants are mainly divided into two 

categories—natural and synthetic lubricants. Natural 

lubricants include some animal fat, vegetable oils, 

and mineral oils [2]. Synthetic lubricants commonly 

contain synthetic hydrocarbon, synthetic ester, and 

perfluoropolyethers (PFPEs), and are widely used in 

special conditions, such as applications that require 

high temperature stability, low saturated vapor 

pressures, excellent extreme pressure, and oxidation 

stability [3]. 

The discovery of ionic liquids (ILs) as high per-

formance synthetic lubricants was initiated in 2001 

[4]. The study of ILs as lubricant has since received 

increasing attention [5–8]. ILs have been explored as 

lubricants for various frictional materials, due to their 

excellent dipolar structure and physical properties 

like extremely low volatility, nonflammability, high 

thermal stability, low melting point, and good thermal 

conductivity; the latter allowing for rapid frictional 

heat dissipation [9–14]. Currently, a large number of 

studies in the tribological field are mainly focused on 

halogen-containing mono-cation ILs based on anions  
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such as [BF4]–, [PF6]–, [CF3SO3]–, and [NTf2]– [15–17]. 

In 2006, dicationic ionic liquid lubricants were first 

reported by Ref. [18]. In this study, polyethylene 

glycol functionalized dicationic ILs with alkyl   

or polyfluoroalkyl substitutents were prepared. It   

is noteworthy that these ILs also exhibit excellent 

tribological characteristics even at 300 °C. A new 

series of dicationic symmetrical and asymmetrical  

ILs consisting of tetraalkylphosphonium and 

alkylimidazolium were synthesized, which have very 

high decomposition temperature of approximately 

450 °C and good tribological properties [19]. Pagano 

et al. [20] synthesized and investigated twelve dicationic 

ILs as potential lubricant, which were synthesized 

from oligoethylene glycols linking two cationic 

moieties based on either N-methylimidazolium or 

N-methylpyrrolidinium at the extremities. As anions, 

chloride, bis(trifluoromethanesulfonyl)imide [NTf2]–, 

methanesulfonate and butanesulfonate were chosen. 

Mahrova et al. [21] synthesized a series of bi-cationic 

pyridine-type ILs, and systematically studied their 

tribological properties as lubricant and additive. This 

series of ILs uses [NTf2]– as an anion and exhibits 

excellent friction-reduction and anti-wear properties. 

However, ILs containing [BF4]–, [PF6]–, [CF3SO3]–, and 

[NTf2]– usually undergo hydrolysis when used as 

lubricants. They can cause metal corrosion and can 

pollute the environment [22]. Hence, replacement of 

ILs with halogen-free high-efficiency IL lubricants  

is becoming increasingly popular in modern ILs 

tribology [23–28]. Gusain et al. [29] synthesized   

and evaluated a series of bis(imidazolium)- and 

bis(ammonium)-di[bis(salicylato)borate] ILs with 

variable alkyl chain and cyclic ring structures as 

potential lubricant additives. These dicationic ILs as 

additives of PEG200 showed noncorrosive properties, 

which were attributed to the of corrosion driven 

elements, such as halogens, in these ILs.  

In this study, we designed a new type of halogen- 

free dicationic IL, based on the gemini-type molecular 

structure. The cation part is a double quaternary 

ammonium structure, and the anion is a phosphate 

ester. We adopted the N/P synergistic lubrication 

concept. The constructed ILs are excellent lubricants 

and have excellent thermal stability. 

2 Experimental 

2.1 Chemicals  

The reagents, including N,N,N’,N’-tetramethylethy-

lenediamine, bromotetradecane, bromohexadecane, 

bromooctadecyl, bis(2-ethylhexyl) hydrogen phosphate, 

and sodium hydroxide were obtained from Sigma- 

Aldrich. Di-isooctyl phosphate sodium was prepared 

according to previously reported methods [30]. The 

molecular structures of 1,2-bis-N,N-dimethyl-N- 

tetradecylammonium bis (2-ethylhexyl) phosphate 

(NP-14-2-14), 1,2-bis-N,N-dimethyl-N-cetylammonium 

bis (2-ethylhexyl) phosphate (NP-16-2-16), 1,2-bis-N,N- 

dimethyl-N-octadecylammonium bis (2-ethylhexyl) 

phosphate (NP-18-2-18), are shown in Fig. 1. The 

method of these three gemini-type ILs has been 

reported in detail by our previously reported Ref. [31]. 

