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Abstract
There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and 
meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this chal-
lenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, 
thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where 
the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro 
lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions 
between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological 
systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the 
processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that 
may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, 
and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate 
drug development for COVID-19 and other infectious diseases.
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Introduction

At the time of this review, coronavirus disease 2019 
(COVID-19), the disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) virus, has infected 
over 54 million people globally following its emergence 
from Wuhan, China, in December 2019 [1]. Complications 
related to COVID-19 have resulted in over a million deaths, 
serious morbidity in many surviving patients, and economic 
havoc throughout the world [2–8]. Although collaborative 
and multidisciplinary research efforts have sped up the 
development and repositioning of drugs against COVID-19 
[9–11], no effective therapy has been established to date. 
Given the urgent need and limited resources, screening lead 
compounds with microphysiological systems (MPSs) or 
organ-on-a-chip systems can offer many advantages over tra-
ditional methods for testing the safety and efficacy of novel 
or repositioned drugs and for investigating the mechanisms 
of action of said drugs. Pharmaceutics for COVID-19 can 
be categorized into therapeutics for the inhibition of viral 
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entry (by targeting SARS-CoV-2 spike proteins and associ-
ated receptors and mediators), blockage of virus replication, 
treatment of infection-related inflammation (maintenance 
of tolerable cytokine levels), prevention of coagulation and 
thrombosis in infected tissues, prevention or reversal of alve-
olar flooding, and prevention of fibrosis. The in vitro reca-
pitulation of drug-targeted pathological processes requires 
the in-depth understanding of disease states at the cellular 
and tissue level. For instance, mortality in COVID-19 is 
often due to alveolar flooding, which has three main causes: 
failure of epithelial barrier, inhibition of amiloride-sensitive 
 Na+ channels in the alveolar epithelium (thereby disrupt-
ing absorption of liquid from the alveolar lumen), or loss 
of surfactant function. Through modeling specific aspects 
of the disease state, MPS can play a key role in accelerat-
ing, de-risking, or supplementing the development of novel 
treatments for various pathologies. Excellent reviews have 
been published on general organ-on-a-chip and lung-on-
a-chip models for drug development [12–14]. Herein, we 
provide an update on in vitro lung MPS and discuss the fur-
ther development of MPS for mechanistic studies and drug 
screening in relevance to COVID-19.

Modeling lung function

In the past two decades, the in vitro modeling of cellular 
functions and interactions in lung tissues has evolved from 
a relatively simple co-culture setting to MPS that mimics 
the biomechanical, biochemical, and biological factors in 
the lung, as exemplified by Transwell systems, organoids, 
and MPS (Fig. 1).

Transwell systems

Alveolar epithelial cells can be cultivated in a two-dimen-
sional (2D) culture on extracellular matrix (ECM) coated or 
uncoated tissue culture plastics. Such 2D culture systems can 
be modified with the placement of a Transwell insert, elevat-
ing the culture onto a semipermeable membrane above the 
floor of the well and thus creating a media reservoir beneath 
the membrane. The new surfaces created in the system, such 
as the now vacant well floor and the underside of the insert 
membrane, can be used to culture additional cell types, such 
as endothelial cells (Fig. 1b). Transwell systems also allow 
the epithelial cell layer to grow on an air–liquid interface, 
allowing epithelial differentiation toward mucous-secreting 
goblet cells [15]. A proof-of-concept study using dextrans 
and fluorescent dyes showed that although the permeabil-
ity of the alveolar cell-occupied membrane was lower in 
Transwell systems compared to later discussed microfluidic 
MPS devices, the barrier permeability to 70-kDa dextran 
was similar in both systems [16]. In a similar manner, to 

determine the prevailing type of transepithelial transport, 
the transmural voltage (Vte) can be measured with voltage-
sensing fluorescent probes. Small fluorescent probes could 
also be used to determine the integrity of tight junctions. 
Transepithelial electrical resistance (TEER), an index of bar-
rier function and amiloride-sensitive Vte (an index of the epi-
thelium’s ability to remove fluid from the alveolar lumen), 
can be readily measured by a voltmeter equipped with spe-
cialized fixed width double electrodes. The basolateral and 
apical media can be sampled for released compounds. With 
regard to ultrastructure, cells grown on inserts may show 
similar differentiation to those grown in other systems with 
an air–liquid interface [17]. Transwell systems are advan-
tageous because their relative simplicity allows for rapid 
deployment in sets of 48 inserts. An issue with Transwell 
culture is that the lack of microfluidic flow does not induce 
physiological shear stress or pressure on cells, which can 
result in a difference in permeability between compartments 
compared to fluidic-stressed cells.

