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Abstract
A period-varying iterative learning control scheme is proposed for a robotic manipulator to learn a target trajectory that 
is planned by a human partner but unknown to the robot, which is a typical scenario in many applications. The proposed 
method updates the robot’s reference trajectory in an iterative manner to minimize the interaction force applied by the human. 
Although a repetitive human–robot collaboration task is considered, the task period is subject to uncertainty introduced 
by the human. To address this issue, a novel learning mechanism is proposed to achieve the control objective. Theoretical 
analysis is performed to prove the performance of the learning algorithm and robot controller. Selective simulations and 
experiments on a robotic arm are carried out to show the effectiveness of the proposed method in human–robot collaboration.

Keywords  Period-varying iterative learning control · Human–robot interaction · Trajectory learning · Interaction force 
tracking

1  Introduction

Human–robot interaction (HRI) is a rapidly expanding 
research field with a great need for robotic assistance in 
various applications such as assembly, teleoperated surgery, 
heavy load transport and so on [1–6]. HRI has been mainly 
studied in two complementary branches, such as divisible 
shared control (DSC) that has been discussed in [7–9] and 
interactive shared control (ISC) in [10–12]. DSC enables 
clear division of the human partner’s and the robot’s sub-
tasks so that they can work independently, while ISC allows 
for flexible intervention to improve the collaborative per-
formance which is the focus of this paper. How to design a 
simple, effective and safe robotic controller has been a focus 
in the field of HRI [13], especially in the subfield of physical 
human–robot interaction (pHRI).

A critical yet typical problem in pHRI is how to obtain 
the human’s desired trajectory or motion intention, as the 
knowledge of this information enables a robot to adapt its 

behaviour according to the human partner and to complete 
a task cooperatively [14, 15]. In the literature of pHRI, 
researchers have tried to extract this information from the 
human partner by utilizing the haptic information, espe-
cially the interaction force that can be measured from the 
force/torque sensor at the interaction point. In [10], neu-
ral networks are used to build up a mapping between the 
human’s desired trajectory and the interaction force. In 
[11], the robot’s desired trajectory is deformed according 
to the interaction force, while the human’s desired trajec-
tory is not explicitly estimated. A different approach is 
adopted in [12], which develops a controller for lifting a 
beam with human–robot collaboration, using a probabilis-
tic framework based on Gaussian Mixture Models (GMM) 
and Gaussian Mixture Regression (GMR) to encode force/
torque at the end-effector with the demonstrated velocity. 
After learning the robot could perform the collaborative 
lifting by conditioning the GMM on the perceived force/
torque and generate the velocity response using GMR. The 
strategy of using interaction force as stimuli is also applied 
in [16] for teaching multiple solution trajectories by means 
of a Hidden Markov Model (HMM) and GMR. The per-
ceived force/torque could be displayed to the human 
partner by using a haptic device, and the human partner 
demonstrates motion response. In addition, without using 
a force sensor, [17] proposes a human intent detection 
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method by observing the impact of the physical interac-
tion on the robot’s control effort. From the control point of 
view, these works use the estimated human information to 
alter the robot’s controller, but they do not evaluate how it 
affects the performance of the closed-loop system. This is 
important as human is involved in the system so the system 
stability should be ensured at all instances.

Impedance control provides a useful framework for ana-
lyzing a pHRI system [18], which is adopted as a basis of 
many works. In [19–21], adaptive control is developed to 
deal with uncertainty of the parameters in robot dynamics 
to achieve a target impedance model. In [22], a desired 
impedance model is learned for a robot through repetitive 
interaction with its environment. It is important to note 
that impedance control is useful for not only regulating 
the interaction between the robot and the environment, 
but also for establishing a human motor control model. 
Although describing an individual human’s behavior in 
physical interaction with an environment is challenging, 
impedance control is found to be an effective and robust 
computational model [23, 24]. With a unified model of 
impedance control for robot control and human motor con-
trol, it is natural to use it for skill transfer from the human 
to the robot. In [25], by measuring the sensory outputs 
from the robot and the corresponding motor commands 
generated by the human tutor, a proper mapping between 
the selected muscle EMG and robot’s end-effector imped-
ance is established. Moreover, the coupled HRI system 
can be explicitly described within the same framework 
of impedance control, so it becomes possible to evalu-
ate the system performance with estimation of the human 
state and adaptation of the robot’s controller. In the lit-
erature, a similar idea is found for impedance-based force 
control [20], where the robot is under impedance control 
and its environment is treated as a spring model. In this 
way, the robot-environment system can be analyzed within 
the same control framework. Differently, in pHRI, the 
human dynamics cannot be described as a passive system 
by a spring model. In this paper, a human model with an 
actively planned trajectory is investigated.

