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Abstract
Weaning from mechanical ventilation in the intensive care unit (ICU) is a complex clinical problem and relevant for future
organ engineering. Prolonged mechanical ventilation (MV) leads to a range of medical complications that increases length
of stay and costs as well as contributes to morbidity and even mortality and long-term quality of life. The need to reduce
MV is both clinical and economical. Artificial intelligence or machine learning (ML) methods are promising opportunities to
positively influence patient outcomes. ML methods have been proposed to enhance clinical decisions processes by using the
large amount of digital information generated in the ICU setting. There is a particular interest in empirical methods (such as
ML) to improve management of “difficult-to-wean” patients, due to the associated costs and adverse events associated with
this population. A systematic literature search was performed using the OVID, IEEEXplore, PubMed, and Web of Science
databases. All publications that included (1) the application of ML to weaning fromMV in the ICU and (2) a clinical outcome
measurement were reviewed. A checklist to assess the study quality of medical ML publications was modified to suit the
critical assessment of ML in MV weaning literature. The systematic search identified nine studies that used ML for weaning
management from MV in critical care. The weaning management application areas included (1) prediction of successful
spontaneous breathing trials (SBTs), (2) prediction of successful extubation, (3) prediction of arterial blood gases, and (4)
ventilator setting and oxygenation-adjustment advisory systems. Seven of the nine studies scored seven out of eight on the
quality index. The remaining two of the nine studies scored one out of eight on the quality index. This scoring may, in part,
be explained by the publications’ focus on technical novelty, and therefore focusing on issues most important to a technical
audience, instead of issues most important for a systematic medical review. This review showed that only a limited number
of studies have started to assess the efficacy and effectiveness of ML for MV in the ICU. However, ML has the potential to
be applied to the prediction of SBT failure, extubation failure, and blood gases, and also the adjustment of ventilator and
oxygenation settings. The available databases for the development of ML in this clinical area may still be inadequate. None
of the reviewed studies reported on the procedure, treatment, or sedation strategy undergone by patients. Such information is
unlikely to be required in a technical publication but is potentially vital to the development ML techniques that are sufficiently
robust to meet the needs of the “difficult-to-wean” patient population.
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Introduction

Organ engineering combines engineering, cell biology, and
material sciences to improve or replace the functions of tis-
sues and organs [1]. The ability to engineer whole organs
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provides a great prospect to patients who are awaiting a lung
transplant.Mechanical ventilation (MV) is very important for
intraoperative and early post-operative management of those
who are undergoing a lung transplantation [2]. The use ofMV
to assist patients in breathing is a life-preserving procedure
in an intensive care unit (ICU) setting. MV is commonly
required for patients with a wide range of life-threatening
pulmonary, neurological, neuromuscular, and cardiac condi-
tions, aswell as to facilitate surgery under anaesthesia.Whilst
MV is an immediate necessity to preserve life, extended MV
is associatedwith a number of complications.MV-associated
complications are common and pose a significant clinical
risk as they increase morbidity and mortality amongst ICU
patients [3–6]. The weaning process may account for up to
40–50% of the total duration of MV [3, 7]. Patients receiv-
ing prolonged MV account for only 6% of all ICU patients,
yet they consume 37%of ICU resourceswhen adding general
hospitalisation costs to the costs ofMV [8]. An epidemiolog-
ical study, using data from 2009, estimated 310 per 100,000
persons in the adult population undergo invasive ventilation
for nonsurgical indications each year in the USA [9]. An ear-
lier study, using data from 2005, estimated 270 per 100,000
persons in the adult population each year. Across the USA,
approximately 800,000 patients require MV each year with
estimated national costs of $27 billion. This accounts for
12% of total hospital costs [10]. Furthermore, ventilation-
associated pneumonia (VAP) is estimated to be developed
in 9–27% of ICU patients. The additional cost of VAP, due
to increased medication, staff, diagnostic tests, and hospital-
isation was estimated to be approximately US$40,000 per
hospital per year [9, 10].