Organoids

The widespread use of organoids began in 2009, when Hans 
Clevers and colleagues grew a self-organizing structure from 
stem cells that differentiated into tissues with organ-like 
features [18]. Organoids are functional units generated by 
seeding pluripotent or induced pluripotent stem cells (PSC/
iPSC) onto suspended clusters of collagen or ECM solu-
tion such as Matrigel (an ECM isolated from Engelbreth-
Holm-Swarm (EHS) mouse sarcoma cells), and adding the 
appropriate growth factors for cells to differentiate into the 
lineage of interest in the growing organoid [19, 20]. Hollow 
spheres of epithelial cells form within the gel, with their 
apical membrane facing inwards (Fig. 1c). The spheres can 
be studied in situ or released by enzymatic treatment to form 
a suspension. The types and magnitudes of transepithelial 
ion transport processes present can be determined based on 
changes in the volume of individual organoids. For instance, 
cyclic adenosine monophosphate (cAMP)-elevating agents 
cause organoids of nasal epithelium to swell, except if they 
are derived from patients with cystic fibrosis [21]. Therefore, 
the swelling is presumably due to the activation of cystic 
fibrosis transmembrane conductance regulator (CFTR)-
dependent chloride ion  (Cl–) secretion. Likewise, swelling 
upon amiloride application would indicate the presence of 
active sodium ion  (Na+) absorption, the process that com-
bats alveolar flooding. Unfortunately, the amiloride-sensitive 
 Na+ channels are in the apical membrane, while the 229-Da 
amiloride molecule is small enough for sufficient amounts 
of it to diffuse across the tight junctions. Based on the dif-
ferentiation characteristics of tissue-engineered lung, orga-
noids are subdivided into tracheospheres, bronchospheres, 
or alveolospheres. Alveolospheres with both type I and type 
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II alveolar cells can be maintained through the application of 
interleukin-6 (IL-6)/signal transducer and activator of tran-
scription proteins 3 (STAT3), bone morphogenetic protein 
(BMP), and fibroblast growth factor (FGF) [19]. Clustered 
regularly interspersed short palindromic regions (CRISPR)/
CRISPR-associated protein 9 (Cas9) methods have identi-
fied a ciliation transcription factor in airway cells that may 
be useful for the knock-in/knock-out/knock-down identifica-
tion of growth factor pathways important for cell differen-
tiation and disease formation in organoids [22–24]. Orga-
noids can be cultured in a variety of microenvironments 
with a wide range of conditions; coating lung organoids 

with poly(lactide-co-glycolide) (PLGA) allows for their 
implantation and maturation in vivo [25]. The drawbacks of 
organoids include the lack of an air-filled lumen necessary 
for testing inhaled therapeutics, the lack of an accessible 
endothelial-lined compartment simulating the vasculature 
essential for the pharmacokinetic study of the lung-circula-
tion interface, as well as variability in growth, differentia-
tion, and maturation [19, 22, 26]. A further problem with 
organoids is that the receptor for coronaviruses, angioten-
sin-converting enzyme 2 (ACE2, discussed in Sect. “ACE2 
and viral entry”), is in the apical membrane. Thus, gentle 
enzymatic and physical disruption is needed to bring virus 

Fig. 1  Lung microphysiological systems for COVID-19. a The lung 
has structurally unique tissue organization, characterized by a succes-
sively finer branching system of airways that terminate in the alve-
oli where oxygenation of blood from the circulatory system occurs. 
An accurate and rapidly deployable alveolar-level lung model is 
needed to develop drugs against the pathological damage caused by 
COVID-19, the disease resulting from SARS-CoV-2 viral infection. 
b Preceding the development of true lung MPS, Transwell systems 
used a membrane fitted insert into multiwell cell culture assay plates. 
Inserts with membranes that prevent fluid passage create an air–liquid 
interface where alveolar epithelial cells and vascular endothelial cells 

can be grown on each side. c Organoids can be formed by seeding 
an extracellular matrix with stem cells and then using a sequence of 
growth factors to differentiate them into a set of lung cells that organ-
ize spatially complex tissues resembling in vivo tissue architecture. d 
Lung microphysiological systems or lung-on-a-chip; a PDMS micro-
device with a thin PDMS layer coated with ECM acting as an alveo-
lar epithelial–capillary border. Breathing motions are recreated by 
applying vacuum to side compartments generating mechanical stretch 
of the alveolar–capillary membrane. Reproduced with permission 
from Huh et al. [19], Copyright 2010



 Bio-Design and Manufacturing

1 3

and receptor together [27]. Therefore, differences in the dis-
ruption procedure between studies could lead to variability 
in the results.