On the other hand, it is found that many pHRI processes 
are repetitive, so it is a natural idea to introduce iterative 
learning control (ILC) for the robot to gain skills from the 
human partner. In the past decades, ILC has been devel-
oped for improving performance of systems that carry out 
repetitive operations [26–28]. Its main goal is to generate a 
control that tracks a given reference or rejects a periodic dis-
turbance [29]. However, in the pHRI problem under study in 
this paper, the human’s desired trajectory is unknown to the 
robot so the control objective is different from the traditional 
ILC. It will be shown that the control problem is formulated 
in a way that is different from conventional trajectory track-
ing, although ILC is employed.

Furthermore, due to human variance during repetitive 
pHRI, the same period cannot be guaranteed for every itera-
tion. Therefore, this paper develops a period-varying ILC that 
ensures learning convergence in the presence of human uncer-
tainty. In the literature of ILC, some recent works [30–35] 
investigate the problem of period-varying ILC which lay the 
foundation of our controller. In particular, [33] proposes an 
ILC scheme with an iteration-average operator for discrete-
time linear systems where the iteration period could be ran-
domly varying. [34] introduces an ILC scheme based on an 
iteratively moving average operator for nonlinear dynamic 
systems with randomly varying iterative periods. Different 
from the above two methods, [35] applies the adaptive design 
framework for continuous-time parametric nonlinear systems 
with varying iteration periods. Similar to other ILC methods as 
discussed above, these three methods also require a predefined 
desired output trajectory. In this paper, the human’s unknown 
desired trajectory will be first learned by using a human limb 
model and by formulating a zero force regulation problem. 
Then, it will be tracked by the robot so it can reduce human’s 
control effort.

Through the above discussion, this paper has the following 
contributions: 

1.	 Based on a simplified human limb model, estimation of 
the human partner’s desired trajectory is formulated as 
a force regulation problem.

2.	 Different from traditional ILC which has been mainly 
used for trajectory tracking, we develop ILC to achieve 
force regulation and estimation of human trajectory, ena-
bling the robot to proactively cooperate with the human 
through repetitive pHRI.

3.	 A period-varying ILC is developed to deal with the 
problem of interactions with uncertain time durations 
due to human variance, so it can be applied to a wider 
range of pHRI applications.

The rest of the paper is arranged as follows: Sect. 2 introduces 
the main problem formulation, including the system descrip-
tion and the novel control objective. In Sect. 3, a non-standard 
ILC is designed to solve the problem of varying iterative peri-
ods and theoretical analysis is conducted to show the learn-
ing convergence and system stability. Furthermore, the pro-
posed algorithm is testified by simulations and experiments in 
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 � Problem formulation

2.1 � System description

In this paper, we consider a typical human–robot collabora-
tion scenario that is composed of a robotic manipulator and its 
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human partner. The human partner guides the robotic manip-
ulator along a trajectory to complete a task, e.g. painting a 
surface with a certain curvature. This trajectory is determined 
by the human but cannot be preprogrammed to the robotic 
manipulator. The interaction force between the human hand 
and the robotic manipulator is measured by a force sensor at 
the end-effector of the robotic manipulator.

The dynamics model of the n-degrees-of-freedom (n-DOF) 
robotic manipulator is given as below:

where 𝜃, 𝜃̇, 𝜃̈ ∈ ℝ
n represent the joint position, velocity 

and acceleration vectors, respectively; H(�) ∈ ℝ
n×n is the 

symmetric positive definite mass matrix; C(𝜃, 𝜃̇)𝜃̇ ∈ ℝ
n , 

G(�) ∈ ℝ
n denote the torques due to centrifugal and grav-

ity; u ∈ ℝ
n is the joint torque applied by robotic actuators; 

J ∈ ℝ
n×n is the Jacobian matrix that relates the joint velocity 

to the linear and angular velocities of the end-effector; and 
Fh ∈ ℝ

n is the robot/human interaction force that can be 
measured by a force sensor.

It is often desirable to describe the manipulator dynamics in 
the Cartesian space for the convenience of analysis, when the 
interaction takes place at the end-effector. The robot dynamics 
in the Cartesian space are given by

where X ∈ ℝ
n represents the position of the end effector. 

The velocity and acceleration satisfy

Then, we obtain

According to [20], dynamics of a robot’s environment can 
be described by a spring model. This corresponds to the 
equilibrium point control model that describes human motor 
control [36], which is given below:

where Kh is the n × n equivalent stiffness matrix and Xh is 
the desired trajectory of the human. With Eqs. (2) and (5), 
we have a full description of the system dynamics and are 
ready to discuss the control objective.

(1)H(𝜃)𝜃̈ + C(𝜃, 𝜃̇)𝜃̇ + G(𝜃) = u − JTFh

(2)HxẌ + CxẊ + Gx = J−Tu − Fh

(3)
Ẋ = J𝜃̇

Ẍ = J𝜃̈ + J̇𝜃̇

(4)

Hx = J−THJ−1

Cx = J−T (C − HJ−1J̇)J−1

Gx = J−TG

(5)Fh = Kh(X − Xh),

2.2 � Control objective

In traditional control tasks, the reference trajectory of the robot 
is available for the control design. However, in this paper, it 
should be designed according to the desired trajectory that is 
determined by the human partner and unknown to the robot. 
In the rest of the paper, we propose an approach to estimate 
the human partner’s desired trajectory and control the robot 
to track it.

