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Abstract
The heavenly bodies are objects that swim in the outer space. The classification of these objects is a challenging task for
astronomers. This article presents a novel methodology that enables an efficient and accurate classification of cosmic objects
(3 classes) based on evolutionary optimization of classifiers. This research collected the data from Sloan Digital Sky Survey
database. In this work, we are proposing to develop a novel machine learning model to classify stellar spectra of stars,
quasars and galaxies. First, the input data are normalized and then subjected to principal component analysis to reduce the
dimensionality. Then, the genetic algorithm is implemented on the data which helps to find the optimal parameters for the
classifiers. We have used 21 classifiers to develop an accurate and robust classification with fivefold cross-validation strategy.
Our developed model has achieved an improvement in the accuracy using nineteen out of twenty-one models. We have
obtained the highest classification accuracy of 99.16%, precision of 98.78%, recall of 98.08% and F1-score of 98.32% using
evolutionary system based on voting classifier. The developed machine learning prototype can help the astronomers to make
accurate classification of heavenly bodies in the sky. Proposed evolutionary system can be used in other areas where accurate
classification of many classes is required.
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1 Introduction

Recently, an accurate stellar object classification using pho-
tometric data has gained much popularity. It is an important
field of research where lot of improvements are made every
year. Hence, many tools have been developed to aid in this
task. Some of them include SExtractor Bertin et al. (1996)—
a widely used tool for star-galaxy separation. Due to the
increase in the number of available sky surveys in optical and
near-infrared spectra, and due to varying observing condi-
tions and sensitivities, it is difficult to fine-tune these tools for
specific database. The objective of this paper is to present a
novel evolutionary system with highest performance in clas-
sifying three cosmic objects.

In this work, we chose to conduct our research using the
Sloan Digital Sky Survey (SDSS) database Blanton et al.
(2017). Astronomers, physicists and mathematicians from
many countries took part in this project. Currently, a large
part of the classification of objects from SDSS database have
used advanced algorithms written in theMatlab environment
SDSS (2015). Many researchers have used machine learning
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methods to classify the heavenly bodies automatically. The
details on their study are provided in Sect. 3. The drawbacks
of these studies are given below:

1. Majority of previous studies have used either very
complex frameworks or basic methods to build the clas-
sification model.

2. It is complex and time-consuming to handle huge data.
3. Handling of large number of featureswillmake themodel

computationally more intensive.

In order to overcome the above-mentioned drawbacks in
this work, we proposed a novel machine learning approach
that utilized genetic algorithm to find the best model with
optimal set of hyperparameters. First, we reduced the number
of features using principal component analysis to speed up
the computations. Next, we trained a set of 21 classifiers with
their default parameters as a baseline. Then, using genetic
algorithm, we optimized their hyperparameters. Resulting
individual models were then combined into a single voting
classifier, using genetic algorithm to find a combination that
yielded the best results. During the learning process fivefold
cross-validation (Mosteller and Tukey 1968) is used. The
main novel contributions of this work are as follows:

1. Introduced new and efficient solution based on machine
learning models to classify three classes of cosmic
objects.

2. Developed a genetic algorithm optimization technique to
obtain high classification accuracy with small number of
features.

3. Achievedhighest performance (over 98%accuracy score)
using 15 out of 21 tested classifiers.

4. Employed various clinical parameters to evaluate the per-
formance of the developed model.

The rest of this paper is structured as follows. Section
2 discusses the previous works. Section 3 describes the pro-
posed model based on evolutionary optimization of classifier
parameters; data collection and preprocessing, model design,
training and validation, are also described in this section.
Experimental results and discussion are provided in Sects. 4
and 5, respectively. Conclusions and future works are given
in Sect. 6.