Lung microphysiological systems

Organ-on-a-chip methods (a term used interchangeably 
with microphysiological systems) use microfluidic flow to 
culture cells in an organotypic configuration. These micro-
fluidic devices are made by microfabrication methods bor-
rowed from the semiconductor industry, hence their name 
[28]. Huh et al. fabricated an organ-on-a-chip model of the 
lung alveolus in 2010 by etching two adjacent channels 
in polydimethylsiloxane (PDMS), which were separated 
by a 10 μm porous and flexible PDMS membrane [29]. 
After coating each side of the membrane with extracel-
lular matrix, solutions containing either lung epithelial 
cells or vascular endothelial cells were flowed into the 
channels, allowing cells to colonize and expand on both 
sides of the membrane (Fig. 1d). Once the cells reached 
confluence, the growth medium from the top channel was 
removed to create an air–liquid interface. The flexibility 
of PDMS allows for cyclic stretching with air pressure 
changes, modeling the stress–strain pattern that occurs 
during in vivo breathing [29, 30]. Such stretching influ-
ences permeability and the release of reactive oxygen 
species, cytokines, and surfactant [29–31]. An advantage 
of the lung-on-a-chip systems is that other cell types can 

be grown separated from but in close proximity to epi-
thelial cells, thereby mimicking in vivo interactions. Fur-
thermore, TEER [29] and amiloride-sensitive Vte can be 
measured in such systems. A comparison of alveolar cells 
cultured under microfluidic flow without oscillatory pres-
sure changes to simulate breathing showed higher TEER 
than that in a Transwell culture [32]. Stucki et al. used 
electrodes to simultaneously monitor TEER and epithe-
lial movement, which enabled the modeling of a dynamic 
three-dimensional (3D) alveolar microenvironment [33]. 
A criticism of lung MPS is that the design of an individual 
chip is complex and may harbor the difficulty of assembly 
and usage in sufficient numbers for drug screening amidst 
a rapidly expanding threat like COVID-19. Efforts have 
been made to remedy this situation in the form of MPS-
based startups and spinoffs [34], with a notable example 
shown in Fig. 2, which is an Akura platform by InSphero 
AG using pumpless microfluidic circulation to perform 
on-chip perfusion of organoids [35].

Modeling lung pathology

Several in vitro lung models exist for COVID-19 drug dis-
covery, each with their unique advantages; however, lung 
MPSs are versatile and have already demonstrated useful-
ness in several pathological manifestations of COVID-19. 
In the following sections, we discuss how MPSs have aided 

Fig. 2  Pumpless organoid MPS. 
a Organoids can be loaded 
into the MPS, which is then 
perfused by microfluidic flow. 
Reproduced with permission 
from Frey et al. [35], Copyright 
2015. b Pumpless flow is driven 
by gravity, where alternate 
setup allows continuous flow. c 
Human tissue organoid (hLiMT) 
perfused in the MPS shown at 
5 × magnification. d Colored 
dye is used to show stacking of 
up to 60 experiments. e Cancer 
cell (HCT116) spheroid shown 
at 1 × magnification
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new drug candidate testing, as well as the potential ways 
in which they can be of further assistance. In particular, 
COVID pathology can be organized into the following 
stages: SARS-CoV-2 viral entry by the ACE2 receptor; 

inflammation or malfunction of the innate immune response; 
coagulopathy or clotting dysregulation; edema or swelling 
and fluid accumulation; fibrosis or scarring through the 
buildup of fibrotic connective tissue (Fig. 3).

