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Abstract Deep convolutional neural networks (DCNNs)
have been widely deployed in real-world scenarios.
However, DCNNs are easily tricked by adversarial
examples, which present challenges for critical app-
lications, such as vehicle classification. To address this
problem, we propose a novel end-to-end convolutional
network for joint detection and removal of adversarial
perturbations by denoising (DDAP). It gets rid of
adversarial perturbations using the DDAP denoiser
based on adversarial examples discovered by the DDAP
detector. The proposed method can be regarded as
a pre-processing step—it does not require modifying
the structure of the vehicle classification model and
hardly affects the classification results on clean images.
We consider four kinds of adversarial attack (FGSM,
BIM, DeepFool, PGD) to verify DDAP’s capabilities
when trained on BIT-Vehicle and other public datasets.
It provides better defense than other state-of-the-art
defensive methods.

Keywords adversarial defense; adversarial detection;
vehicle classification; deep learning

1 Introduction

In recent years, deep convolutional neural networks
(DCNNs) have been widely used in many different
tasks, such as image recognition [1-3], self-driving
vehicles [4], semantic segmentation [5], and vehicle
re-identification [6]. As an essential requirement of an
intelligent transport system, remarkable performance
has been achieved in vehicle classification [7, 8].
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However, recent studies [9-11] have shown that
DCNNs are vulnerable to adversarial examples,
specially-crafted by making minute perturbations
to natural images. Such perturbations can cause a
classifier to misclassify an image with high confidence
in the wrong result. Figure 1 shows that an
adversarial example causes misclassification of an
SUV as a bus. Clearly, it is important to make deep
convolutional neural networks that are robust in the
face of adversarial attacks.

Previous defenses to adversarial attacks are mainly
of two kinds. The first kind trains a detector network
[12-14], which acts as a filter rejecting malicious
input to the target model. The other kind uses a
defensive model to decrease the effects of adversarial
perturbations and improve the adversarial robustness
of the target model [15-17]. However, Xie et al.
[18] have shown that denoising may affect the per-
formance of the target model on clean images, as
valid information for classification may be lost in the
denoising process.

In this paper, we propose a new method based
on joint detection and removal of adversarial
perturbations by denoising (DDAP). Unlike previous
work, our defensive method combines an adversarial
perturbation detector and a denoiser, using joint
learning for training. Adversarial
examples detected by the detector are passed to the
denoiser to remove perturbations. The detector and

end-to-end

denoiser share the same parameters in the feature
extraction stage to reduce the amount of calculation.
The main contributions of this paper are:

e an end-to-end defensive method combining detec-
tion and removal of adversarial perturbations
by denoising, for vehicle classification. It can be
applied as a pre-processing method to improve
the robustness of vehicle classification models;
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Original Image: SUV

Adversarial perturbations

Adversarial example: Bus

Fig. 1 Generation of an adversarial example.

e a new loss function for joint supervised training
of the adversarial perturbation detector and
denoiser, which is beneficial to optimization of
the model;

e an evaluation on two vehicle datasets which
shows that our method provides state-of-the-art
performance against both white-box and black-
box attacks, with negligible reduction in classifier
performance for clean images.

The rest of this paper is organized as follows.
Section 2 reviews popular adversarial attacks and
defense methods. Our proposed approach is described
in detail in Section 3. Section 4 provides experimental
results in defending against adversarial attacks.
Finally, Section 5 concludes our work.

2 Related work

In this section, the literature on adversarial attack
methods is reviewed, and then mechanisms for
detection and defense against adversarial attacks are
introduced.