For this purpose, impedance control is adopted with the 
following target impedance model:

where Xr is the robot’s reference trajectory. Md , Cd and Gd 
are inertia, damping and stiffness matrices that are specified 
by the control designer, respectively.

To make Eq. (2) identical to Eq. (6), the robot’s joint torque 
is given by u = JTF with

To estimate the human partner’s desired trajectory, we 
observe from Eq. (5) that the interaction force Fh becomes 
0 when the human’s desired trajectory is perfectly tracked, 
i.e. X = Xh . This indicates that we can minimize Fh so that 
the robot’s trajectory X gets close to Xh as much as possible. 
Based on this idea, the control objective becomes

The next question is how to design the reference trajectory 
Xr to achieve the above control objective. As discussed in the 
Introduction, this reference trajectory can be learned through 
repetitive interaction between the robot and the human. In 
particular, we will adopt ILC to iteratively update Xr so that 
the control objective Fh = 0 is eventually achieved.

The control flow is illustrated in Fig. 1, where i represents 
the number of iterations. The “Impedance Control” part shows 
that the robot dynamics (2) are controlled by the robot control-
ler (7), which has inputs Xri

 and Fhi
 measured by a force sensor 

in the “Measurement and Storage” part. In the “Update Refer-
ence Position” part, (5) is an internal human model that relates 
the position information and interaction force Fhi

 , which is also 
used to derive the dynamics model (12). Then, the developed 
ILC (26) uses the dynamics model (12) to update the reference 
trajectory Xri+1

 and store it for the use in the next iteration, 
which will be detailed in the following section (Fig. 1).

(6)Md(Ẍ − Ẍr) + Cd(Ẋ − Ẋr) + Kd(X − Xr) = −Fh

(7)
F =CxẊ + Gx + Fh − HxM

−1
d
{Cd(Ẋ − Ẋr)

+ Kd(X − Xr) + Fh + Ẍr}

(8)Fh = 0
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3 � Controller design

3.1 � System model transformation

For clarity of presentation, in the subsequent analysis we con-
sider each Cartesian variable independently and replace Md , 
Cd , Kd , E, Fh , Fr by md , cd , kd , e, fh , fr , respectively. In this 
way, the target impedance model in a single direction becomes

By using the Laplace transform of (9), we have

Using the environment model (5), x(s) can be described by 
x(s) =

fh(s)

kh
+ xh(s) . Substituting for x(s) in (10) yields

The above equation combines the robot’s impedance 
model and the human motor control model. By defining 
f �
h
(s) = fh(s)∕(mds

2 + cds + kd) , we have

f ′
h
 can be simply interpreted as a filtered signal of fh . Then, 

we convert the system in Eq. (12) from the frequency 
domain back to the time domain, and obtain the time-domain 
state-space form as follows:

(9)md(ẍ − ẍr) + cd(ẋ − ẋr) + kd(x − xr) = −fh

(10)(mds
2 + cds + kd)(x(s) − xr(s)) = −fh(s)

(11)fh(s) +
khfh(s)

mds
2 + cds + kd

= kh(xr(s) − xh(s))

(12)
mds

2f �
h
(s) + cdsf

�
h
(s) + (kd + kh)f

�
h
(s) = kh(xr(s) − xh(s))

(13)

𝜑̇(t) =A𝜑(t) + Be(t), 𝜑(t) =

[
f �
h
(t)

ḟ �
h
(t)

]
,

A =

[
0 1

−(kd+kh)

md

−cd

md

]
, B =

[
0
kh

md

]
,

where e(t) = xr(t) − xh(t) . In order to apply ILC, this state-
space form is further written for each iteration as below:

where t ∈ [0, Ti] and i ∈ [1, N] is the iteration index. N is the 
total number of iterations and Ti is the trial length of the ith 
iteration. C = [1, 1] and ei(t) , �i(t) , �i(t) denote input, state 
and output of the system (14), respectively. Note that Ti may 
be different in a different iteration, as the human introduces 
uncertainty to the interaction. Therefore, traditional ILC 
with a fixed period cannot apply to this case. In the follow-
ing subsection, we will develop an ILC with varying periods.

Moreover, it is important to emphasize that the control 
objective is to make the interaction force Fh be zero, indicat-
ing that the human partner’s desired trajectory will be tracked. 
This is denoted as limi→∞ fhi(t) = 0 and limi→∞ ei(t) = 0 in the 
framework of ILC. Thus, for the system (12), ed(t) = 0 and 
�d(t) = 0 are the desired input and output, respectively.