Fig. 3  Overview of COVID pathology and therapeutics in relation 
to in  vitro modeling. COVID-19 is generally agreed to have three 
phases: an acute phase characterized by inflammation, coagulopathy, 
and immune malfunction, an intermediate phase characterized by 

edema and a recovery phase characterized by the buildup of fibrotic 
extracellular matrix. Drug discovery for each stage presents unique 
challenges that can be overcome by adapting the usage of lung MPS
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ACE2 and viral entry

The ACE2 enzyme is an 85.9-kDa membrane-bound zinc 
metalloproteinase that functions to counter-regulate the 
renin–angiotensin–aldosterone axis by converting angioten-
sin II to angiotensin I. The SARS-CoV-2 and SARS-CoV 
viruses gain entry to ACE2-expressing cells when the spike 
protein on viral particles binds to ACE2 and is endocytosed 
when the ACE2 is recycled. The virus then exits the endo-
some into the host cell cytoplasm, where it uses its RNA 
genome to replicate using the host cell’s protein synthesis 
machinery. Drugs that mechanistically target this pathway 
constitute a significant portion of the existing COVID treat-
ments. Following the outbreak of SARS-CoV, 9% of papers 
published on therapeutics focused on ACE2. In combination 
with the spike protein, this total neared a third [36]. SARS-
CoV-2 has 20 times greater affinity for ACE2 compared with 
SARS-CoV, justifying the efforts toward analyzing ACE2 
targets for drug development [37]. Computational screening 
was shown to be effective in conjunction with cell culture to 
screen potential leads. In one example, a structural similarity 
of influenza neuraminidase to coronavirus protease 3CLPro 
suggested that the neuraminidase inhibitor oseltamivir has 
antiviral action against SARS-CoV-2. Unfortunately, molec-
ular docking showed the inhibition to be weak, which was 
confirmed in a culture of ACE2-expressing Vero E6 cells 
[38]. Computational docking, however, has shown promising 
results against SARS-CoV-2 spike protein and proteases and 
can be useful for preliminarily narrowing down the related 
leads for further testing in MPSs [9, 39].

The therapeutic potential of a lead must be confirmed 
by showing how cells react to it and how well it performs 
against a cellular model of COVID-19. For a lung MPS, 
modeling SARS-CoV-2 infection in vitro requires the pres-
ence of lung cells expressing ACE2 and its co-receptor trans-
membrane protease serine 2 (TMPRSS2). The expression of 
both receptors is the highest in type II alveolar cells (AT2/
AEC2) [40, 41]. Using a validated antibody and mRNA 
sequencing, ACE2 expression was found in the intestinal 
microvilli, renal proximal tubule, gallbladder epithelium, 
and also in testicular Sertoli and Leydig cells [42]. Consist-
ent with the sequencing data, infections with SARS-CoV and 
other betacoronaviruses related to SARS-CoV2 were found 
in Vero, Caco-2, and Huh-7.5 cells, which originate from the 
kidney, intestine, and liver, respectively [43]. Surprisingly, 
ACE2 expression was not detected in the frequently studied 
lung epithelial cell line A549 [42]. Although there has been 
significant work on ACE2, controversial reports were also 
published on ACE2-independent viral entry using CD147/
basigin [44, 45]. Primary cultures of alveolar type II cells 
were used in early studies of epithelial ion transport [46]. 
When grown in porous-bottomed inserts used in a Tran-
swell culture, these cells form tight junctions (as reflected 

in high transepithelial resistance, TEER), polarize, and dis-
play amiloride-sensitive  Na+ transport [47]. The earliest 
such cultures dedifferentiated rapidly with time and ultra-
structurally changed to resemble type I alveolar cells [48]. 
Several approaches to preventing this dedifferentiation were 
described later [49–53], with perhaps the most effective one, 
in terms of ultrastructure and surfactant production, being 
the use of an air interface [54]. This approach, however, has 
little effect on amiloride-sensitive  Na+ transport [55], which 
is consistent with studies on isolated type I cells in that they 
also had the necessary apparatus for this transport process 
[56, 57]. No culture has yet been derived from type I cells, 
while a cell line that resembles them, hAELVi, has been gen-
erated from human alveolar epithelium [58]. Cells relevant 
to the compound being evaluated should be included when 
designing a model, although caution should be taken against 
the inclusion of too many extraneous cell types that might 
unnecessarily complicate the model.