2.1 Adversarial attack methods

The concept of adversarial examples was proposed by
Szegedy et al. [19]; subsequent work [9-11] showed
that DNNs are vulnerable to adversarial examples.
Given a classification model f, deliberately adding
some subtle perturbations p to the correctly classified
image z, will cause f to give a wrong output yet
with high confidence that f(z 4+ p) # f(z). We
now describe some well-known adversarial attack
algorithms. It should be emphasized that we are
concerned with untargeted adversarial attacks.
Goodfellow et al. [20] introduced the attack known
as the single step fast gradient sign method (FGSM).
It keeps the amount of change consistent with the
direction of the gradient, thus inverting the output
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of the classifier. An adversarial example can be

expressed in the following form:
& =ux+esign(V,J (z,y)) (1)

The acquisition of adversarial examples aims to
maximize the loss function J(z, y) which measures the
classification error, usually cross-entropy. Maximizing
J causes the example no longer belong to the correct
class y after adding noise. In the optimization process,
the difference between the original example and
adversarial example needs to be within a certain
range ||Z — z||< e. sign() is the sign function, acting
on the partial derivative of the loss function with
respect to x.

Extending FGSM, BIM [9] generates adversarial
examples by using FGSM multiple times with a
smaller step a. In each iteration, clip() is used to
ensure that generated perturbations stay within the
e—neighborhood of the image x. clip is defined as

clip, . = min {255,z + ¢, max {0, 7 — ¢, 2}}  (2)
DeepFool [21] perturbs the image by a small
vector, and gradually pushes the image within the

classification boundary until incorrect classification
occurs. The adversarial example for iteration k4 1 is

|fi (k) — f; (k)|
IV fi (k) = Vf; (@) I3
X (Vfi (zk) = V f; (zk)) (3)
where f denotes the classifier model, f; (x) is the ith
dimension of the output, and f; (x) represents the

Th+1 = T+

dimension with the largest output. DeepFool proves
that the generated perturbations are smaller than
those of FGSM, while achieving similar deception
rates.

Projected gradient descent (PGD) [22] can be
regarded as a similar iterative attack method to
FGSM. FGSM uses only one iteration, while PGD
performs multiple iterations, taking a small step each
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time, and each iteration’s change is clipped to a
specified range. The difference between PGD and
BIM is that the former applies random perturbations.
PGD calculates adversarial samples for iteration k+ 1
using:
wpr1 = | [ (o +asign (Vo T (zr,9))  (4)
z+S
2.2 Detection and defense for adversarial
examples

Different methods have been suggested for discovering
adversarial attacks. Carrara et al. [12] utilized KNN
classification for hidden layer activation to distinguish
correctly classified images and adversarial images.
Rakin and Fan [14] built a simple convolutional
neural network with two convolutional layers and
fully connected layers to detect adversarial examples
instead of adversarial training. Similarly, Metzen et
al. [23] attached a subnetwork to the classifier model
to deal with adversarial examples. Feinman et al. [24]
verified the combination of kernel density estimates in
the subspace of the last hidden layer; Bayesian neural
network uncertainty estimates can effectively discover
adversarial perturbations. Adaptive noise reduction
with scalar quantization and smoothing spatial filter
are used to detect adversarial noise in Ref. [25].
A transferability prediction difference method [13]
detects adversarial examples by measuring the
transferability difference in various DNN models.
Papernot et al. [26] considered a defensive
distillation method to resist adversarial attacks.
Results generated by the example using the original
neural network are regarded as new labels to train
a distillation network with the same architecture
and distillation temperature T, which is used for
classification. However, Carlini and Wagner [27]
showed that defensive distillation is unable to increase

the robustness of neural networks. Samangouei et
al. [28] borrowed a generative adversarial network
to suppress adversarial attacks on the MNIST [29]
digits dataset, but the results are hard to transfer
to other datasets. Liao et al. [15] proposed to
eliminate adversarial perturbations using high-level
features, with the output difference before softmax
as the loss function. Prakash et al. [17] developed a
technology that combines computationally efficient
image transformation, redistribution of pixel values,
and soft wavelet noise reduction to overcome
perturbations. Mustafa et al. [16] considered a novel
defensive mechanism: image super-resolution enhances
the quality, and projects adversarial examples onto the
manifold of natural images.