2 Previous work

There is a significant increase in research works related to
stellar spectra detection and classification. Many researchers
focused on star-quasar (Zhang et al. 2011; Jin et al. 2019;
Zhang et al. 2009, 2013; Viquar et al. 2018), galaxy-quasar
(Bailer-Jones et al. 2019) or star-galaxy Philip et al. (2002)

binary classification. Others (López et al. 2010, Becker et al.
2020) focused on multi-class classification of stars, galaxies
and quasars Cabanac et al. (2002); Acharya et al. (2018). In
these works, various methods have been applied to automat-
ically classify the heavenly bodies accurately.

Many authors used classical machine learning algorithms
such as support vector machines (SVM) or k-nearest neigh-
bors (kNN) (Zhang et al. 2011, 2009, 2013; Tu et al.
2015,[12,15],Jin et al. 2019; Viquar et al. 2018). Others
adopted deep learning techniques (Becker et al. 2020, 11)
or developed their own novel solutions (Viquar et al. 2018).

Many databases related to sky survey data are freely avail-
able. Among them,most popular databases are SDSS (Zhang
et al. 2011, 2013, 2009; Viquar et al. 2018, Acharya et al.
2018), Gaia (Bailer-Jones et al. 2019; Becker et al. 2020),
WISE (Jin et al. 2019; Becker et al. 2020) and UKIDSS
(Zhang et al. 2011, 2013). The summary of related works
conducted using these databases is shown in Table 1

Zhang et al. (2011) operated on the data from UKIDSS
database. Their best model, a LS-SVM proved to be a
highly efficient and powerful in classifying the photomet-
ric data. Jin et al. (2019) used data from WISE database
using two new color criterions (yW1W2 and iW1zW2), which
were constructed to distinguish quasars from stars efficiently.
In Zhang et al. (2009) a kNN algorithm is used to dis-
tinguish star and quasar sources. Authors of Zhang et al.
(2013) used SVM classifier for the same purpose. They
achieved very high accuracy scores using SDSS DR7 and
UKIDSS DR7 catalogs of photometric data. Viquar et al. of
Viquar et al. (2018) used the same database and asymmet-
ric AdaBoost to classify quasars and stars. In Zhang et al.
(2013), Zhang et al. used supervised and unsupervised meth-
ods on quasar-star classification problem. Philip et al. (2002)
reported higher performance using difference-boosting neu-
ral network (DBNN) in star-galaxy classification, which is
comparable to the SExtractor.

Authors of Acharya et al. (2018) demonstrated howmulti-
class classification of stellar sources can be scaled to billions
of records by incorporating the scalability of the cloud.
Multi-class classification is also performed by Cabanac et
al. (2002). They showed that the first 10 eigencomponents
of the Karhunen–Loeve expansion or principal component
analysis (PCA) provided a robust classification scheme for
the identification of stars, galaxies and quasi-stellar objects
from multi-band photometry.

López et al. (2010) developed an automatic multistage
classification system based on Bayesian networks for the
OMC (Optical Monitoring Camera) data. They focused on
multi-class classification of different categories of stars.
Becker et al. (2020) worked on similar problem. They pro-
posed an end-to-end solution for automated source classifica-
tion based on RNNs. They then compared the classification
results with random forest classifier.
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Table 1 Summary of
state-of-the-art techniques
developed using the sky survey
databases

Authors Classification task Methods Datasets

Zhang et al. (2011) Binary (star, quasar) LS-SVM SDSS,

UKIDSS

Zhang et al. (2013) Binary (star, quasar) SVM DSS,

UKIDSS

Philip et al. (2002) Binary (star, galaxy) Difference Boosting NDWF

Neural Network

(DBNN)

Viquar et al. (2018) Binary (star, quasar) SVM, SDSS

SVM-KNN,

AdaBoost,

Asymmetric

AdaBoost

Acharya et al. (2018) Multi-class kNN, SDSS

(star, galaxy, quasar) SVM,

Random Forest

Lopez et al. (2010) Multi-class (stars) Bayesian Networks OMC

Cabanac et al. (2002) Multi-class PCA GISSEL

(star, galaxy, quasar) PEGASE

Bailer-Jones et al. (2019) Binary Gaussian Mixture Gaia

(galaxy, quasar) Model (GMM)