The MPS-related methods have also been employed in 
COVID infection models with non-lung cells. One such 
example is the testing of human recombinant soluble ACE2 
(hrsACE2) as a potential biologic treatment against SARS-
CoV-2 infection, which works by binding to the viral spike 
protein blocking its interaction with cellular ACE2. Infec-
tion was reduced by several orders of magnitude in Vero 
cell culture and kidney organoids (Table 1) [59]. Using a 
similar strategy with SARS-CoV-2-neutralizing monoclonal 
antibodies, lung pathology was prevented in hamsters [60]. 
Targeting the TMPRSS2 co-receptor with the serine protease 
inhibitor camostat mesylate is thought to be a further poten-
tial means to prevent viral entry into cells [61]. Interestingly, 
inflammation due to a depletion of ACE2-expressing cells is 
partially ameliorated by the estrogen-mediated upregulation 
of ACE2, possibly accounting for sex differences in mortal-
ity and making estrogen a component of COVID therapeu-
tic regime [62]. The unique modifications needed for MPSs 
when used for steroid-like small molecules (summarized in 
Table 1) are discussed in “Current challenges and future 
perspectives”.

Zinc and zinc metalloenzymes are further alternative 
targets for drug development against SARS-CoV-2 entry. 
Facilitating zinc entry is a proposed mechanism for chlo-
roquine and hydroxychloroquine, which are controversial 
antimalarial drugs repurposed for COVID-19 treatment as 
part of the SOLIDARITY trial. Acting as an ionophore, 
they increase intracellular lysosomal zinc concentrations, 
which has been shown to inhibit viral RNA-dependent RNA 
polymerase [63, 64]. They also raise the pH of lysosomes, 
thereby preventing their acidification and fusion with 
endosomes [65]. These drugs also impair the terminal gly-
cosylation of ACE2, affecting its ligand binding ability [65, 
66]. Despite this promising cell biology evidence, antima-
larials did not show clinical benefit during selective clinical 
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trials [67], prompting the need to improve the sophistication 
of current preclinical testing methods. Other antiviral drugs 
target viral replication after cell entry, such as remdesivir 
that is an RNA polymerase inhibitor developed for Ebola, 
or ritonavir and lopinavir, which are HIV protease inhibitors 
[65, 68]. Cathepsin-mediated cleavage of viral protein for 
processing is also a potential drug target being investigated, 
with certain compounds shown to have antiviral effects [65, 
69]. Some of the aforementioned drugs can also benefit from 
nano-drug delivery modifications to improve their bioavail-
ability and targeting [70, 71]. Combinations of drugs may 
also have synergistic effects potentially critical for overcom-
ing SARS-CoV-2 infection [72, 73]. When designing lung 
MPS for drug combinations, it will be important to consider 
each component drug with regard to the design aspects dis-
cussed in “Physiologically and Pathologically Relevant Lung 
Models for COVID-19” and “Current challenges and future 
perspectives”.

Inflammation

The inflammatory component of COVID-19 is a complex 
response to infection by SARS-CoV-2 in vascular connec-
tive tissue. A sequence of cell migration into the extracel-
lular matrix occurs due to viral infection—this sequence 
begins with neutrophils followed by lymphocytes and mac-
rophages [74, 75]. Inflammation also continues to play a 
role in the pulmonary edema occurring during the late 
acute/intermediate phase (Fig. 2), when fluid and plasma 
proteins followed by immune cells are exuded into the 
extracellular matrix. Anti-inflammatory treatments are 
frequently used to prevent the harmful effects of inflam-
mation, which include fibrosis. Inflammatory cytokine 
release upon stimulation was shown to be higher in an 
airway-on-a-chip model compared to monoculture devices 
harboring the same type of cells, thus providing evidence 
of proinflammatory crosstalk in an MPS [76, 77]. The 
cytokine storm or cytokine release syndrome (CRS) is a 
robust cytokine release response, resulting in a hyperin-
flammatory state that can lead to life-threatening acute 
respiratory distress syndrome (ARDS) [78]. Eicosanoids, 
such as prostaglandins and leukotrienes generated from 
cell death debris, may be a trigger of the cytokine storms 
seen in COVID-19 [79]. Macrophage activation syndrome 
(MAS) and hemophagocytic lymphohistiocytosis (HLH) 
are autoimmune dysfunctions closely tied to the aberrant 
cytokine release in COVID-19 [80–82]. The tumor necro-
sis factor alpha (TNF-α) is a proinflammatory cytokine 
released by macrophages causing vascular leakage, edema 
and lung injury in COVID-19. As a result, the treatment of 
MAS with TNF-α inhibitors such as etanercept (a fusion 
protein between TGFR and IgG1  Fc) is being explored 
[80, 83–85]. Blocking the cross-specificity of spike protein 