3 Method

The framework of our proposed DDAP method
(see Fig. 2) consists of two models. The first is an
adversarial perturbation detector and the second is
an adversarial perturbation denoiser. Both share
the same parameters for feature extraction. We now
explain the proposed defensive method in detail.

3.1 Adversarial perturbations detector

Adversarial attackers generate small perturbations
that are often imperceptible to humans, yet fool the
classifier. We emphasize that adversarial images with
added perturbations change the pixel distribution and
fall outside the data manifold for real examples [14, 30].
Therefore, we can train a detection network to
determine whether an example is adversarial through
the feature representation of the input data [14, 23].

As illustrated in Fig. 3, given an input image
x € R3>*Wxh we define F to be a mapping function
from x to the features generated by feature extraction;

Dec(x)==0

Feature extraction Detector

=[]

Denoiser

|:| Dec(x)==1
XY} y >

Adversarial
perturbations

Skip-connection

Fig. 2 Overview of our end-to-end framework. We jointly detect and remove adversarial perturbations by denoising. When the input x is
recognized as an adversarial example by the detector, Dec(xz) == 1, adversarial perturbations are excluded by the denoiser model before z is
classified. Any clean image «x is directly passed to the classification model.
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Feature extraction

" blockl block2 block3 block4  block5

' conv3*3-BN-Relu

depthwise conv3*3-BN-Relu-conv1*1-BN-Relu

M i ] Adversarial
example

Clean image

full connect

Fig. 3 Architecture of the adversarial perturbation detector. Each conv unit contains a 3 x 3 convolution layer, a batch normalization layer,
and a RELU function. Each light conv unit contains a 3 x 3 depthwise convolution layer, a batch normalization layer, a RELU function and a
1 x 1 pointwise convolution layer, a batch normalization layer, and a RELU function.

Dec is a mapping function from features to the
prediction category of the detector. More specifically,
the input data is forwarded through multiple blocks
to obtain E(z). For calculation speed and to reduce
the number of parameters, normal convolution in
blocks 2 to 5 is replaced by depthwise convolution and
pointwise convolution except for the first convolution
layer of each block [31].
convolutional layer in blocks 2 to 5 adapts a 2 x 2

Furthermore, the first

stride for feature downsampling, making F(z) 4
times smaller than x. FE(z) is then fed into three
conv units and a fully-connected layer to learn the
discriminative difference between the features of clean
images and adversarial examples. Note that the last
conv unit also utilizes 2 x 2 stride operations; the fully-
connected layer following softmax produces a two-
dimensional vector. In the inference phase, we select
the index with maximum value as the detector output.
Zero represents a clean image and one represents an
adversarial example. If the output of Dec(E(z)) is a
clean image, the original image x is delivered directly
Otherwise, the
feature representation F(z) is passed to the denoiser

to the target classification model.

to eliminate the adversarial perturbations.

3.2 Adversarial perturbation denoiser

If the detector classifies the input x as an adversarial
sample, the denoiser employs the features E(z) to
reconstruct the sample, to deal with the perturbations.
The reconstruction function Den has limitations; the
goal is for the reconstructed sample to be as similar as
possible to the original data: Den(F(z)) ~ x. In fact,
the combination of feature extraction and the denoiser
can be considered as a variant of an autoencoder,
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where the feature extractor is responsible for encoding
the feature and the denoiser reconstructs the clean
features. Previous literature [30, 32] show that
adversarial examples usually lie outside the data
manifold, and the autoencoder can place them on
the manifold by learning the manifold structure.
Thus, the feature extractor and denoiser can defend
against adversarial examples attacks by removing
perturbations.