The structures and purities of dicationic ILs (NP-14- 

2-14, NP-16-2-16 and NP-18-2-18) were finely confirmed 

by 1H NMR, 13C NMR, 31P NMR, and MS spectroscopic 

data. Detailed data are presented in the Electronic 

Supplementary Material (ESM). 

2.2 Thermal stability and viscosity analysis 

Thermal stability and viscosity–temperature per-

formance are the most basic characteristics of good 

lubricants. Therefore, thermogravimetric analysis (TGA)  

 

Fig. 1 Molecular structures of selected dicationic ILs and 
1-butyl-3-methylimidazolium hexafluorophosphate (L-P104) as 
a comparative synthetic lubricant. 
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was conducted on a Netzsch STA 449 F3 synchronous 

thermal analyzer system, in a nitrogen atmosphere  

at a temperature of 10 °C/min, to test the thermal 

stability of PAO 10, L-P104, NP-14-2-14, NP-16-2-16, 

and NP-18-2-18. Kinematic viscosities of all samples 

were measured at temperatures of 40 and 100 °C using 

a SYP1003-III kinematic viscosity tester.  

2.3 Copper strip corrosion test  

The copper strip corrosion test was performed 

according to the National standard GB-T5096-1985(91) 

[32]. Prior to the test, copper strips with a certain 

specification (12.0 mm × 12.0 mm × 3.0 mm) were 

polished to brightness and completely cleaned with 

ethanol. The copper strips were then immersed into 

the test lubricants (PAO 10, L-P104, and NP-18-2-18). 

The samples were heated at 100 °C for 24 h. After the 

experiment, the copper strips were taken out and 

washed carefully with ethanol, and then the corrosion 

level was gauged using a standard corrosion plate for 

comparison. 

2.4 Hydrolysis stability   

The hydrolytic stability experiments of NP-18-2-18 

refer to previously reported methods [33]. NP-18-2- 

18 was mixed with water in equal quantity. The 

solutions were then heated at 80 °C for 24 h. The pH 

of the solutions was checked at an interval of 30 min 

to determine the hydrolysis levels of NP-18-2-18. In 

comparison, the hydrolysis stability of PAO 10 and 

L-P104 was measured simultaneously using the same 

method. 

2.5 Tribology test and surface analysis 

The tribological properties of NP-14-2-14, NP-16-2-16, 

and NP-18-2-18 for the steel–steel friction pair were 

evaluated using a reciprocating ball-on-disk sliding 

test on an Optimol SRV-V. Table 1 shows the test 

parameters based on previously reported methods 

[34, 35], at environmental humidity of 30%–50%, using 

an upper slide ball (model specifications: AISI 52100 

bearing steel; diameter: 10 mm; hardness: 59–63 HRC; 

mean roughness: 100 nm) and lower stationary steel 

disk (ø 24 mm × 7.9 mm, hardness: 59–63 HRC). A 

Bruker NPFLEX non-contact surface mapping profiler 

was used to determine the profile of the wear scar 

Table 1 Test parameters of the SRV test. 

Parameter Value 

Friction pairs Steel/steel 

Load (N) 300 

Frequency (Hz) 25 

Temperature (°C) 25/100 

Amplitude (mm) 1 

Duration (min) 30 

Voltage (V) 20 

 

and the corresponding wear volume.  

An FEI Quanta FEG 250 SEM with EDS (type: 

Oxford IE250) was used to observe the morphology 

and composition of the surface of wear scars. XPS 

(type: PHI-5702) was used to further observe the 

binding energy of elements distributed on the surface 

of the wear scar, to better understand the lubrication 

mechanism. 

3 Results and discussion  

3.1 Physicochemical properties 

3.1.1 Thermal analysis 

The thermal stability of all lubricants was tested, and 

the results are presented in Fig. 2 and Table 2. It can be 

observed that the thermal decomposition temperatures 

(Td) of PAO 10 (~280.5 °C) and L-P104 (~400 °C) are 

very high, whereas the Td values of NP-14-2-14 

(~212.4 °C), NP-16-2-16 (~233.1 °C), and NP-18-2-18 

(~238.1 °C) are relatively low. The thermal decom-

position temperatures of dicationic IL were also found  

 

Fig. 2 TGA curves of PAO 10, L-P104, NP-14-2-14, NP-16-2-16, 
and NP-18-2-18. 
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to increase slightly with increasing length of the alkyl 

chain, which can be attributed to an increase in Van 

der Waals interactions among the IL’s molecules [18]. 