Jin et al. (2019) Binary SVM, Pan-STARSS

(quasar, not-quasar) XGBoost WISE

Becker et al. (2020) Multi-class (star) Random Forest, OGLE-III

Recurrent Neural Gaia

Network (RNN) WISE

Zhang et al. (2009) Binary (star, quasar) kNN SDSS

FIRST

USNO-B1.0

Authors of Bailer-Jones et al. (2019) used Gaussian mix-
ture models to probabilistically classify objects in Gaia data
release 2 (GDR2) using photometric and astrometric data.
Their trained model is able to classify star, quasar and galaxy
with high accuracy.

Genetic algorithms (GAs) are widely used in many fields
as they are versatile and can provide very good results,
especially when the search space is large, outperforming
standard optimization techniques such as random or gird
searches (Liashchynskyi andLiashchynskyi 2019). Constant
optimizations are being developed since its first inception
(De Jong et al. 1977). Wu Deng et al. proposed an algo-
rithm that addressed premature convergence, low search
ability and tendency to fall into local optima of quantum
evolutionary algorithm (QEA)—improved QEA with mul-
tistrategies namely MSIQDE (Deng et al. 2020). Authors
used this algorithm to optimize hyperparameters of DBN
model. Another usage example is provided in Deng et al.
(2020).Authors developed improvedQEAbasedon the niche

co-evolution strategy and enhanced particle swarm optimiza-
tion (PSO)—IPOQEA. Proposed system is used to solve
airport gate resource allocation problem. A new optimal
mutation strategy based on the complementary advantages
of five mutation strategies has been used in Deng et al.
(2020) to develop an improved differential evolution algo-
rithm with the wavelet basis function. This algorithm can
improve the search quality while simultaneously accelerat-
ing convergence and help in avoiding the falling into local
optimum. Song et al. proposed a multi-population parallel
co-evolutionary differential evolution, namedMPPCEDE, to
optimize parameters of photovoltaic models. Sezer et al. in
Sezer et al. (2017) developed a stock trading system which
used optimized technical analysis parameters for creating
buy–sell points using genetic algorithms.

This paper uses approach similar to that presented in Pław-
iak and Acharya (2020) by Pławiak and Acharya. They used
a GA for parameter optimization coupled with k-fold cross-
validation (CV) for arrhythmia detection using ECG signals.
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Fig. 1 Learning and
optimization pipeline developed
for the classification

Similar to their work, we have built the hyperparameter opti-
mization pipeline based on GA, which takes the raw data and
performs its pre-processing, parameter optimization coupled
with fivefold CV, yielding a list of classifiers with optimal
parameters. Using those classifiers, a voting ensemble opti-
mized usingGA further increased the classification accuracy.

3 Materials andmethods

Sloan Digital Sky Survey is a project that provides public
database on observations of celestial objects Blanton et al.
(2017).

A special 2.5-m-diameter telescope was used to observe
celestial objects, which was built in New Mexico at the
Apache Point Observatory in the USA. The telescope used a
camera consisting of 30 charge-coupled device (CCD) chips
with a resolution of 2048 × 2048 each. The chips were
arranged in 5 rows with 6 in each row. Each row observes the
space through various optical filters (u’, g’, r’, i’, z’ )
with different wavelengths u’ = 354 nm, g’ = 475 nm, r’
= 622 nm, i’ = 763 nm and z’ = 905 nm [25].

SDSS database consists of two main tables PhotoObj
and SpecObj. The SkyServer and CASJOB portals pro-
vide web interfaces build for SQL query execution over
those tables. We have collected data from aforementioned
tables and randomly selected 10,000 records of celes-

tial bodies collected by SDSS Data Release 16 (DR16).
While querying the data, we made sure to closely follow
approach taken by Peng et al. (2012) and Jin et al. (2019).
Query filters of sciencePrimary = 1, Mode = 1
and zWarrning = 0 are applied. Each observation is
described by 8 attributes (u’, g’, r’, i’, z’ bands, right
ascension, declination and redshift) and the
class to which it belongs—star, galaxy or quasar.