Figure 4 details the denoising process. The
feature extraction parameters are reused; the denoiser
comprises four blocks and a 1 x 1 convolutional
layer. To reduce loss of spatial information caused by
downsampling, skip-connections [5] are introduced,
and the feature maps recovered by upsampling
contain additional low-level feature information
provided by a fusion unit. This performs upsampling
and a concatenation operation. The output of
each denoiser block is upsampled using bilinear
interpolation, and then feature concatenation is
performed with the output of the corresponding
Unlike the blocks
in feature extraction, the conv units of all blocks in

block from feature extraction.

the denoiser use a stride of 1 x 1. In addition, we
follow Refs. [15, 33] to implement residual learning
instead of directly reconstructing a whole image, thus
benefiting deep neural network training. The residual
generated by the last 1x 1 convolutional layer is added
to the input x, which is converted into a clean image.
Although the structure of our denoiser is similar to
that in Ref. [15], some obvious differences exist. Our
denoiser shares feature extraction with the detector,
and the light convolution is used. We next consider
the denoiser loss function.
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Fig. 4 Architecture of the adversarial perturbation denoiser. If the input z is an adversarial image, the denoiser aims to transform it into clean
data. The conv unit and light conv unit are the same as in Fig. 3. The fusion unit performs bilinear interpolation and feature concatenation.

3.3 Network loss function

To detect and eliminate adversarial perturbations,
our end-to-end defensive method includes a detector
and a denoiser. When training the detector, each
image belongs to only one of two categories: clean
image or adversarial image. Therefore, we use a
cross-entropy cost function to measure the difference

between prediction and expectation.

N
Lace ({1}, {3}) = ¢ . wiln (Dee (B (22)))

+ (1 —y;)In(1 —Dec(E (z;)))

(5)
where 7 and N respectively represent the index and
the number of examples in a mini-batch. x; is the ith
image, and y; classifies x;: if x; is an adversarial
example, y; = 1; otherwise y; = 0. Dec(E(z;))
represents the predicted probability that x; is an
adversarial example.

The goal of training the denoiser is to make the
difference between the recovered image and the clean
image as small as possible. However, the remaining
perturbations may influence the response of the target
classification model. To overcome this problem, we
combine pixel-level loss and high-level feature loss in
the cost function used to supervise the training stage
of the denoiser, unlike Ref. [15]. The cost function of
the denoiser is

Lgen ({2} 48:1) = 3+ 2 || Dem (B (#0)) |

+ || fi (Den (E (£))) — fi (z:) ||

(6)

where £; denotes the adversarial sample of x;, and
Den (E (£;)) is the recovered output of the denoiser.
fi denotes the response of the Ith convolutional layer
from the bottom of the target classification model

and [ is set to 1. The L1 norm is used to calculate
pixel-level loss and high-level feature loss.

Based on the above analysis, the cost function of
DDAP can be formulated as

L({i} {2i} {vi}) = aLace (i}, {vi})

+ BLaen ({zi}, {#:})  (7)
where «,f are hyperparameters. For training
stability, alternate training is adopted. First, the
parameters for feature extraction and the denoiser are
trained using clean images and adversarial examples
until the network converges. Next, the feature
extraction parameters are frozen, and the detector is
trained until convergence. Finally, we adopt a small
learning rate to fine-tune the detector and denoiser.

4 FEvaluation

In this section, we validate the capabilities of the
proposed DDAP method in the presence of various
adversarial attacks, including FGSM [20], BIM [9],
DeepFool [21], and PGD [22]. Then DDAP is
compared with other advanced defense methods:
LGD [15], SR [16], PD [17], and TPD [13] using the
BIT-Vehicle dataset [34] and an online Public dataset
https://github.com/CNHNLP/public-dataset. In
addition, we also consider the performance on clean
images and visualization of feature maps.

4.1 Setup

We use pre-trained Inception-v3 [3] as the target
classifier. From the BIT-Vehicle dataset, we randomly
selected 7880 images as the training set and 1970
images as the test set. For the Public dataset,
we picked 1400 images as the training set and 200
images as the test set. The learning rate was set to
0.001 for the BIT-Vehicle classifier and 0.01 for the
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Public classifier. Both were trained for 20 epochs
with a batch size of 32, using the SGD optimization
algorithm. The accuracy of the target classifier on
the BIT-Vehicle and Public datasets was 97.1% and
98.0%, respectively.