Table 2 shows the corresponding Td for different mass 

losses. Td shows an obvious gradual increase with a 

loss of weight. For example, Td of PAO 10 indicates 

a 50% weight loss at ~ 340 °C, and the Td of L-P104 

indicates the same at 440 °C. There is 50% weight 

loss for all dicationic ILs at a temperature exceeding 

250 °C. This suggests that synthetic ILs have appro-

priate thermal stability and can meet the lubrication 

requirements both at room temperature (RT) and high 

temperature (HT). 

3.1.2 Viscosity 

KVs and viscosity indexes (VIs) are also summarized 

in Table 2. The viscosities of dicationic ILs are 

obviously higher than those of PAO 10 and L-P104 

at RT and 100 °C. The viscosity index of NP-14-2-14, 

NP-16-2-16, and L-P104 is approximately 110; PAO 10 

and NP-18-2-18 have the highest viscosity indexes at 

approximately 130. The KVs and VIs of the dicationic 

IL lubricants gradually increase with the increase in 

alkyl chain length. This is attributed to the increase 

in Van der Waals interactions between the IL’s 

molecules [36]. 

3.1.3 Hydrolysis stability 

Compared to conventional halogen-containing ILs, 

halogen-free ILs demonstrate excellent hydrolytic 

stability [15]. In this study, the hydrolysis stability of 

halogen-free dicationic ILs was first evaluated by 

using a hydrolysis test according to Ref. [22]. Figure 3 

shows no significant pH change during the test, which 

indicates that PAO 10 and halogen-free dicationic ILs 

are hydrolysis stable. Under the same test conditions,  

 
Fig. 3 pH value change curves of the samples. 

L-P104 showed rapid hydrolysis with a drop in pH 

value at the very beginning of the test. 

3.1.4 Copper strip corrosion test 

Traditional halogen-containing ILs can attack substrates 

due to their hydrolysis, to produce acidic materials 

[37, 38]. The purpose of designing halogen-free 

dicationic ILs is to improve the lubricating properties 

of ILs and reduce their corrosion performance. There-

fore, the copper strip corrosion test was developed 

to confirm anti-corrosion properties, using PAO 10 

and L-P104 as references. The photographs of the 

polished copper strips (Fig. 4(a)) after soaking in 

PAO 10 (Fig. 4(b)), L-P104 (Fig. 4(c)), and NP-18-2-18 

(Fig. 4(d)), respectively, are shown in Fig. 4. Compared 

to blank copper, it is evident that the surface of the 

copper sheet immersed in L-P104 is found to be 

corroded. This surface looks tarnished and is covered 

with a large amount of corrosion products (Fig. 4(c)), 

while only a small amount of darkening was observed 

on the surfaces of the copper strips soaked in PAO 10 

(Fig. 4(b)) and NP-18-2-18 (Fig. 4(d)). According to 

the standard corrosion plate, it can be concluded that 

Table 2 Kinematic viscosities (KVs) at 40 °C (KV40), 100 °C (KV100), and VIs of dicationic ILs and the reference samples. 

KVs TG temperature (°C) per weight loss 
Lubricant 

KV40 (mm2/s) KV100 (mm2/s)
VI Td (°C) 

10% 20% 50% 

PAO 10 63.75 9.64 133.10 280.47 290.40 310.40 341.90 

L-P104 83.80 10.97 117.60 380.97 383.53 404.73 443.23 

NP-14-2-14 2,856.10 108.51 107.10 212.44 233.10 250.30 276.30 

NP-16-2-16 3,365.10 125.89 113.40 233.07 249.70 261.90 283.30 

NP-18-2-18 3,529.90 156.85 137.30 238.77 247.20 260.40 285.50 
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the corrosion grade for L-P104 was 2a, whereas those 

for PAO 10 and NP-18-2-18 were 1a. 

3.2 Analysis of friction and wear properties as 

lubricants for steel–steel friction pairs 

The friction coefficient (COF) and wear volume of 

NP-14-2-14, NP-16-2-16, and NP-18-2-18 were first 

tested at RT (Fig. 5). Figure 5(a) shows that the COF 

of PAO 10 is very high at 0.6 and then gradually 

reduces to an equilibrium of 0.2, which is attributed 

to the non-polar property of PAO molecules in that 

they do not easily adsorb on the metal interface. 