Figure 1 presents the learning and optimization pipeline
developed for the classification process.

The pipeline consists of the following steps:
(i) Exploratory data analysis is performed manually in

order to understand the data better. It is awidely used practice
and employed rich data visualization techniques to identify
the issues with the data. Those issues might include: miss-
ing feature values, large number of outliers, different data
scales and presence of categorical features. (ii) Initial data
pre-processing is an important step for any machine learning
project. Data need to be cleaned and scaled in order for our
classifiers to learn the class relationships well. This step also
contains dimensionality reduction techniques such as princi-
pal component analysis (PCA).Application of PCAallows us
to reduce the number of features the model needs to process
for accurate prediction (Pearson 1900). This in turn speeds up
the learning process significantly. (iii) In train/test split step,
dataset is shuffled and split into training and test sets.Weused
75% of our data for training and the rest for testing. Strati-
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Table 2 Summary of genetic algorithm parameters used for classifica-
tion with optimization

Parameter Value

Fitness function Classification accuracy

Tournament size 3

Population size 50

Gene mutation probability 0.1

Gene crossover probability 0.5

No. of generations 15

Errored individual score 0.0

Elitism (individuals) 1

fied split is used to preserve the class balances. (iv) In this
work, we have used 21 classifiers from the scikit-learn
package Pedregosa et al. (2011) and have initialized their
parameters by default setting. (v) After initialization of all
classifiers, the classifiers are developed using fivefold CV.
This helps us prevent over- or under-fitting of the classifiers.
(vi) The verification of final classification performance on
the test set which is our baseline study is done. (vii) Genetic
parameter optimization consists of: (a) choosing proper fit-
ness function and we chose accuracy as the fitness function.
This function, however, canbe replacedbyother performance
metrics such as precision, recall or F1 score. (b) Population
generation: population size and other details regarding the
generic algorithm are presented in Table 2. (c) Evolution:
this step consists of cross-over, selection of best individuals,
gene mutation and other related operations. It is performed
together with fivefold CV on training dataset and verifica-
tion on the test dataset. For every individual, the same steps
used for baseline are applied. Elitism and multipoint gene
mutation strategy is used. Elitism strategy helps us to keep
the best individual Bhandari et al. (1996). This way we make
sure that even if current generation yielded no better indi-
viduals, the best individual from previous generation will
still participate in the next one. (d) Saving the best indi-
vidual: after all generations have passed, the best individual
will be saved. This individual can be then used for further
applications. (viii) Finally, the optimized learning process is
verified and compared with one without optimization. The
computational complexity of genetic algorithm in terms of
O notation is given by O(gnm)with g indicating the number
of generations; n andm denote the size of population and the
individuals, respectively.

During data analysis, high correlation in the light band
variables (u’, g’, r’, i’, z’) is observed. The correla-
tion found between magnitudes is to be expected, since the
magnitudes contain information about the total brightness
of an object and its spectral shape. Those 5 light-bands are
substituted by lower number of variables produced by PCA

algorithm (Pearson 1900). This correlation can be observed
in Fig. 2. The number of principal components set for this
is 3. This helped us to keep over 99% of explained variance.
Hence, the training and testing time is significantly reduced.

The final dataset used in the learning process contains
10,000 observations, of which each is described by 3 vari-
ables produced by the PCA algorithm, redshift, right ascen-
sion and declination. The entire dataset is then split into
training and test datasets. The training set contained 75%
of observations from the original dataset, and the test set
contained rest of the samples.

In the learning process, the stratified fivefold CV is used.
Finally, themodels are tested using the test set. Stage II of the
experiment involved using genetic parameter optimization on
the training model. The datasets used for both stages are the
same. The only difference is the learning process. In the stage
II, we trained the model until we have reached the maximum
number of generations in our evolutionary algorithm. The
best individual is then verified using the same test set which
is used in stage I.