To assess the proposed model, adversarial images
are required for training and testing. We used several

attack methods to construct these adversarial samples.

The adversarial training set was generated using
FGSM, BIM, and DeepFool, while the adversarial test
set was generated using FGSM, BIM, DeepFool, and
PGD. Adding PGD during testing aims to verify the
robustness of our method against unmet adversarial
attacks. The perturbation level of these attack
methods was set to 0.15.

4.2 Implementation details

Table 1 gives the parameters used for training our
method. Different experimental settings are used in
different training phases to keep the optimization
stable. While training the denoiser, hyperparameter
« is set to 0. Conversely, when training the detector,
the hyperparameter g is set to 0. SGD optimization
was applied in the experiment, and an early stop
strategy was also used in the training process. The
proposed DDAP method was implemented with the
Pytorch deep learning framework, and deployed on
an NVIDIA TESLA P100 GPU.

4.3 Experimental results

4.8.1 BIT-Vehicle dataset

The BIT-Vehicle dataset targets vehicle classification.

It contains 9850 vehicle images with differences in
lighting, scale, vehicle color, and viewpoint. Vehicles
are divided into 6 categories: Bus, Microbus, Minivan,
Sedan, SUV, and Truck. Since generating adversarial
examples for the entire dataset is expensive, we
randomly selected 2000 correctly classified images
from the training set of the target classifier as
the training set, and use each adversarial attack
method to generate adversarial examples, giving an
adversarial training set with 6000 examples. Similarly,

Table 1 Training parameters for the proposed method.

Detector Denoiser Joint training
a/p 1/0 0/1 1/1
Learning rate 10—4 102 108
Batch size 8 8 4
Epochs 20 100 10

/ .
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the adversarial test set provides 7880 samples based
on the test set of the target classifier. We used the
adversarial training set to supervise training of the
denoiser. In addition, we also selected 1000 images
from both the training set and adversarial training
set to supervise the detector. The optimized model
is compared with other advanced defense models on
the adversarial test set.

Table 2 reports the defensive performance of DDAP
on the BIT-Vehicle dataset.
accuracy of the target classifier without a defensive
model is significantly lowered, and for BIM and PGD
attacks, it drops to zero. DDAP provides better
accuracy for all kinds of attack than other defensive
methods. Although PGD is not used for training, we
still achieve 95.4% accuracy, reflecting the robustness
of our defense method.

The -classification

We also investigated the capabilities of these defense
methods under black-box attack. In a black-box
attack setting, the attacker has no knowledge of the
target classifier. Therefore, another classifier ResNet-
18 [2] was optimized on the BIT-Vehicle training set,
and the adversarial test set was constructed using the
ResNet-18 classifier and the same attack methods. As
illustrated in Table 3, even though the classification
accuracy of DDAP decreases slightly compared with a
white-box attack, it still outperforms other methods.
Obviously, LGD is sensitive to black-box attack, and
its classification accuracy rate drops by nearly 30%.
This may be caused by insufficient ability to learn
manifold structure.

4.3.2  Public dataset

The Public dataset contains 10 vehicle categories:
Bus, Family Sedan, Fire Engine, Heavy Truck, Jeep,
Minibus, Racing Car, SUV, Taxi, and Truck. We
extracted 1400 images as the training set and 200
images as the test set. An adversarial training set
and adversarial test set were constructed as before.
Table 4 shows defensive performance of DDAP
on Public dataset. SR and PD may fail to defend
against FGSM attack because the classification
accuracy of the target classifier is only 25% and
16%. On the contrary, both LGD and DDAP achieve
acceptable defensive effect, and DDAP gets higher
accuracy compared with LGD. DDAP supports the
target classifier to obtain 96.0% accuracy under PGD
attack, confirming the robustness of the proposed

method under different attackers. It should be



An end-to-end convolutional network for joint detecting and denoising adversarial perturbations in vehicle classification 223