Early recognition of patients who are capable of some
level of independent respiration is necessary to begin to grad-
ually liberate the patient fromMVand ultimately achieve full
independent respiratory function. This process of liberating
the patient from mechanical support and the endotracheal
tube is commonly referred to as “weaning”. Weaning is an
essential element in the care of critically ill intubated patients
receiving MV, yet there is uncertainty and controversy as
to the best methods for conducting this process. Weaning
management is therefore an important clinical issue for both
patients and clinicians alike.

The clinical goals of weaning fromMV are twofold: first,
to promptly identify those patients who are ready to begin
the process of weaning, and second, to optimise the wean-
ing regime to reduce the transition time from dependence to
independence from MV. MV can generally be withdrawn in
a phased approach. However, a withdrawal that is too rapid
may precipitate respiratory collapse that hinders the patient’s
recovery.Anapproach that is too conservative risks failures to
exploit the patient’s full physiological potential and extends
the duration of ventilation. Either failure carries the associ-

ated risks of VAP or other ventilator-induced lung injuries.
Accurate and robust prediction of a patient’s reaction to a
particular weaning strategy is not currently possible. Com-
putational intelligence presents an opportunity to assess the
effect of a multitude of clinical factors on the outcomes of
patient populations. Furthermore, computational intelligence
may facilitate the development of patient-specific models to
better-tailor clinical inference to individualised evidence.

To improve current clinical practice, a number of stud-
ies have compared the use of clinical guidelines (protocols)
and/or automated weaning systems to the common clinical
practice of leaving the clinician to decide when to wean.
Overall, it was demonstrated that the introduction of proto-
cols and/or the use of automated weaning systems reduced
(1) the average total time spent on MV, (2) the duration of
the weaning process, and (3) the overall length of time spent
in the ICU [11–13]. Whilst demonstrating the importance of
considering weaning potential in all patients, many studies
lacked sufficient detail about usual care practices (against
which the protocol-driven results were compared). Further-
more, clinical studies often exclude the “difficult-to-wean”
population, since the modification to protocols may have an
adverse effect on the patient outcome. This leads to a high
risk of bias in the clinical research, where findings cannot be
generalised for the population who consumes the most MV
related resources.

Furthermore, there is significant inter-protocol variation,
as well as significant variation in the magnitude of improve-
ment achieved in different studies. No studies compared
multiple rigorous protocols (comparisons were only made
to protocol-free practice); therefore, no clear consensus has
been reached as to which protocols will work best for par-
ticular patients [11–13]. A further confounding factor in the
comparison of studies’ results is the existence of dozens of
different ventilator systems currently in clinical use, with
hundreds of different possible modes of ventilation. Vari-
ability in studies and baseline practices makes it difficult to
generalise findings across ICUs.

In practice, weaning is generally performed by reducing
ventilatory support and assessing the effect. The outcome
of such a trial may be quantified by a multitude of vital
sign parameters such as respiratory rate, heart rate, blood
oxygen saturation, or carbon dioxide tension. Subjective bed-
side assessments include respiratory distress. Heterogeneity
in both patients and clinical practice means that these clinical
parameters are variable in their predicative value. Even the
definition of clinical outcome is uncertain given that weaning
failure may occur over a range of timescales. The difficulty
for a human expert to evaluate such multidimensional longi-
tudinal set of predictors motivates a computational approach
to learning relations between predictors and outcomes.
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Computational intelligence in weaning

Many commercially available ventilators have in-built auto-
mated weaning modes [13]. Such automated systems are a
simple form of automated computational intelligence or AI.
These systems are model-based systems, in which a model
of physiology is specified a priori, and the parameters of
this physiological model are subsequently calculated using
data acquired from the MV patient [14]. Model-based sys-
temsmayproduce suboptimal outcomes in a practical clinical
environment depending on the data available and themodel’s
assumptions. For example,when themodel’s assumptions are
grossly violated or when (unbiased) inference of the param-
eters from the data is impossible. On the other end of the
spectrum are the data-driven systems employing machine
learning (ML) algorithms. Knowledge-based systems rely on
data-driven knowledge extraction andmodel specification. In
the case of weaning from MV, the factors governing the res-
piratory system in an ICU environment aremultifactorial and
it is not feasible to create amodel that is effective across a dif-
fuse patient population without the use of knowledge-based
AI techniques.