4 Results

This section contains the results of learning and genetic
parameter optimization processes.

The below tables and figures show the results obtained
using both stages of learning processes. The classifier param-
eters in stage I are chosen “by hand”, using default values
in many cases. Parameters of the classifiers for stage II of
the experiment are obtained using the genetic algorithm.
Baseline and search space configurations are provided in
Appendix A.

The voting classifier Re and Valentini (2012) in the stage
I consists of 11 estimators: (i) quadratic discriminant analy-
sis, (ii) support vector machine of type Nu, (iii) radial basis
function kernel support vector machine, (iv) poly kernel sup-
port vector machine, (v) decision tree classifier, (vi) random
forest classifier, (vii) XGBoost classifier, (viii) bagging clas-
sifier, (ix) multilayer perceptron, (x) extra trees classifier and
(xi) naive Bayes classifier.

Genetic parameter optimization reduced the number of
those estimators to only 3: (i) gradient boosted trees classifier;
(ii) random forest classifier and (iii) support vector machine
with polynomial function kernel.

4.1 Accuracy score

It can be noted from Table 3 that before the optimization,
the best results (99.01%) are achieved by XGBoost classifier
(Chen and Guestrin 2016). Second and third best classi-
fiers are gradient boosted trees (98.92%) Bühlmann (2012)
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Fig. 2 Correlation matrices for each of the classes

Table 3 Summary of accuracies obtained using various classifiers
before and after genetic parameter optimization

Classifier Accuracy
before
optimization

Accuracy
after
optimization

Increase in
performance

AdaBoost classifier 0.9857 0.9903 0.0046

Bagging classifier 0.9880 0.9785 −0.0095

Decision tree classifier 0.9857 0.9891 0.0034

Extra trees classifier 0.9836 0.9892 0.0056

Gaussian Naive Bayes 0.9785 0.9787 0.0002

Gradient boosting classifier 0.9889 0.9907 0.0018

KNN 0.8977 0.9249 0.0272

Linear discriminant analysis 0.9300 0.9303 0.0003

Linear SVM 0.9641 0.9824 0.0183

Logistic regression 0.9717 0.9849 0.0132

MLP classifier 0.9884 0.9860 −0.0024

Nu-SVM 0.9831 0.9871 0.0040

Passive aggressive classifier 0.9588 0.9744 0.0156

Poly Kernel SVM 0.8547 0.9907 0.1360

Quadratic discriminant analysis0.9848 0.9849 0.0001

Random forest classifier 0.9875 0.9911 0.0036

RBF Kernel SVM 0.9603 0.9903 0.0300

Ridge classifier 0.9203 0.9232 0.0029

SGD classifier 0.9680 0.9851 0.0171

Voting classifier 0.9885 0.9916 0.0031

XGBoost classifier 0.9901 0.9901 0.0000

Average 0.9647 0.9778 0.0131

The best results are shown in bold

and multilayer perceptron (98.88%) (White and Rosenblatt
1963).

After genetic parameter optimization, the best classifier
in terms of classification accuracy is voting classifier with
99.16% accuracy. The random forest classifier (99.11%) (Ho
1998) is the second best, and SVM classifier with polyno-

mial kernel ex aequo with gradient boosted trees from the
scikit-learn package—both achieved 99.07% classifi-
cation accuracy.

Figure 3 shows the plot of the accuracies before and after
the genetic parameter optimization.

The average accuracy before optimization is 96.5% and
increased to 97.8% after the genetic optimization. The aver-
age increase in classification accuracy is 1.3%. It can also
be noted that 7 out of 21 classifiers achieved the accuracy
of more than 99%. Before optimization, only XGBoost clas-
sifier obtained above 99% accuracy. After optimization, this
result is increased to 99.16% (voting classifier). Nineteen out
of twenty-one classifiers have performed better after genetic
optimization.