Table 2 Classification accuracy on the BIT-Vehicle dataset obtained by different defensive methods

No defense LGD [15] SR [16] PD [17] DDAP
FGSM [20] 58.7% 88.8% 59.3% 58.8% 96.4%
BIM [9] 0.0% 92.2% 65.2% 74.4% 95.5%
DeepFool [21] 23.0% 95.1% 95.4% 94.1% 96.6%
PGD [22] 0.0% 92.2% 74.8% 76.0% 95.4%

Table 3 Classification accuracy on the BIT-Vehicle dataset for different defensive methods, under black-box attack

No defense LGD [15] SR [16] PD [17] DDAP
FGSM [20] 58.8% 59.0% 58.9% 58.8% 82.1%
BIM [9] 70.8% 60.3% 71.7% 73.9% 88.0%
DeepFool [21] 95.4% 64.3% 95.1% 93.4% 97.1%
PGD [22] 68.7% 60.1% 69.9% 71.3% 88.1%

Table 4 Classification accuracy using different defensive methods and the Public dataset

No defense LGD [15] SR [16] PD [17] DDAP
FGSM [20] 1.0% 92.0% 25.0% 16.0% 97.5%
BIM [9] 0.0% 94.5% 66.0% 73.5% 98.0%
DeepFool [21] 8.0% 97.5% 97.5% 96.5% 98.0%
PGD [22] 0.0% 94.5% 70.5% 68.0% 96.0%

pointed out that compared with other attackers, Table 5 Average inference time on test images for different defense

DeepFool’s effect on defensive models is limited, and ~ methods
the accuracy of the target classifier slightly decreases. LGD [15] SR [16] PD [17] DDAP
Table 5 compares average forward time of these 0.066 s 0.50 s 0.515 s 0.056 s

defensive methods, and DDAP spends less inference
time due to lightweight convolution and parameter  some examples of defensive. The target classification
sharing of the feature extraction. Figure 5 exhibits is mispredicted by adversarial images, which is added

Clean image
Adversarial
image
Family Sedan Heavy Truck
L
Defended
image

¥

Truck Family Sedan Bus Heavy Truck Minibus Racing Car

Fig. 5 Selected examples produced by DDAP. Labels below each image indicate the output classification.
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with imperceptible perturbations. After removing
perturbations, there is almost no difference between
defended images and clean images, which enhances
the correct prediction of the target classifier.

As the first step of the network, it is critical that

the detector correctly detects adversarial examples.

We compare our method with TPD for recognition
accuracy on the Public adversarial test set. In
TPD, we assume trained Inception-v3, and Resnet-18
with softmax normalization, as defensive model and
target model. Table 6 summarizes the recognition
performance of TPD and DDAP. In order to balance
classification accuracy of TPD for both clean and
adversarial examples, thresholds of 0.05 and 0.1 were
considered. The recognition accuracy achieved by
TDP is 73.9% and 71.2% for these different thresholds,
which is far short of the 99.1% achieved by DDAP.

4.8.8  Performance on clean images

As mentioned in the introduction, using defensive
models may reduce the accuracy of the target classifier
when presented with clean images. Table 7 provides
target classifier results for various defensive methods
on the BIT-Vehicle and Public test sets. Using LGD
greatly reduces the classification accuracy from 79.5%
to 65.4%. DDAP hardly affects the performance of
the classifier on clean images, reducing it to 97.1%
from 97.5%. This is also better than the results
obtained by SR and PD.