3.2 � ILC design

The main problem about the ILC design for the system in Eq. 
(14) is that the period Ti is uncertain and usually different from 
a fixed period Td . In order to address it, we first give some defi-
nitions and assumptions that will be used in the later design.

Definition 1  �[⋅] , �[⋅] and �[⋅] denote the occurrence prob-
ability of the event, the expectation of a random variable and 
the probability distribution function.

Assumption 1  Assume that Ti is a stochastic variable, and 
its probability distribution function is

where 0 ≤ p(t) ≤ 1 is a known continuous function. Tmin 
and Tmax are the minimum and maximum of Ti that can be 
obtained through multiple iterative experiments.

Assumption 2  �i(0) = �d(0) , which indicates that the initial 
state is the same at every iteration.

If Ti = Td and initial conditions are consistent, an open loop 
D-type ILC for the system (14) is usually designed as

where 𝜇i(t) = 𝜌i(t) − 𝜌d(t) = f �
hi
(t) + ̇f �hi(t) is the tracking 

error on the interval [0, Td] , 𝜇̇i(t) is the derivative of �i(t) on 

(14)
{

𝜑̇i(t) = A𝜑i(t) + Bei(t)

𝜌i(t) = C𝜑i(t)

(15)�Ti
(t) = �[Ti ≤ t] =

⎧⎪⎨⎪⎩

0, t ∈ [0, Tmin]

p(t), t ∈ [Tmin, Tmax]

1, t > Tmax

(16)ei+1(t) = ei(t) + 𝜔𝜇̇i(t)

Fig. 1   Control flow
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[0, Td] , and � is the learning rate. Considering that xh(t) does 
not change with the iteration, i.e. xhi(t) = xhi+1(t) , Eq. (16) 
can be rewritten as

which gives an updating law for xr . When the actual period 
Ti ≠ Td , which is the case of the non-standard ILC, the 
updating law (17) has to be redesigned.

Since Ti changes with iteration, two cases need to be 
discussed: Ti < Td and Ti ≥ Td . On the one hand, Ti < Td 
means that the ith iteration ends before the desired period, 
so both the output �i(t) and �i(t) on the time interval [Ti, Td] 
are missing, which thus cannot be used for learning. On 
the other hand, Ti ≥ Td means that the ith iteration is still 
running after the desired period, the data from (Ti, Td] are 
redundant and useless. In order to deal with those missing 
data or redundant data in different cases, a sequence of 
stochastic variables is defined to satisfy Binomial distribu-
tion, so that a newly defined force error �i(t) is introduced 
to improve the traditional ILC.

The main improvement process has the following four 
steps: 

1.	 Define the stochastic variable �i(t) to satisfy the Bino-
mial distribution.

	   In this paper, we define �i(t) , t ∈ [0, Tmax] as a stochas-
tic variable satisfying Binomial distribution and taking 
binary values 1 and 0. �i(t) = 1 indicates that the control 
process of (14) can arrive at time t in the ith iteration. 
The probability of �i(t) = 1 is q(t), where 0 < q(t) ≤ 1 
is a distribution probability function of time t. �i(t) = 0 
indicates that the control process of (14) cannot arrive 
at time t, which occurs with a distribution probability of 
1 − q(t).

2.	 Compute the probability �[�i(t) = 1] and the expectation 
�[�i(t)].

	   Because of Tmin ≤ Ti ≤ Tmax the control process 
(14) will not stop before Tmin . �i(t) = 1 is the inevitable 
event when t ∈ [0, Tmin] , which implies that q(t) = 1 , 
∀t ∈ [0, Tmin) . For the scenario of t ∈ [Tmin, Tmax] , 
the event �i(t) = 1 represents that the control process 
(14) stops at or after time t, which means that Ti ≥ t . 
�[Ti = t] = 0 is applied, thus 

 Combining Eqs. (15) and (18), we can obtain that 

(17)xri+1(t) = xri(t) + 𝜔𝜇̇i(t)

(18)

�[�i(t) = 1] =�[Ti ≥ t]

= 1 − �[Ti ≤ t]

= 1 − FTi
(t)

 Because �i(t) satisfies the Binomial distribution 
and taking binary values 1 and 0, the expectation 
�[�i(t)] = q(t) ⋅ 1 + (1 − q(t)) ⋅ 0 = q(t).

3.	 Define a modified force error.
	   Denote the modified tracking error as 

 Taking derivative on both sides of the equation leads to 

 If Ti < Td , Eq. (21) can be rewritten to 

 If Ti ≥ Td , Eq. (21) can be rewritten to 

4.	 Design a new ILC updating law.
	   In order to compensate for the missing data and 

reduce the error of single learning, an iteratively mov-
ing average operator is introduced, as below 

 for a sequence ei−m(t), ei−m+1(t), ei−m+2(t)… , ei(t) with 
m ≥ 1 , which includes only the recent m + 1 iterations 
that could provide more accurate control information 
for learning process. The ILC updating law is given as 
follows: 

 where the learning rates �j ∈ � , j = 0, 1, 2, 3… ,m and 
ei(t) = 0, i < 0 . Considering Eq. (17), we develop the 
following updating law for xr : 

With the above design, the main result of this paper is 
presented in the following theorem and its proof is in the 
Appendix.