MLmethods can be categorised into supervised, unsuper-
vised, and reinforcement learning. In supervised learning, a
set of inputs (or predictor variables) is mapped to a set of out-
puts (or outcome variables), where the mapping is specified
via one or more mathematical functions [15]. For example,
respiratory tidal volumes (volume of air being inhaled and
exhaledwith each respiratory cycle [16]) can be used as input
parameters to predict the success or failure of a spontaneous
breathing trial (SBT) as an outcome [17, 18]. Unsupervised
learning is where learning is carried out with only a set of
inputs, and where no predefined outcome is provided, out-
comes or features of interest are defined implicitly from the
relation between various inputs.

A subfield of ML techniques, known as novelty detec-
tion or one-class-classification, draws from elements of both
supervised and unsupervised learning. Novelty detection is
popular in instanceswhere there is insufficient data to reliably
define the relationship between predictors and all outcomes
of interest. This is common, for example, in the case of med-
ical data where data sets for acutely ill patients are rarely
available, compared to the relative abundance of data for
healthy patients. Novelty detection learns the (unsupervised)
interrelationof predictive inputs for a predefined (supervised)
class of outcomes. Novel data are then defined by this devia-
tion from these learned relations with explicit assignment to
a separate class [19].

Reinforcement learning is a decision-making model that
learns the optimal sequence of decisions in an environ-
ment based on rewards received to achieve a task [15]. ML
techniques that are currently used in the field of weaning
management are commonly supervised methods.

Clinical efficacy and effectiveness

ML methods need to prove clinical efficacy and effective-
ness in order to be applicable in clinical practice. Efficacy
refers to the performance of the method under ideal and con-
trolled conditions, whilst effectiveness is its performance
under typical clinical conditions [20]. Trials that evaluate
efficacy and effectiveness in isolation are not common [21].
In a clinical trial, the difference between usual or retro-
spective “uncontrolled clinical practice” would be compared
with a controlled protocolised practice [11, 22]. Measur-
able clinical outcomes by which to evaluate weaning include
weaning duration, rate of successful weaning trials, reintuba-
tion rates, length of stay in hospital, and mortality [23–25].
In accordance with medical publications, efficacy and effec-
tiveness will be assessed via a systematic review, with
predefined inclusion and exclusion criteria. Relevant reviews
without these inclusion/exclusion criteria include [11, 26,
27]. Prior systematic reviews assessed extensively whether
“protocolised versus non-protocolised” [11] and “automated
versus non-automated” [13] weaning reduced the duration of
mechanical ventilation. ML techniques have shown potential
in various clinical applications [28–30]; the aim of this paper
therefore assesses the field’s current knowledge of the effi-
cacy and effectiveness of machine learning for weaning in
mechanically ventilated ICU patients.

Methods

Search strategy

A systematic search on OVID, IEEEXplore, PubMed, and
Web of Science was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines.

A combination of 30 keywords was devised to capture
all studies that included ML applications in MV weaning
management in an ICU setting with an outcome measure. In
the PubMed search, a MeshTerm was used when available to
maximise the coverage of the keywords. For the IEEEXplore
search, a refined collection of keywords was used due to the
restriction on the number of keywords. The searches were
performed to include all publications up to September 2018.
A detailed search strategy is available in the supplementary
material.

Study selection

Weaning management procedures in ICU may include (1)
sequential graded reduction in ventilator setting, (2) oxy-
genation management approach, (3) SBT, and until (4)
extubation. Studies were included if it presented aMLmodel
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applied in any of the above weaning-related procedures,
as well as if the article explicitly mentions weaning. Stud-
ies must include ML to be included in this review; studies
on common knowledge-based automated weaning methods
were not included as those have previously been extensively
reviewed by Rose et al. [13]. The other important inclusion
criteria were that the study must provide a clinically rele-
vant way to evaluate their ML methodology. This inclusion
criterion was designed to be as generic as possible, as there
is a wide range of weaning management procedures and the
outcome measure of each of these areas may not be easily
unified. Therefore, the focus here is to include studies that
provided an evaluation of theirML framework either through
comparingwith retrospective ground truth based on a clinical
outcome (e.g. failed extubation, blood gasmeasurements), or
with decisions made by a clinician.