4.2 Precision score

Random forest classifier yielded the highest precision score
of 98.61%. Following that, voting classifier and XGBoost
classifier yielded the precision of 98.56 and 98.41%, respec-
tively. The results of all classifiers are presented in Table 4.

After the optimization, extra trees classifier (Geurts et al.
2006), AdaBoost and the voting classifier yielded precision
scores of 98.66%, 98.61% and 98.57%, respectively.

Figure 4 shows the plot of precision scores before and
after the genetic parameter optimization.

The average precision before optimization is 95.6%. After
genetic optimization, this value is increased to 96.4%. The
average increase in precision score is 0.8%. Before optimiza-
tion, the highest precision score is 98.61% (random forest).
After genetic optimization, this result is increased to 98.66%
by the extra trees classifier.

4.3 Recall score

Quadratic discriminant analysis Bose et al. (ddd), MLP and
XGBoost classifier yielded results of 98.39%, 98.02% and
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Fig. 3 Accuracies obtained using various classifiers before and after the genetic parameter optimization

Table 4 Summary of precision score obtained using various classifiers before and after the genetic parameter optimization

Classifier Precision before optimization Precision after optimization Increase in performance

AdaBoost classifier 0.9712 0.9861 0.0149

Bagging classifier 0.9824 0.9742 −0.0082

Decision tree classifier 0.9665 0.9784 0.0119

Extra trees classifier 0.9809 0.9866 0.0057

Gaussian Naive Bayes 0.9579 0.9579 0.0000

Gradient boosting classifier 0.9784 0.9852 0.0068

KNN 0.8828 0.9092 0.0264

Linear discriminant analysis 0.9249 0.9249 0.0000

Linear SVM 0.9575 0.9742 0.0167

Logistic regression 0.9599 0.9723 0.0124

MLP classifier 0.9822 0.9661 −0.0161

Nu-SVM 0.9790 0.9726 −0.0064

Passive aggressive classifier 0.9347 0.9069 −0.0278

Poly Kernel SVM 0.8638 0.9857 0.1219

Quadratic discriminant analysis 0.9719 0.9730 0.0011

Random forest classifier 0.9861 0.9827 −0.0034

RBF Kernel SVM 0.9405 0.9814 0.0409

Ridge classifier 0.9197 0.9062 −0.0135

SGD classifier 0.9657 0.9476 −0.0181

Voting classifier 0.9856 0.9857 0.0001

XGBoost classifier 0.9841 0.9841 0.0000

Average 0.9560 0.9639 0.0079

The best results are shown in bold

97.91%, respectively, before the genetic algorithm parameter
optimization. The summary of all of the classifiers is given
in Table 5.

After genetic optimization, quadratic discriminant anal-
ysis, SVM with polynomial kernel function and logistic

regression (Cabrera 1994) yield the recall scores of 98.52%,
98.43% and 98.12%, respectively.

Figure 5 shows the plot of the recall scores before and
after the genetic parameter optimization.
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Fig. 4 Precision scores obtained using various classifiers before and after the genetic parameter optimization

Table 5 Summary of recall
score obtained using various
classifiers after the genetic
parameter optimization