for Toll-like receptor 4 (TLR-4) has been proposed as a 
mechanism for the use of TLR-4 antagonists, such as eri-
toran, against TNF-α-mediated cytokine storm [86, 87]. 
The risk of opportunistic infections secondary to COVID 
has increased caution against immunomodulators and 
other biologics [80, 83, 88]. Sphingosine-1-phosphate 
(S1P) is a sphingolipid second messenger of the early 
innate immune response in the lung, whose suppression 
reduces TNF-α secretion and accompanying cytokine 
storm. The sphingosine-1-phosphate receptor (S1PR) 
antagonist fingolimod (Fig. 4a2, Table 1) is in phase II 
clinical trials for COVID-19 [78, 89]. Another important 
cytokine is IL-6, which binds to the IL-6 receptor on the 

Fig. 4  Challenges to lung MPS and upcoming advances. a Small, 
typically lipophilic molecules bind to surfaces such as PDMS chan-
nel walls and can be characterized by the Langmuir–Freundlich 
isotherm. Coating a PDMS surface with paralyne or using sol–gel 
methods can prevent lipophilic binding [156, 157]. a1 Baricitinib, a 
Janus-associated kinase (JAK/STAT) inhibitor immunosuppressant, is 
used to treat COVID-associated hemophagocytic lymphohistiocyto-
sis (HLH) [76]. a2 Fingolimod, a repurposed multiple sclerosis drug 
[89]. Aliphatic domains such as the hydrophobic tail create opportu-
nities for the drug to bind to channel walls. a3 Budesonide, an anti-
inflammatory steroid compared tested on lung MPS [90]. b Biologics 
such as antibodies and recombinant proteins adsorb to PDMS channel 
walls; methods to prevent adsorption include oxygen plasma treat-
ment, amphilic, self-assembled monolayer and hydrophilic polymer 
graft coating [157, 161]. c Integrating MPS devices with automated 
liquid handling and continuous flow will introduce a new potential for 
streamlining drug discovery workflows and increasing throughput for 
screening lead compounds. d Machine learning and artificial intel-
ligence algorithms such as neural networks can aid drug discovery 
through molecular docking and design, image analysis and toxicity 
predictions. Effective usage includes generating and seeking out suffi-
ciently large datasets to train algorithms to make accurate predictions
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cell surface and phosphorylates mediators in the Janus-
associated kinase/signal transducer activator of transcrip-
tion proteins (JAK/STAT) pathway, thus leading to the 
further upregulation of proinflammatory cytokines [89]. 
Tocilizumab and sarilumab (Table 1) are monoclonal anti-
body immunosuppressive drugs targeting the IL-6 receptor 
and antagonizing its ligand binding [80, 82, 89]. Barici-
tinib, ruxolinitinib (Fig. 4a1, Table 1) and tofacitinib are 
small-molecule immunosuppressants that inhibit the JAK/
STAT pathway intracellularly and have been suggested for 
use against COVID-19-associated HLH [80, 81, 83, 89, 
90]. Inflammation mediated by IL-6 is also thought to 
be closely linked to elevated ferritin levels found in non-
survivors with severe COVID-19 [91–93]. IL-12 parallels 
IL-6 as a proinflammatory cytokine; thus, treatment with 
IL-12 inhibitors like ustekinumab has also been suggested 
[83, 85]. On the other hand, IL-10 presence indicates the 
beginning of the repair phase of inflammation and is asso-
ciated with the non-inflammatory macrophage type 2 (M2) 
state, while its circulating levels are also elevated dur-
ing a cytokine storm [84, 85]. In the RECOVERY trial, 
the corticosteroid dexamethasone (Table 1) was shown to 
reduce deaths in ICU patients and shorten hospital stays 

in non-ICU patients. Nanomedicine formulations of dexa-
methasone have been suggested for COVID-19, because 
its anti-edema and antifibrotic properties justify improved 
circulation time and targeting. In a clinical trial for mul-
tiple myeloma, PEGylated liposomal dexamethasone was 
well-tolerated [94]. In order to effectively model inflam-
mation in lung MPS, the inclusion of cytokines, T-cells, 
neutrophils and other immune cells will likely capture a 
more complex phenomenon resembling the in vivo pathol-
ogy. The length modeling of immune action in the lung is 
covered in “Modeling immunity in the lung”.