4.8.4  Ablation study for DDAP

In order to verify the effectiveness of the design, we
compared the performance of DDAP with or without

Table 6 Accuracy of recognition of adversarial examples from the
Public dataset

TPD [13] (£=0.05) TPD (t=0.1) DDAP

73.9% 71.2% 99.1%

Table 7 Classification accuracy of clean images using different
defense methods

No defense LGD [15] SR [16] PD [17] DDAP

97.1%
97.5%

97.1% 65.4% 95.5%  94.4%
98.0% 79.5% 96.0%  95.5%

BIT-Vehicle [34]
Public dataset

Table 8 Classification performance of DDAP with and without the
detector, for two datasets

the detector on two vehicle datasets. The test set
includes clean images and the adversarial test set.
Table 8 shows that DDAP with the detector achieves
better classification accuracy than without, indicating
the benefit of adding the detector.

4.3.5 DUNET

If we remove the detector from DDAP, it basically
degenerates to DUNET [15]. Ideally, if we combine
clean examples and adversarial examples to train
DUNET, it may learn the ability to recognizing
clean images and adversarial examples, and denoise
adversarial perturbations at the same time. When a
clean example is entered, it outputs the original clean
example. When an adversarial example is input, a
repaired example is output. Therefore, we combined
the adversarial training set and the training set to
form a joint training set, using BIT-Vehicle. The
test set and adversarial samples generated by attack
methods were employed to construct the joint test
set. The joint training set was used to train both
DDAP and DUNET. Table 9 gives the classification
accuracy on the joint test set. DDAP achieves better
results than DUNET for all kinds of attack, which
may be due to it being difficult for DUNET to learn
to recognize and reduce perturbations at the same
time.

4.8.6  Further validation on the CompCars dataset

In order to further validate the effectiveness of the
design, various defense methods were also tested in
the web-nature scenario of the CompCars dataset
[35], which includes MPV, SUV, Sedan, Hatchback,
Minibus, Fastback, Estate, Hardtop
Convertible, Sports, Crossover, Convertible. Since

Pickup,

it is very expensive to generate adversarial samples
for the entire dataset, we randomly constructed 8640
adversarial training set examples and 2880 adversarial
test set examples. Table 10 gives the results. As
before, these methods effectively defend against
DDAP achieves the best classification
accuracy for all attacks.

DeepFool.

Table 9 Classification accuracy comparison with DUNET on BIT-
Vehicle

DDAP without detector DDAP FGSM [20] BIM [9] DeepFool [21]
BIT-Vehicle [34] 92.3% 96.2% DUNET [15] 87.1% 86.6% 87.2%
Public dataset 88.1% 97.1% DDAP 96.7% 96.3% 96.6%

/ .
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Table 10 Classification accuracy for different defensive methods
using the CompCars dataset

No defensive LGD [15] SR [16] PD [17] DDAP

FGSM [20] 75.4% 97.5% 66.0% 68.1% 99.7%

BIM [9] 21.4% 98.3%  21.9% 22.2% 99.4%

DeepFool [21] 2.4% 99.9%  99.4%  99.4% 99.9%

PGD [22] 13.9% 98.2%  14.6% 14.7% 99.7%
4.8.7 CAMs visualization

CAMs [36] is a method to help interpret convolutional
neural networks: it can visualize the discriminative
features they learn. Usually, redder regions are more
sensitive to the target classifier. Figure 6 shows the
class activation mapping for the top-1 prediction of

the Inception-v3 classifier on the BIT-Vehicle data.

The target classifier focuses on the vehicle region in
clean images. The perturbations generated by FGSM
take attention from these discriminative features,
resulting in incorrect classification. We can see that
DDAP can refocus on the discriminative region by
removing the perturbations.

Clean image

Clean image-CAM

Adversarial-CAM

5 Conclusions

In this paper, we have presented an end-to-end
approach, DDAP, to defend against adversarial
attacks in vehicle classification. It detects adversarial
examples and eliminates adversarial perturbations
without changing the structure of the vehicle classifier.
As our experiments demonstrate, DDAP resists a
variety of powerful adversarial attacks and is robust
in both white-box and black-box attacks. The DDAP
model only slightly decreases the performance of the
vehicle classifier on clean images, and outperforms
other state-of-the-art defensive methods on available
vehicle datasets.
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