Furthermore, there are no special elements such as  

N and P in the molecule that can cause frictional 

chemical reactions; thus, PAO 10 has a very high wear 

volume of up to 1.2×10−3 mm3 (Fig. 5(b)). The COFs 

of NP-14-2-14, NP-16-2-16, and NP-18-2-18 are low 

and stable. A significant decrease in COF is observed 

in the entire process, with an increase in alkyl chain 

length. This law is consistent with the experimental 

results of wear volume (Fig. 5(b)), suggesting that the 

alkyl chain length of ILs has an important effect on the 

stability of the boundary lubricant film, considering 

the lubrication interval. The average COF for all  

synthetic ILs is less than 0.1, which is a good numerical 

range for a good boundary lubrication area according 

to Ref. [39]. Compared to PAO 10, NP-14-2-14, 

NP-16-2-16, and NP-18-2-18, L-P104 exhibited a very 

low and smooth COF and relatively low wear volume. 

It is easy to understand that L-P104 is more suitable 

as a lubricant for steel–steel system at RT, mainly 

because of the contribution of active element content 

(high F, P, and N element percentage) in molecules 

and viscosity.  

Under 100 °C, the COF of PAO 10 has equal shares 

at RT (Fig. 6(a)), but indicates a greater wear volume 

of approximately 2.0×10−3 mm3 during the sliding 

process (Fig. 6(b)). The final COF of NP-18-2-18 is 

less than that of L-P104. The anti-wear properties of 

NP-16-2-16 and NP-18-2-18 are also superior to those 

of L-P104 (Fig. 6(b)). As expected, the reduction of the 

COF and wear volume of NP-16-2-16 and NP-18-2-18 

is evident, indicating that the friction reduction   

and anti-wear performance of dicationic ILs can be 

enhanced by introducing long alkyl chains at HT. 

Furthermore, a suitably high lubricant viscosity is 

beneficial for forming a thicker lubricating film, 

since long alkyl chains are superior for stronger 

hydrophobic interactions at HT. The formation of  

a stable lubricating film is thus caused by a 

 

Fig. 4 Photographs of copper strips (a) before and (b–d) after the corrosion test: (b) PAO 10, (c) L-P104, and (d) NP-18-2-18. 

 

Fig. 5 Evolution of (a) COF/time and (b) wear volumes of PAO 10, L-P104, NP-14-2-14, NP-16-2-16, and NP-18-2-18 for steel–steel 
contact at 300 N, 25 Hz, and RT. 
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strengthened interaction and enhanced lubrication 

in NP-16-2-16 and NP-18-2-18.  

3.3 Surface analysis of wear spot 

3.3.1 Surface profile analysis 

The three-dimensional (3D) optical microscopic images 

of the wear spots at RT and 100 °C, are exhibited in 

Figs. 7 and 8, respectively. The results are consistent 

with the wear volume analysis. The wear scar diameter 

(WSD) and wear scar depth (WSD’) of PAO 10 are  

2.3 mm and –6 μm, respectively (Fig. 7), and there are 

obvious protrusions around the wear scar. In com-

parison, the WSD and WSD’ values of other lubricants 

were significantly reduced. For example, for a lubricated  

surface of L-P104 (Fig. 7(b)), the WSD was appro-

ximately 1.2 mm, and the WSD’ was approximately 

–0.5 μm. The same phenomenon was observed for other 

dicationic ILs lubricants (Figs. 7(c)–7(e)). However, if 

we look closely at Figs. 7(c)–7(e), the reduction in WSD 

and WSD’ is obvious. These results also prove that as 

the alkyl chain increases, the lubricating properties of 

the ions also increase. 

At 100 °C, the 3D morphology of the wear surface 

is similar to that at RT. The obvious difference is that 

the wear spot of the PAO 10 lubricant has a larger 

WSD and a deeper WSD’ (Fig. 8(a)). For surfaces 

lubricated by L-P104 (Fig. 8(b)) and NP-14-2-14   

 

Fig. 6 Evolution of (a) COF/time and (b) wear volumes of PAO 10, L-P104, NP-14-2-14, NP-16-2-16, and NP-18-2-18 for steel–steel 
contact at 300 N, 25 Hz, and 100 °C. 