A double-blinded method was used for reviewing the
publication: two reviewers (MTK and GWC) indepen-
dently reviewed the title and abstract of each publication.
Where there was a conflict on inclusion/exclusion, reviewers
resolved by discussion of their reasoning, before reaching a
final decision to include or exclude.

Inclusion criteria were:

1. Must be written in the English language.
2. Must be peer reviewed.
3. Must contain an outcome measure, methodology alone

did not suffice.
4. Must have ML models applied to weaning management

in an ICU.

Characteristics and data extracted from each study were
(a) year of publication, (b) ML model used, (c) size of train-
ing/validation data set, (d) method of validation, (e) size of
test set, and (f) type of ground truth used.

Quality assessment

The quality of each article was assessed by adapting the
Joanna Briggs Institute (JBI) critical appraisal checklist for
cross-sectional research [31] to ML in MV literature. This
methodology was used, e.g. in Islam et al. [32] to review
the application of data mining on healthcare analytics. The
checklist was adapted to be applicable for ML applications
for weaning in an ICU setting, and themodified checklist can
be found in Table 1.

Results

A total of 417 records were identified from the search from
OVID, IEEEXplore, PubMed, and Web of Science. After
removing a single duplicate, 416 abstracts were screened by

two authors (MTK and GWC) in a double-blinded manner
(see Fig. 1). From the initial screening phase, 20 studies were
included for the full-article screening phase based on the
study title and abstract. A total of nine studies met the inclu-
sion criteria after screening the full-articles. A summary of
study characteristics is presented in Table 2.

Descriptive summary of results

Application area

A range of applications was reviewed: weaning management
can be further subcategorised into (1) sequential ventilation
and oxygenation adjustments/decision support (n �3) [14,
21, 33], (2) T-piece SBT test (n�4) [17, 18, 35, 36], (3) blood
gas prediction (n �1) [34], and (4) extubation prediction (n
�1) [37].

Parameters collected and used

Since the area of application ranged from ventilator and
oxygenation adjustments to SBT and extubation success pre-
diction, a broad range of ventilator and vital signs parameters
were used across the studies. The most common ventilator
parameter used was tidal volume (n �6). Belal et al. used
the largest number of vital sign parameters, a total of eleven
[33]. Mikhno et al. used most of the parameters that can be
acquired from either a mechanical ventilator or a vital signs
bedside monitor, these parameters included white cell count,
PaO2/FiO2 ratio, work of breathing index and rapid shallow
breathing index [37]. The parameters collected by the studies
reviewed are summarised in Table 3.

MLmodels used

Neural network-based models, ANN (n �3) and ANFIS (n
�4), were the most common ML models used in the studies
presented. Other algorithms include SVM (n �1) and LR
(n �1). Table 4 summarises the ML algorithm used in the
reviewed studies.

Databases

In terms of data source, one study reviewed was based on
the MIMIC-II database [40], the only publicly available
database. Four studies were based on WEANDB database
collected in ICU of Hospital de la Santa Creu i Sant Pau and
theHospitalUniversitario deGetafe in Spain,whilst the other
studies were based on data collected in ICU units based in
UK hospitals (adult general ICU of the Sheffield Royal Hal-
lamshire Hospital and neonatal ICU of the Royal Liverpool
University Hospital).
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Table 1 Modified JBI critical appraisal checklist for analytical cross-sectional studies and summary of quality scores

Item Checklist Giraldo
[17]

Giraldo
[18]

Kwok
[14]

Belal
[33]

Wang
[34]

Wang
[21]

Arizmendi
[35]

Arizmendi
[36]

Mikhno
[37]

1 A clear objective and
description of inclusion
criteria of the study
population (i.e. selection
of patient group, or time
series data)

Or statement of aim prior
data to collection?

1 1 0 1 1 0 1 1 1

2 A detailed description of the
study population (i.e. how
are the patients recruited?
Which ICU, what
procedures, treatment and
sedation strategy?)

0 0 0 0 0 0 0 0 0

3 A clear description of the
data source and how data
was collected (i.e. clearly
describe method of
measurement. Machine
used, or manual notes.
Reproducible
measurements?
Artefacts?)