(19)q(t) = 1 − FTi
=

⎧
⎪⎨⎪⎩

1, t ∈ [0, Tmin]

1 − p(t), t ∈ [Tmin, Tmax]

0, t > Tmax

(20)�∗
i
(t) = �i(t)�i(t), t ∈ [0, Td]

(21)𝜇̇∗
i
(t) = 𝛾i(t)𝜇̇i(t), t ∈ [0, Td]

(22)𝜇̇∗
i
(t) =

{
𝜇̇i(t), t ∈ [0, Ti]

0, t ∈ (Ti, Td]

(23)𝜇̇∗
i
(t) = 𝜇̇i(t), t ∈ [0, Td]

(24)Φ{ei(t)} =
1

m + 1

m∑
j=0

ei−j(t),

(25)ei+1(t) = Φ{ei(t)} +

m∑
j=0

𝛽j𝜇̇
∗
i−j
(t), t ∈ [0, Td]

(26)xri+1(t) = Φ{xri (t)} +

m∑
j=0

𝛽j𝜇̇
∗
i−j
(t), t ∈ [0, Td]
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Theorem 1  For the system (14) and the ILC scheme (26), we 
choose the appropriate learning rates �j , j = 0, 1, 2, 3… ,m 
so that for any constant 0 ≤ 𝜖 < 1,

where �j = supt∈[0,Td]

{
| 1

m+1
− �jCB|q(t) + 1−q(t)

m+1

}
 , then the 

tracking error �i(t) , t ∈ [0, Td] will converge to zero 
iteratively.

Remark 1  While the probability distribution of Ti is 
unknown, it could be estimated based on preliminary experi-
ments. Thus, the probability distribution function FTi

(t) in 
Assumption 1 is known and q(t) is available for controller 
design that can be calculated by Eq. (19).

(27)
m∑
j=0

�j ≤ �

4 � Simulations

4.1 � Simulation I

In this section, we consider a single joint application sce-
nario with an exoskeleton robot for gait tracking through 
iterative learning. Related works have been done for lower-
limb exoskeleton for gait tracking and rehabilitation, such as 
[37, 38]. As shown in Fig. 2a, in the simulation we suppose 
that the interaction force could be measured by the force 
sensor mounted on the exoskeleton.

The desired joint trajectory of the user’s gait is set as 
qh(t) =

�t

20
−

�

2
 , t ∈ [0, 10] s and Td = 10 s, indicating that the 

rotational joint is moving at a constant speed. The param-
eters of the desired impedance model are set as: md = 0.1 
kg, cd = 25 N/(m/s) and kd = 20 N/m. The human leg’s 

(a) (b)

(c) (d)

Fig. 2   a Simulated gait tracking scenario. b The process of learning a desired trajectory. c Change of the joint angles. d Interaction forces
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stiffness is set as kh = 18 N/m. In the Cartesian space, we 
take into account the change of the endpoint position in the 
X direction. The link length is 0.5 m, so according to the 
mapping between joint angles and endpoint position, we 
can obtain that the desired endpoint position with time is 
xh = −0.5cos(

�t

20
).

The reference trajectory before learning is 
xr0(t) = (−0.5, 0) m, t ∈ [0, 10] and the initial position is 
(−0.5, 0) m for all iteration trails. The learning period of 
each iteration will change because of the user’s influence, so 
the periods of the 4th, 5th, 6th, 7th, 8th and 10th are differ-
ent from Td . And we assume that the period obeys a normal 
distribution on the time range [6, 10] s with a mean of 8 and 
a standard deviation of 0.2. As is shown in Fig. 2b–d, the 
end of each iteration is marked with a dot. In order to obtain 
better simulation results, we take the first three results as the 
iteratively moving average operator’s elements, so m is set 
as 3 and �0 = �1 = �2 = �3 = 0.25.

The tracking performance of the trajectory and joint angle 
are shown in Fig. 2b, c. It can be seen from the two figures 
that the actual position and joint angle trajectory (the solid 
lines in different colors) track the desired trajectory (the 
curve shown by the dotted red line) rapidly and precisely. 
In addition, the interaction force converges to zero after 20 
learning iterations which can be observed from Fig. 2d. 
These results show that the whole learning process is also 
a skill transfer process. When the robot learns the user’s 
gait, it becomes easier for the user to cooperate with the 
exoskeleton robot.