Fig. 7 3D optical microscopic images of wear tracks (steel–steel friction pairs) corresponding to (a) PAO 10, (b) L-P104, (c) NP-14-2-14,
(d) NP-16-2-16, and (e) NP-18-2-18 at RT. 
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(Fig. 8(c)), the wear was significantly heavier than  

that at RT. However, for other lubricants, the increase 

in WSD and WSD’ is small (Fig. 8(b)–8(e)) at 100 °C 

compared to at RT. It is worth noting that as the alkyl 

chain length increases, WSD and WSD’ decrease signi-

ficantly, which means that high-viscosity ILs are more 

advantageous for reducing friction and wear at HTs. 

3.3.2 SEM analysis 

The SEM images show worn surfaces of the lubricated 

steel at RT and 100 °C (Figs. S1 and S2 (ESM)). Using 

ILs as lubricants at RT significantly reduces wear. For 

example, from Figs. S1(a)–S1(e) (ESM), it can be seen 

that the wear spot diameter is significantly reduced, 

and the surfaces of wear become better. However, 

SEM topographies magnified to 1,000 times indicate 

that obvious differences exist between various 

lubricants. For example, steel surfaces lubricated with 

PAO 10 (Fig. S1(a1) (ESM)) and L-P104 (Fig. S1(a2) 

(ESM)) have obvious adhesive wear, as observed 

under an SEM at a magnification of 3,000 times. Deep 

pits appear on the surface that was lubricated with 

PAO 10 (Fig. S1(a2) (ESM)), suggesting a failure of 

lubrication. The lubricated surface of L-P104 (Fig. S1(a2) 

(ESM)), with a large black area indicates metal surface 

corrosion caused by anion hydrolysis. When observed 

clearly, the worn surfaces lubricated by NP-14-2-14, 

NP-16-2-16, and NP-18-2-18 have neither obvious 

scratches nor corrosion, implying excellent anti-wear 

and anti-corrosion properties of IL NP-14-2-14, NP- 

16-2-16, and NP-18-2-18. 

3.4 Simple analysis of lubrication mechanism 

3.4.1 Electrical contact resistance (ECR) analysis 

Using ECR, measurements can offer a visualization 

of the change in interface resistance and the formation 

of an interface tribofilm [40, 41]. During friction, ECR 

changes were gauged from the lubrication interface 

at RT (Fig. 9(a)) or at HT (Fig. 9(b)), and the results 

are consistent with those of the wear volume analysis. 

Combined with Figs. 5, 6, and 9, it can be easily 

concluded that a reduction in friction is related to the 

formation of tribofilm on worn surfaces, which is 

caused by changes in the ECR values. For example, 

the ECR of PAO 10 is very low at about 0.1 Ω 

regardless of whether it is at RT or 100 °C, and this 

corresponds to the highest COF. In contrast, the ECR 

values of dicationic IL lubricants changed from 0.1 to 

higher ECR values and a lower COF was observed. 

More importantly, the ECR increases significantly with 

an increase in alkyl chain length for dicationic ILs. 

This change is more pronounced at HT, suggesting that 

ILs are more likely to form an insulating lubricating  

Fig. 8 3D optical microscopic images of wear tracks (steel–steel friction pairs) corresponding to (a) PAO 10, (b) L-P104, (c) NP-14-2-14, 
(d) NP-16-2-16, and (e) NP-18-2-18 at 100 °C. 
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protective film at the interface through adsorption  

or tribochemical reaction during the rubbing process, 

thus providing better anti-friction and anti-wear 

properties. In contrast, although L-P104 exhibits low 

friction at both RT and HT, its ECR is not as high as 

that of the dicationic ILs. We suspect that the change 

in ECR is closely related to the conductivity of the 

lubricant. To further explain this phenomenon, the 

conductivity of L-P104, NP-14-2-14, NP-16-2-16, and 

NP-18-2-18 were tested, and shown in Table S1 of the 

supporting information. As can be seen from Table 

S1 (ESM), the conductivities of L-P104, NP-14-2-14, 

NP-16-2-16, and NP-18-2-18 were 1,451, 7.31, 6.98,  

and 6.33 μS/cm, respectively. Compared with L-P104, 

dicationic ILs have a very low conductivity, which 

results in a high contact resistance during the rubbing 

process. In addition, compared with L-P104, dicationic 

ILs have a longer alkyl chain, and form a denser and 

thicker lubricating film [42], and thus their ECR values 

are larger. 