Classifier Recall before
optimization

Recall after
optimization

Increase in
performance

AdaBoost classifier 0.9694 0.9810 0.0116

Bagging classifier 0.9775 0.9595 −0.0180

Decision tree classifier 0.9697 0.9714 0.0017

Extra trees classifier 0.9693 0.9772 0.0079

Gaussian Naive Bayes 0.9741 0.9741 0.0000

Gradient boosting classifier 0.9785 0.9780 −0.0005

KNN 0.8632 0.8858 0.0226

Linear discriminant analysis 0.8657 0.8657 0.0000

Linear SVM 0.9342 0.9726 0.0384

Logistic regression 0.9520 0.9812 0.0292

MLP classifier 0.9802 0.9652 −0.0150

Nu-SVC 0.9659 0.9699 0.0040

Passive aggressive classifier 0.9114 0.9049 −0.0065

Poly Kernel SVM 0.8106 0.9843 0.1737

Quadratic discriminant analysis 0.9839 0.9852 0.0013

Random forest classifier 0.9736 0.9789 0.0053

RBF Kernel SVM 0.9286 0.9809 0.0523

Ridge classifier 0.8637 0.9065 0.0428

SGD classifier 0.9394 0.9167 −0.0227

Voting classifier 0.9763 0.9808 0.0045

XGBoost classifier 0.9791 0.9791 0.0000

Average 0.9413 0.9571 0.0158

The best results are shown in bold

The average pre-optimization recall score is 94.1%. After
genetic optimization, it is increased to 95.7%. The average
increase in the recall score is 1.6%. As a result of parameter

optimization, 17 out of 21 classifiers got better results after
the optimization. In both conditions, quadratic discriminant
analysis performed better than the rest of the classifiers.
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Fig. 5 Recall scores obtained using various classifiers before and after the genetic parameter optimization

4.4 F1-score

TheXGBoost classifier before optimization yielded the high-
est F1-score of 98.16%. MLP model and bagging classifier
provided the F1-score of 98.11% and 97.99%, respectively.
The F1-scores before and after the genetic optimization are
shown in Table 6.

It can be noted from Table 6 that after genetic parameter
optimization, SVM classifier with polynomial kernel func-
tion, AdaBoost and voting classifier provided the F1-scores
of 98.5%, 98.35% and 98.32%, respectively.

Figure 6 shows the plot of F1-scores before and after the
genetic parameter optimization.

The average value of F1-score before optimization is
94.7%. After genetic optimization, this value is increased
to 96%. The average increase in F1 score is 1.3%. Before
the optimization, XGBoost yielded the highest F1-score of
98.4%. After optimization, SVM classifier with polynomial
kernel yielded the F1-score of 98.5%. It can be noted that for
many classifiers F1-score is improved.

5 Discussion

Table 7 provides the summary of comparison with other sim-
ilar works (Viquar et al. 2018; Zhang et al. 2011, 2013;
Acharya et al. 2018; Zhang et al. 2009) developed for the
automated detection of heavenly bodies using the sameSDSS
database.

It can be noted from Table 7 that most of the previous
works (Zhang et al. 2009, 2013, 2011; Viquar et al. 2018)
have performed binary classification and obtained high per-
formance.

Recently, Acharya et al. (2018) have classified three
classes using random forest classifier and reported the clas-
sification accuracy of 94%. To the best of our knowledge, we
are the first group to achieve over 99% accuracy for three-
class classification of heavenly bodies. In future, we intend to
use the whole dataset of 4 million objects to train the model
which may improve the classification performance. We can
also use genetic algorithms to reduce the number of features
and select only those, which would improve our accuracy
score. Yet another option will be to use genetic parameter
and feature optimization with asymmetric AdaBoost classi-
fier as proposed by Viquar et al. (2018).

Advantages of the proposed system are:

1. Obtained highest classification accuracy.
2. Proposed a novel model based on genetic algorithm.
3. Model is simple to use and robust as it is developed using

fivefold cross-validation..

Limitations of our work are:

1. A small number of photometric records (10,000 instances)
are analyzed. The challenge for the astronomers is to
accurately classify at various scales. Our approach would
need to be scaled several order of magnitudes to meet
those needs.
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Table 6 Summary of F1-score obtained using various classifiers before and after the genetic parameter optimization

Classifier F1-Score before optimization F1-Score after optimization Increase in performance