4.2 � Simulation II

Different from simulation I, in this section, a 2-DOF manip-
ulator is used to verify the proposed period-varying ILC 
algorithm. A typical trajectory learning process is consid-
ered in this simulation which can emulate an application 
of object manipulation, as is shown in Fig. 3a. The robot 
moves in the X − Y  plane with an initial position (0, 0)m. 
With the guidance of a human partner, the robot gradually 
learns to track the desired trajectory that is determined by 
the human partner. It is assumed that the interaction force is 
only exerted in the Y direction and the robot’s speed in the X 
direction is 0.1 m/s. The desired trajectory in the Cartesian 
space is xh =

sin0.2�t

2
+

sin0.1�t

2
m , t ∈ [0, 10] and thus Td = 10 

s is the desired period. The parameters of the desired imped-
ance model are set as: md = 0.5 , cd = 28N∕(m∕s) and kd = 26 
N/m. The human arm’s stiffness is set as kh = 20 .

Without loss of generality, the input of the initial iteration 
is xr0(t) = [0, 0] , t ∈ [0, 10] s. In this simulation, we assume 
that the iteration period obeys the Gaussian distribution with 
a mean of 10 and a standard deviation of 0.2. We further set 
m = 3 and �0 = �1 = �2 = �3 = 0.2 . The algorithm runs for 
20 iterations.

The tracking performance of the trajectory is shown in 
Fig. 3b, where the lengths of the 4th, 5th, 6th, 8th and 10th 
periods are different from the desired one. It is obvious that 
the robot can gradually reach the human’s desired trajectory 
xh . The interaction forces at the 4th, 5th, 6th, 8th, 10th, 15th 
and 20th are shown in Fig. 3c. It is observed that the inter-
action force is reduced to zero in the 20th iteration, so the 
robot fully learns the desired trajectory and it can eventually 
complete the task alone.

In addition, we change the value of kh to represent the 
stiffness of different human users, varying from 10 to 28 
N/m, i.e. khuser1 = 10 N/m, khuser2 = 12 N/m … khuser10 = 28 
N/m. According to the above task and parameters, simula-
tions are designed to show the tracking performance of ten 
different users. Furthermore, we introduce traditional imped-
ance control with zero stiffness for comparison. In order to 
facilitate comparison of the results, the values of inertia and 
damping parameters are the same as in the proposed ILC. 
For the proposed ILC, we record the different users’ total 
iteration numbers, maximum errors and maximum interac-
tion forces after convergence. For the impedance control, 
the maximum errors and maximum interaction forces are 
recorded.

(a)

-0.5

0
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1

(b)

0 2 4 6 8 10

0 2 4 6 8 10
-5

0
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10

15

(c)

Fig. 3   a Human–robot collaboration scenario for carrying a cup. b 
The evolution of the trajectory learning. c Interaction force
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The tracking performance and interaction force of 
impedance control with different users are shown in 
Fig. 4a, b where different colors represent different users, 
while it can be found that different users’ tracking tra-
jectories almost overlap. With the proposed method, the 
number of iterations is different for each user, which 
decreases as kh increases in an appropriate range as shown 
in Fig. 5a. From Fig. 5b, c, it can be found that the pro-
posed ILC achieves smaller maximum error and interac-
tion force compared with impedance control for different 
users. Thus, the proposed method improves the tracking 
accuracy and dramatically reduces the interaction force so 
less human effort is required.

Simulation I and II demonstrate that the proposed 
method for tracking repeated trajectories is feasible. 
However, parameters of the desired impedance model and 
learning rates of the ILC are different, as the choice of 
parameters will affect the accuracy of tracking and the 
speed of convergence. Based on the desired impedance 
parameters in reference [22], we adjust them appropriately 
and find that they should not be chosen too large, other-
wise the system will become unstable. For iterative learn-
ing rates, they must satisfy the condition in Theorem 1. It 
is worth noting that large learning rates �i lead to faster 
convergence but larger tracking errors, whereas small 
learning rates will make the iteration number increase. 
The influence of the impedance parameters and the itera-
tive learning rates have been extensively studied in the 
literature [22, 33, 34], respectively, so this paper does not 
discuss it further.

5 � Experiment verification

In this section, to verify the validity of the proposed algo-
rithm we carry out an experiment on the Sawyer robot, 
which is a 7-DOF manipulator equipped with a motor 
encoder and a torque sensor in each joint. As is shown in 
Fig. 6, a human user guides the robot manipulator to track a 
circular trajectory according to his intent but this trajectory 
is unknown to the robot. This experiment setup emulates an 
industrial application where the robot learns a motion from 
the human partner through repetitive collaboration. In the 
experiment, joints 1 and 2 are used which make the experi-
mental platform similar to that in the simulation in Fig. 3a.