1 1 0 1 1 0 1 1 1

4 A valid and reproducible
data collection and
measurement method (i.e.
Was the data measured in
a reliable way?)

1 1 0 1 1 0 1 1 1

5 Attainment of ethical
approval. Was the ethical
issue (patient
confidentiality)
considered?

1 1 0 1 1 0 1 1 1

6 Were findings and
implications discussed in
detail?

1 1 1 1 1 1 1 1 1

7 Were the outcomes
(performance and result of
ML tools) measured in a
valid and reliable way?

1 1 0 1 1 0 1 1 1

8 Was appropriate
cross-validation and
evaluation method used?

1 1 0 1 1 0 1 1 1

Tablemodified from the JBI. The appraisal checklist for analytical cross-sectional studieswas applied to the studies included in this review and quality
scores allocated to each study. Available online: http://joannabriggs.org/research/critical-appraisal-tools.html. (Accessed on cited 24/09/2018)

Evaluation ground truth

To evaluate ground truths, four studies, which focussed
on SBT, used trial success or failure (and reintubation) as
an outcome. These studies did not require explicit expert
annotation. Similarly, for the study focussing on extubation
prediction, the outcome measure is governed by the success
or failure of extubation. The study on blood gas prediction
usedmeasured bloodgases values as a ground truth. The three

studies on advisory systems relied on expert agreement on
real or simulated clinical scenarios as a means of validation.

Quality index

Most studies (7 of the 9) scored seven out of eight on the
quality scoring system. These studies were able to provide
information on the checklist except for details on the pro-
cedures, treatment, and/or sedation strategy the patients had
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Fig. 1 PRISMA flowchart of
systematic review:
identification, screening,
eligibility, and inclusion. The
number of studies identified is
given for each level

00
Records identified through 

database searching 
(n=417)

Additional records 
identified through 

additional sources (n=0)

Records screened on title and abstract 
(n=416)

Full-text articles assessed 
for eligibility (n=20)

Studies included in 
qualitative synthesis (n=9)

Records excluded (n=397)

Full-text articles excluded, 
with reason (n=11)

- No ML model 
(n=9)

- No evaluation 
(n=1)

- No weaning 
(n=1) 

Records after duplicate(s) removed 
(n=416)

undergone. The remaining two studies scored one out of eight
on the quality score, because they did not detail information
of the data that was used, nor was effective validation carried
out. A summary of the scores for each study can be found in
Table 1.

Discussion

This is the first systematic review that focuses on the clin-
ical effectiveness and efficacy of the application of ML to
the management of weaning from MV in ICU. Publications
describing novel ML methodology for medical applications
are typically developed from retrospectively collected data.
This makes a direct assessment of the ML method’s effect
on clinical outcomes impossible. Instead, such papers either
focus on (1) a performancemetric that acts as a near-facsimile

of effect on clinical outcome, or (2) a performance metric
indirectly related to clinical outcome.We use the term “near-
facsimile” (to describe attempts to measure clinical efficacy
in a retrospective study) since the variability and confound-
ing factors in clinical practice make it impossible to deduce
the exact clinical effect of machine-generated information.
For example, using an ML system that provides early warn-
ing that a patient is becoming fatigued during an SBT, we
may (retrospectively) assess with accuracy the timeliness of
such alarms. However, we may not deduce from this infor-
mation whether such alarms were acted on by clinical staff
or, in turn, the timeliness of the ML-induced intervention.

We delineate between (1) the assessment of protocols at
a targeted clinical task (i.e. improvement of one or more
clinical outcomes) and (2) the assessment of ML algorithms
at ML tasks (usually inductive/generalised performance for
the task at which the ML algorithm is trained). The articles
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Table 2 Studies characteristics

First author, year
of publication

Experts ML
models

Training
set size

Validation
method

Test set
size

Ground truth
(performance measure
provided by the study)

Application area

SBT/T-piece test

Giraldo, 2006
[17]

N/Aa ANN 56 8-FCV 8 Success or failure of
SBT

Giraldo, 2006
[18]

N/A SVM 146 LOOCV – Success or failure of
SBT

Arizmendi, 2009
[35]

N/A ANN 149 10-
FCV

– Success or failure of
SBT, or reintubated
within 48 h

Arizmendi, 2018
[36]