Coagulation

The increased production of proinflammatory cytokines 
activating the coagulation reaction cascade leads to coagu-
lopathy in COVID-19 patients. The coagulopathy seen in 
COVID-19 has the characteristics of sepsis-induced coagu-
lation (SIC), as well as of severe disseminated intravascular 
coagulation (DIC) [95, 96]. The COVID-19 condition mildly 
prolongs prothrombin time (PT) and activated partial throm-
boplastin time (aPTT) and markedly elevates D-dimers. 
Activated coagulation indicators overlap but do not directly 
align with DIC and suggest a distinct hypercoagulable 

Table 1  COVID therapeutic categories for MPS screening

Therapeutic Type Mechanism Examples MPS notes References

Recombinant; Receptor Biologic Viral binding hrsACE2 Antiadsorp; Channel 
coating

[59, 60]

JAK/STAT inhibitors Small molecule IL-6 pathway Baricitinib; Ruxolitinib Antilipophilic; Channel 
coating

[80, 81, 83, 89, 90]

Corticosteroid Small molecule Inflammation; edema Dexamethasone; Bude-
sonide

Antilipophilic; channel 
coating

[76, 94]

Nanomedicine Nanoparticle Varies with cargo PEG-liposomal; Dexa-
methasone

Varies [94, 134, 156]

TRPV4 inhibitor Small molecule Edema GSK2798745 Antilipophilic; channel 
coating

[110, 156, 157]

S1PR antagonist Small molecule Inflammation Fingolimod Antilipophilic; Channel 
coating

[78, 89]

Heparin Polysaccharide Anticoagulant UFH; enoxaparin; 
Dalteparin

Adj flow for viscosity; 
Shear

[93, 95, 96]

PAR-1 inhibitor Small molecule Anticoagulant PM-2 Antilipophilic channel 
coating

[77, 102]

Antifibrotic Small molecule Antifibrotic; inflamma-
tion

Pirfenidone; nintedanib Antilipophilic; channel 
coating

[111, 116]

Cytokine inhibitor Antibody Inflammation Tocilizumab; Sarilumab; 
Ustekinumab

Antiadsorp; Channel 
coating

[80, 82, 84, 85, 89]

TLR-4 inhibitor Small molecule Inflammation Eritoran Antilipophilic; channel 
coating; creatinine flow 
media

[86, 87, 141, 142]

C5 inhibitor Antibody Anticoagulant Eculizumab Antiadsorp; Channel 
coating

[97, 157, 161–164]

PDE inhibitor Small molecule Anticoagulant Dipyridamole Antilipophilic; channel 
coating

[97, 156, 157]
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state [97], also termed COVID-19-associated coagulopa-
thy (CAC) [92]. Integrating the microfluidic detection of 
hemostasis parameters [98] is a design consideration for an 
MPS model that includes coagulopathy. Venous thromboem-
bolism (VTE) and pulmonary embolism (PE) are significant 
causes of mortality in COVID-19 patients and are thought to 
be caused by coagulopathy and further exacerbated by fac-
tors such as prolonged bed rest [96, 97, 99]. The prophylac-
tic use of anticoagulants includes drugs such as tissue plas-
minogen activator (tPA), directly acting oral anticoagulants, 
dipyridamole, eculizumab and heparins like UFH, enoxapa-
rin or dalteparin (Table 1) [95–97, 99, 100]. Heparins are 
also beneficial for their anti-inflammatory effects [93], with 
a poorly understood mechanism of action that may involve 
heparin binding and sequestration of cytokines. Thrombin 
activates PAR-1 augmenting inflammation, which decreases 
physiological anticoagulants such as antithrombin, thereby 
worsening coagulopathy [101]. In an alveolar MPS model of 
thrombosis where lipopolysaccharide (LPS) endotoxin was 
used to induce a prothrombotic cytokine cascade in the epi-
thelium, the testing of PAR-1 inhibitor parmodulin-2 (PM-2, 
Table 1) demonstrated its cytoprotective and antithrombotic 
activity [77, 102].