3.4.2 EDS analysis 

The friction test at RT showed the chemical 

composition of wear scars, which was confirmed by 

EDS. Figures S3(a)–S3(e) (ESM) represent elements in 

the wear spot after lubrication by different lubricants, 

respectively. In Figs. S3(a) and S3(a1)–S3(e1) (ESM), 

elements C, O, and Fe appear on the surface of the wear 

scar and on the outside of the wear scar, suggesting 

that these lubricants do not react with the metal 

during friction. Figures S3(a)–S3(e) (ESM) show some 

special elements, such as F, P, and N that appear on 

the center of the wear scar, indicating that NP-14-2-14, 

NP-16-2-16, and NP-18-2-18 are consistent with L-P104, 

which undergo a complex tribochemical reaction 

with the steel, forming a stable boundary lubrication 

film. This reduces friction and enhances anti-wear 

properties [43].  

With friction at HT, the element distribution on the 

surface of the wear scar is exactly the same as the 

element distribution after friction at RT. 

3.4.3 XPS analysis 

To gain further information about the lubricating 

effect of the halogen-free dicationic ILs, XPS analysis 

of the boundary film on worn steel surfaces following 

friction was conducted for elements such as Fe, O, P, 

and N. Figure 10 shows the XPS curve of the worn 

surface lubricated with NP-16-2-16 and L-P104, at RT 

and 100 °C. Figure 10 indicates that the XPS spectra of 

surfaces lubricated with NP-16-2-16 and L-P104 are 

quite similar, both at RT and HT. In the case of the 

Fe 2p XPS spectrum (Fig. 10(a)), Fe 2p peaks appear 

at approximately 710.8 and 724.5 eV, associated with 

the binding energy (BE) of 530.2 and 531.8 eV in   

the O 1s spectrum (Fig. 10(b)). They can be identified 

as Fe2O3, Fe3O4, and/or Fe(OH)O [44]. As shown in 

Fig. 10(c), the BE of P 2p at about 133.8 eV might 

correspond to compounds that contain PO4
3− [45–47], 

and the P 2p at 134.80 eV is attributed to alkyl 

phosphate. In addition, the peak of P 2p at 133.8 eV is 

assigned to FePO4, which coincides with the Fe 2p 

peak of 712.80 eV. This indicates that NP-16-2-16 

decomposes and reacts with the exposed metal surface 

to produce a protective film composed of phosphates 

and/or polyphosphates, which improves the tribological 

 

Fig. 9 ECR of PAO 10, L-P104, NP-14-2-14, NP-16-2-16, and NP-18-2-18 as lubricants for steel–steel at (a) RT and (b) 100 °C with 
a load of 300 N and frequency of 25 Hz. 
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properties [47]. From Fig. 10(d), the N 1s peak of 

401.30 eV indicates a complex phosphorus oxide 

species, namely (NH4)2HPO4, and the O 1s peak of 

531.50 eV also indicates this compound [48]. The N 1s 

peak of 399.80 eV may correspond to C–N bonding 

and nitrogen being transformed into to organic amines 

[49, 50]. The N 1s peak at 399.10 eV is attributed to 

phosphinic amide, which coincides with the P 2p 

peak of 132.90 eV. The above results together indicate 

that a new nitride and phosphorus compound such 

as FePO4 and complex organic nitrogen compounds 

were generated on the worn surfaces during the sliding 

process [47]. For a surface lubricated by L-P104, as 

shown in Fig. 10(e), the XPS peaks of F 1s, P 2p, and 

Fe 2p appear at 685.4, 133.8, and 711.8 eV, respectively, 

which are assigned to FeF2 and FePO4 [46].  

4 Conclusions 

A series of halogen-free dicationic ILs equipped with 

long alkyl chains were synthesized and evaluated as 

lubricants for a steel–steel friction pair at RT and HT, 

with the aim of studying the relationship between 

the alkyl-chain length and the tribological properties 

of double cationic ILs. Increasing the alkyl chain 

length of the cation has proven to be effective in 

improving ILs in terms of thermal stability, corrosion 

resistance, and tribological performance, especially at 

HT. Based on the results of COF, SEM, ECR, EDS, 

and XPS, the excellent lubrication of ILs comes from 

the boundary lubricating protection film containing 

phosphorus and nitrogen that forms on the sliding 

steel surfaces, which achieves superior tribological 

properties by a phosphorus–nitrogen synergy. 
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