N/A ANN 8 5-FCV – Success or failure of
SBT, or reintubated
within 48 h

Advisory system

Belal, 2005 [33] Two registrars
and three
nurses

ANFIS 7 – – 91% expert agreement
on ventilator setting
and 85% on
oxygenation

Kwok, 2004 [14] ICU consultant ANFIS 10 – – ≥75% expert agreement

Wang, 2010 [21] – ANFIS – – – Expert agreement on
simulated clinical
scenarios

Blood gas prediction

Wang, 2010 [34] – ANFIS 25 – 5 Measured arterial blood
gases (PaCO2 and
PaO2)

Extubation prediction

Mikhno, 2012
[37]

N/A LR 179 Bootstrapped
ROC
curves

– Success of extubation
failure

ANN artificial neural networks, ANFIS adaptive neurofuzzy inference system, LR logistic regression, LOOCV leave-one-out cross-validation, FCV
fold cross-validation, N/A not applicable
aEach study based on SBT does not require expert annotation, since the outcome is defined based on success, failure, or reintubation. Therefore,
these studies are marked as N/A

reviewed demonstrated proof-of-concept rather than assess-
ing efficacy. The results show that only a few papers have
started to assess the degree of beneficial effect of ML under
“real world” clinical conditions for MV. Results indicate
that ML has the potential to be applied to important clinical
issues in weaning, such as SBT and extubation failure pre-
dictions, blood gases predictions, and ventilator settings (and
oxygenation) adjustments. It is worth mentioning that ML
development focussing on advisory systems tended to have a
less-robust validation method. This is due to (1) the difficulty
in testing the system in a clinical environment and (2) the sub-
jectivity and impracticality of ground truth annotations from
human experts on the long list of decisions the algorithm
makes. More research may be required to devise an effective
way to validate the performance of such systems. A previous
systematic review on automated weaning discussed the need
to further develop technology in the neurosurgical population

and also for studies to examine sedation strategy [11]. In this
review, no study reported the procedure, treatment, or seda-
tion strategy undergone by patients. Furthermore, the sample
sizes of most of these studies are relatively small. Rigorous
evaluation of system performance may be challenging in the
presence of “difficult-to-wean” patients since these patients
(1) may require a more specialised weaning strategy and (2)
have less associated data from which to train an effective
ML algorithm. This highlights the fact that the data collected
around the development of ML technology for this applica-
tion is incomplete for important portions of the MV patient
population. This is an issue that must be overcome for ML
technology to progress for this clinical area.

The publications included in this reviewhave several items
of commonality thatwarrant discussion. First, within the nine
papers included in the systematic review, there are twogroups
with significant overlap in authorship:
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Table 3 Ventilator and vital sign
parameters

Parameters

Ventilator Vital signs bedside monitor

Inspiratory time (T I) [17, 18, 33, 35, 36] Cardiac interbeat duration (RR-interval) [35, 36]

Expiratory time (TE) [17, 18, 33, 35, 36] Plethysmogram waveform [33]

Breath duration (TTot) [17, 18, 35, 36] Respiration waveform [33]

Oxygen saturation (SaO2) [33]

Tidal volume (VT) [17, 18, 21, 34–36], Heart rate (HR) [33, 37]

Fractional inspiratory time (T I/TTot) [17, 18, 35, 36] Pulse rate (PR) [33]

Mean inspiratory flow (VT/TT) [17, 18, 35, 36] Respiratory rate [33]

Frequency–tidal volume ratio (f /VT) [17, 18, 35, 36] Transcutaneous O2 (tcpO2) [33]

Transcutaneous CO2 (tcpCO2) [33]

Ventilatory rate (V rate) [14, 21, 33, 34] Invasive blood pressure (INBP) [33]

Peak inspiratory pressure (PIP) [14, 33] Non-invasive blood pressure (BP) [33]

Positive end expiratory pressure (PEEP) [14, 21, 33, 34] Temperature (TEMP) [33]

Mean airway pressure (MEAN) [14, 33]