The experiment process is shown in Fig. 6, with a circular 
trajectory that starts from A(0.26, 0) m and has a diameter 
of 0.4 m. We set the desired period as Td = 20 s that is esti-
mated by preliminary experiments. In the X-axis direction, 
we set

where Ti is the period of each iteration determined by the 
human user. In the Y-axis direction, there is a vertical 

(28)xr =

{
0.8

Td
t + 0.26, 0 ≤ t <

Td

2

0.66 −
0.8

Td
t,

Td

2
≤ t ≤ Ti

-0.5

0

0.5

1

(a)

0 2 4 6 8 10

0 2 4 6 8 10
-2

0

2
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Fig. 4   a Ten users’ trajectories by impedance control. b Ten users’ 
interaction forces by impedance control
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Fig. 5   a Iteration number with k
h
 varying from 10 to 28. b Maximum 

tracking error for different users. c Maximum interaction force for dif-
ferent users



237Iterative learning of human partner’s desired trajectory for proactive human–robot…

1 3

interaction force on the robot’s end-effecter. One key issue 
of the experiment is to measure the interaction force, since 
there is no force sensor that can directly measure the force 
at the end-effector. Therefore, we convert the joint torque 
that can be measured by the torque sensor at each joint to 
obtain the approximate interaction force. The parameters 
used in the experiment are summarized in Table 1. Because 
the physical meaning of each parameter is introduced above, 
we do not repeat them here.

During the process of the experiment, due to continuous 
change of human–robot interaction force and the interfer-
ence of friction in each joint, the learning period Ti changes 
accordingly. We record the learning periods of typical itera-
tions in Table 2. As is shown in Fig. 7a, we present the 
change of the interaction force over the iterations. It is worth 
noting that due to the force measurement noise, the meas-
ured data must be smoothed through a filter. And then we 
take the interaction force into the designed ILC algorithm to 
constantly update the robot’s reference trajectory. In order to 
control the motors, we convert the end-effector positions to 
joint angles through inverse kinematics. To further illustrate 
the effectiveness of the proposed algorithm, we also fit the 
filtered force data to get better tracking performance as is 
shown in Fig. 7b. Finally, the position change of the end-
effector in the Y-direction and the trajectory in the vertical 
plane are given in Fig. 7d, f.

From Fig. 7c, e, it can be seen that the robotic manipula-
tor accomplishes the trajectory tracking task under the effect 
of the actual interaction force, and the maximum error in the 
15th iteration is less than 1 cm. In addition, we get a better 
tracking performance through the fitted interaction force as 

in Fig. 7d, f. Correspondingly, the interaction force gradu-
ally decreases to 0 and the trajectory gradually converges. 
These results clearly demonstrate that the robot is able to 
track unknown human user’s desired trajectory and reduce 
human force, in presence of time-varying periods.

The proposed method is based on impedance control 
where the interaction force is modulated by refining the 
robot’s reference trajectory. However, traditional imped-
ance control generates a virtual reference trajectory but its 
real reference trajectory does not change. In comparison, 
the proposed ILC updates the robot’s real reference trajec-
tory and enables the robot to proactively move to the human 
partner’s desired trajectory with less effort.

6 � Conclusions

Unlike iterative learning control in conventional applications 
such as motion control, the reference trajectory cannot be pro-
grammed for the robot in the coupled system of human–robot 
interaction. Therefore, we introduce a simplified interaction 
force model to estimate the human partner’s desired trajectory 
and apply the filtered interaction force to update the robot’s ref-
erence trajectory. Stability of the non-standard iterative learn-
ing control system has been shown to be guaranteed by rigor-
ous analysis, where the condition of a fixed period is relaxed 
for the iterative learning control design. The validity of the 
proposed method has been verified through two simulations 
of gait tracking and trajectory learning. A further experiment 
of trajectory learning on a physical robot proves its feasibility. 
These results show that the proposed method has a potential to 

Fig. 6   This figure shows four steps of the experiment: 1. Compiling 
script algorithms under ROS in Ubuntu system to control robotic 
manipulator and read joint information. 2. Taking script instructions 
and driving the motor under the Sawyer SDK mode. 3. The data of 
each joint’s angle and torque are collected and sent to the computer. 

4. Receiving the data of each joint and calling MATLAB to filter and 
fit the data. The robotic manipulator is connected with the computer 
through the router to transmit data and instructions. In the figure on 
the right, we simplify the Sawyer robot into a 2-DOF platform and 
establish a planar coordinate system
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(a) (b)

(c) (d)

(e) (f)

Fig. 7   In this figure, different iterations are described by lines in 
different colors and the end of the trial with a period less than T

d
 is 

marked with a dot. The dotted red line represents the desired trajec-
tory. a shows the actual interaction force. b shows the off-line filtered 

interaction force. c, d The curve of the end-effector position over time 
in the Y-axis direction. The trajectories of end-effector in the vertical 
plane are given in e, f. d, f Generated by fitting interaction force in b 
rather than directly filtering the data in c, e 
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reduce human effort in human–robot collaboration and transfer 
human skills to robots, which can be applied to applications 
such as heavy load transport in automotive industry and com-
pliant machining.
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Appendix

Due to the control objectives of fh(t) = 0 and e(t) = 0 , we 
have fhd (t) = 0 and �d(t) = 0 , then we obtain

From Eqs. (25) and (21), the following relationship is 
obtained

(29)