AdaBoost classifier 0.9703 0.9835 0.0132

Bagging classifier 0.9799 0.9665 −0.0134

Decision tree classifier 0.9681 0.9748 0.0067

Extra trees classifier 0.9749 0.9817 0.0068

Gaussian Naive Bayes 0.9656 0.9656 0.0000

Gradient boosting classifier 0.9785 0.9815 0.0030

KNN 0.8724 0.8964 0.0240

Linear discriminant analysis 0.8903 0.8903 0.0000

Linear SVM 0.9447 0.9734 0.0287

Logistic regression 0.9553 0.9765 0.0212

MLP classifier 0.9811 0.9654 −0.0157

Nu-SVC 0.9722 0.9713 −0.0009

Passive aggressive classifier 0.9216 0.9059 −0.0157

Poly Kernel SVM 0.8227 0.9850 0.1623

Quadratic discriminant analysis 0.9777 0.9789 0.0012

Random forest classifier 0.9796 0.9808 0.0012

RBF Kernel SVM 0.9329 0.9811 0.0482

Ridge classifier 0.8871 0.9043 0.0172

SGD classifier 0.9514 0.9291 −0.0223

Voting classifier 0.9808 0.9832 0.0024

XGBoost classifier 0.9816 0.9816 0.0000

Average 0.9471 0.9598 0.0128

The best result is shown in bold

Fig. 6 F1-scores obtained using various classifiers before and after the genetic parameter optimization

2. It is computationally expensive to find the optimal set
of classifiers and their parameters. This approach on
large-scale data may not be suitable as high computa-

tional complexity would require parallel task distribution
among many nodes, thus increasing the cost.
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Table 7 Summary of comparison with similar other works for automated celestial object classification using the same database

Authors Classification task Best classifier Accuracy Precision Recall F1-Score

Zhang et al. (2009) Binary (star, quasar) kNN 0.9493 – – –

Zhang et al. (2013) Binary (star, quasar) SVM 0.9811 – – –

Zhang et al. (2011) Binary (star, quasar) LS-SVM 0.9881 – – –

Viquar et al. (2018) Binary (star, quasar) Asymmetric AdaBoost 0.9995 1.0000 1.0000 1.0000

Acharya et al. (2018) Multi-class (star, galaxy, quasar) Random Forest 0.9400 – – –

This work Multi-class (star, galaxy, quasar) Voting Classifier with genetic 0.9916 0.9878 0.9808 0.9832

parameter optimization

The best results are shown in bold

Fig. 7 An illustration of the proposed genetic parameter optimization methodology usage in real-world scenario on Azure Cloud

The disadvantage of proposed methodology is its com-
putational complexity. Hence, we intend to explore the
possibility of using cloud environment. An example of cloud
architecture (based onMicrosoftAzure) that incorporates our
system is shown in Fig. 7. This methodology is not limited to
astronomy and can be extended to other applications as well.
Proposed architecture can take data from different sources,
store themand performmachine learningmodel optimization
using our approach. Elastic scaling of the cloud resources is
necessary when the data size is huge. To further leverage
fully manage cloud services, we could run our evolutionary
optimization pipeline on Azure Batch Service [38] instead
of using virtual machines. This will give us dynamic scaling
capabilities, and hence, we need to pay for the infrastruc-
ture only when we use it. After training and evaluating the
model, the cost will be further reduced. Running our pipeline

on Azure Batch gives us the ability to run the whole process
not only on demand but also automatically. The data used for
the testing can be used later to train the model as well. This
will make our system more robust and accurate.

6 Conclusion

In this work, we have proposed a novel method of optimizing
multi-class classification task using machine learning tech-
niques and genetic algorithm. This approach helps to find
the optimal parameters for the classifiers and achieved the
highest accuracy of 99%. (Seven out of twenty-one classi-
fiers have achieved the accuracy score of over 99% using
our approach.) In future, the proposed model can be used
to classify more classes of heavenly bodies and also can
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be used for healthcare applications like detection of car-
diac ailments, brain abnormalities and other physiological
malfunctioning. Various state-of-the-art deep learning tech-
niques can be employed to increase the performance using
more data.
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Appendix

Appendix A. Baseline and search space con-
figurations

Table 8 presents the baseline configuration of the classi-
fiers together with their search space configurations. Where
possible, the random_state parameter was always set to
constant value of 42 for reproducibility purposes. The func-
tions from numpy (Harris et al. 2020) package were used to
generate numerical parameter value ranges.
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