Fraction of inspired oxygen (FIO2) [14, 21, 33, 34, 37] Other

Inspiration-to-expiration ratio (V I:VE) [21, 34] Arterial blood gases (PaO2, PaCO2) [21, 34, 37]

white blood cell count [37]

Relative dead space (Kd) [21, 34] PaO2/FiO2 ratio [37]

Total minute volume [21, 34] Work of breathing index [37]

Rapid shallow breathing index [37]

Age, gender, weight and height [21, 34]

Table 4 Summary of ML
algorithms

Algorithm Description

Artificial neural networks (ANN) Algorithm inspired by the neural networks of the
brain. A network consists of layers of nodes in
which each node is connected to each other by a
weighted link. With many parameters that can be
tuned and optimised, it can handle variability and
noisy data. However, without proper
regularisation or too little data to exemplify
variability, ANN can be prone to overfitting [15],
leading to poor generalisation

Support vector machine (SVM) This is a powerful classification method that
partitions the predictive variable space by
determining a hyperplane that optimally separates
the outcome classes according to a loss function.
SVMs are effective on high dimensional data but
are most effective on a small data set with
minimal class-overlap or noise-corruption [38]

Adaptive network-based fuzzy inference systems
(ANFISs)

This method provides fuzzy membership functions
between input and output parameters within a
neural network. This method requires a domain
expert to predefine the system’s constituent
membership functions and rule structure [39]

Logistic regression (LR) This is a predictive statistical method for dealing
with binary outcomes. LR defines a linear relation
between the independent variable and the odds
ratio of the binary [15]. LR is a simple yet
powerful method; however, it can only be used to
classify binary outcomes. The multi-class
equivalent of logistic regression is called
“multinomial logistic regression”
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The first group of significant overlap in authorship com-
prises of Giraldo [17, 18] and Arizmendi [35, 36]. Each
publication in this first group was a conference paper and
used an identical data source (WEANDB). These publica-
tions contained strong overlap in the derivation and tuning
of predictive features and each paper aimed to predict the
clinical outcome of SBT via cross-validation methods.

The second group of significant overlap in authorship
comprises ofKwok [14] andWang [21, 34]. Each publication
in this group was a journal article, with Wang [21, 34] being
paired publications within the same issue. Whilst Kwok
[14] and Wang [21] evaluated ML-performance based on
an expert’s (subjective) agreement with algorithmic output,
Wang [21] compared predictive performance to (objective)
arterial blood gas values. A further distinguishing feature of
the papers by Wang and Kwok is that they each included
physiological modelling (via differential equations) in addi-
tion to ML models, whereas the other papers included only
ML models. Kwok [14] and Wang [21] were the two papers
that scored one out of eight on the modified JBI checklist.
Given that the partner paper of Wang 21] (i.e. Wang [34]),
scored seven out of eight, it is possible that the authors may
have expected readers to use the data description inWang [34]
instead of evaluatingWang [21] as a stand-alone paper. How-
ever, for the purposes of a systematic review, it seems most
appropriate to score each paper independently. For Kwok
[14], several of the scoring criteria did not apply, since the
described work required neither patient data nor the associ-
ated ethic approval to collect such data. These items alone
would account for five points on the checklist.

An important commonality of all papers included is that
each was intended for a technical audience: four papers were
published as IEEE conference proceedings, one as AI con-
ference proceedings. The four journal papers were each for
a technical or computational journal. It is not typical for a
technical or ML publication to focus on the issues important
to a medical systematic review (particularly when consider-
ing external factors such as page limits). Accordingly, the
score assigned for the criteria of the systemic review should
not be interpreted as an assessment of technical strength of
the paper.

This study has shown that more work needs to be done to
bring truly patient-centred MV technologies into the health-
care system. Patient-specific MV technology can reduce
ventilator-induced lung injuries caused by generic weaning
protocol; this can be beneficial specifically for the “difficult-
to-wean” population where the generic weaning protocol is
not effective. The ability to optimise ventilation for a specific
patient will be desirable for most post-operative patients,
particularly those who have undergone a lung transplanta-
tion. The ventilation needs to be tuned to the requirements
of the organ and this is likely to be even more important for
tissue-engineered organs. Providing organ-specific biophys-

ical stimuli could greatly support the future developments
and integration of engineered organs, such as lungs.
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