𝜇̇i(t) = 𝜌̇i(t) − 𝜌̇d(t)

=C𝜑̇i(t)

=C[A𝜑i(t) + Bei(t)]

Taking norm on both sides of Eq. (30) yields

where a is the upper bound of ‖A‖.
Taking norm on both sides of system Eq. (14) yields

where b ≥∥ B ∥ . By applying Bellman–Gronwall lemma, 
we have

(30)

ei+1(t) =Φ{ei(t)} +

m∑
j=0

𝛽j𝛾i−j(t)𝜇̇i−j(t)

=Φ{ei(t)} +

m∑
j=0

𝛽j𝛾i−j(t)C[A𝜑i−j(t)

+ Bei−j(t)]

=

m∑
j=0

[
1

m + 1
− 𝛽j𝛾i−j(t)CB

]
ei−j(t)

+

m∑
j=0

𝛽j𝛾i−j(t)CA𝜑i−j(t)

(31)

‖ei+1(t)‖ ≤
m�
j=0

����
1

m + 1
− CB�j�i−j(t)

����‖ei−j(t)‖

+

m�
j=0

a��j��i−j(t)‖�i−j(t)‖

(32)‖�i(t)‖ ≤ �
t

0

a‖�i(�)‖ + b‖ei(�)‖d�

(33)

‖�i(t)‖ ≤beat �
t

0

‖ei(�)‖d�

= beat �
t

0

‖ei(�)‖e−��e��d�

≤beat‖ei(t)‖� �
t

0

e��d�

= beat
e�t − 1

�
‖ei(t)‖�

Table 1   Experiment parameters

�
0

�
1

�
2

�
3

m

0.2 0.2 0.1 0.1 3.0

m
d
 (kg) c

d
 (N/(m/s)) k

d
 (N/m) k

h
 (N/m)

2.0 25.0 26.0 0.25

Table 2   Learning periods (s)
T
1

T
3

T
5

T
7

T
9

T
11

T
13

T
15

20.0 20.20 18.86 20.38 21.36 19.80 19.47 19.92

http://creativecommons.org/licenses/by/4.0/
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According to the definition of �-norm, it can be obtained that 
‖ei(t)‖� = supt∈[0,Td]{e

−�t‖ei(t)‖∞} , 𝜆 > 0 . Then, substituting 
(33) into (31) implies that

Introducing the expectation operator �[⋅] to Eq. (34) and not-
ing that only �i(t) is the stochastic variable, we can rewrite 
Eq. (34) as

Based on the definition of stochastic variable �i(t) and the 
mathematical expectation, it follows

then

From (37) and the definition of �-norm, we obtain

Define

From Theorem 1 with (38) and (39), we have

(34)

‖ei+1(t)‖ ≤
m�
j=0

����
1

m + 1
− CB�j�i−j(t)

����‖ei−j(t)‖

+ abeat
e�t − 1

�

m�
j=0

��j��i−j(t)‖ei−j(t)‖�

(35)

‖ei+1(t)‖ ≤
m�
j=0

�

�����
1

m + 1
− CB�j�i−j(t)

����
�
‖ei−j(t)‖

+ abeat
e�t − 1

�

m�
j=0

��j��{�i−j(t)}‖ei−j(t)‖�

(36)

�

{||||
1

m + 1
− CB�j�i−j(t)

||||
}

=
||||

1

m + 1
− 1 ⋅ �jCB

||||q(t)

+
||||

1

m + 1
− 0 ⋅ �jCB

||||(1 − q(t))

=
||||

1

m + 1
− �jCB

||||q(t) +
1 − q(t)

m + 1

(37)

‖ei+1(t)‖ ≤
m�
j=0

�����
1

m + 1
− CB�j

����q(t) +
1 − q(t)

m + 1

�
‖ei−j(t)‖

+ abq(t)eat
e�t − 1

�

m�
j=0

��j�‖Fhi−j
(t)‖�

(38)

‖ei+1(t)‖� ≤
m�
j=0

sup
t∈[0,Td]

�����
1

m + 1
− CB�j

����q(t) +
1 − q(t)

m + 1

�
‖ei−j(t)‖�

+ abq(t)eaTd
e�Td − 1

�

m�
j=0

��j�‖ei−j(t)‖�

(39)� ≜ abq(t)eaTd
e�Td − 1

�

m∑
j=0

|�j|

where 0 < q(t) < 1 is applied. When � is sufficiently large, � 
can be made as small as possible. According to Eq. (27), it 
yields that 

∑m

j=0
𝛼j + 𝛿 ≤ 𝜖 + 𝛿 < 1 , so we have limi→∞ ei = 0 

and the control objective xd(t) = xh(t) is achieved.
According to the convergence of ei and the inequality 

(33), it is obvious that

so we can get limi→∞ fhi(t) = 0 which indicates that 
limi→∞ xi(t) = xh(t) and the robot tracks the human’s desired 
trajectory.
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