Pulmonary edema

At equilibrium, the active removal of liquid from the alveoli 
equals the inflow due to Starling forces, and the depth of 
liquid in the alveolar lumen is constant at approximately 
0.1 µm [103]. Amiloride-sensitive  Na+ absorption drives the 
removal of liquid from the alveolar lumen [104]. Anions 
(mainly  Cl–) follow the actively absorbed  Na+, resulting in 
a local osmotic gradient across the epithelium and water 
flowing along this gradient, which occurs primarily though 
alveolar type I cells that have the highest osmotic perme-
ability of any cell type [105]. It is noteworthy that although 
human-induced pluripotent stem cell (iPSC)-derived alveo-
lar epithelial cells express apical markers, such as human 
type I cell-associated protein of 56 kDa (HTI-56) and human 
type II cell-associated protein of 280 kDa (HTII-280), their 
aquaporin expression is varied [106, 107]. If there is outright 
damage to the epithelium or if its tight junctions become 
excessively leaky, however, the generated gradient is over-
whelmed and flooding occurs. The loss of surfactant func-
tion also leads to alveolar flooding [108]. Lung-on-a-chip 
studies directed at pulmonary edema generated by IL-2 
treatment for lung cancer demonstrated that the TRPV4 
ion channel regulates the alveolar capillary barrier [109]. 
The TRPV4 inhibitor GSK2798745 (Table 1) is undergoing 
phase I clinical trials and has been suggested to be repur-
posed to treat pulmonary edema in COVID-19 [110].

Fibrosis

Viral-induced pulmonary fibrosis contributes to both an 
immediate reduction in lung function and an increased risk 
of developing pulmonary fibrosis [111]. Epithelial cells 
within the lungs can proliferate following tissue damage to 
regenerate the native alveolar structure. However, inflamma-
tion or significant injury leads to proinflammatory signal-
ing that activates fibroblasts, which aberrantly migrate and 
expand within the lung tissue to deposit stiff, collagen-rich 
ECM [112]. Epithelial cell apoptosis and the accumulation 
of fibrous scar tissue in conjunction inhibit proper lung func-
tion and in conjunction contribute to chronic symptoms. 
Fibrotic mechanisms should be incorporated into lung-on-
a-chip systems to more faithfully mimic in vivo responses 
to viral-induced injury and better predict regenerative 
outcomes [113]. For therapeutic evaluation, lung-on-chip 
models typically utilize combinations of pirfenidone and/or 
nintedanib to remedy myofibroblast ECM production, which 
are intriguingly already under consideration as potential 
COVID-19 therapeutics [111].

A fibrotic phenotype is typically achieved by the addition 
of a lung fibroblast population and a fibrosis activation pro-
cess (TGF-β supplementation) within type I collagen-based 
matrices and can be quantified in different ways depending 
on the system. In one approach, human small airway epi-
thelial cells (SAECs) were combined with endothelial cells 
and normal lung fibroblasts within a multi-layer perfusable 
PDMS device with a distinct design that facilitates cell–cell 
interactions [114]. A fibrotic phenotype was induced via the 
addition of pulmonary fibrosis patient-derived fibroblasts 
and/or TGF-β and characterized via changes in smooth mus-
cle actin (α-SMA), Tub4 and club cell uteroglobin (CC10) 
staining. Different custom approaches utilizing silk–colla-
gen scaffolds were able to mimic the stiffening and align-
ment of fibroblasts within lung tissue observed in fibrotic 
disease progression; α-Al, ED-A fibronectin and periostin 
were used to identify the generation of myofibroblast popu-
lations [115]. In an alternative approach to study fibrotic 
stiffening, Asmani et al. developed a micropost system to 
hold epithelial–fibroblast microtissues. The relative move-
ment of the posts in response to stretching could be used 
to determine tissue stiffness and compliance [116]. Follow-
ing TGF-β induction, a fivefold increase in tissue stiffness 
was observed, mediated by increases in α-SMA and pro-
collagen. Using this platform, based on the timing of TGF-β 
induction, pirfenidone and nintedanib were evaluated as both 
a preventative and treatment option for fibrosis. According 
to the markers and mechanical assessments of their model, a 
specific dose of pirfenidone (5.3 mM) was remarkably found 
to best counteract the fibrotic tissue phenotype.
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Modeling immunity in the lung

The cooperative responses of innate and adaptive immune 
cells within the lungs provide antibacterial, antifungal and 
antiviral immunity and are a source of significant paracrine 
signaling. Local macrophages and lymphocytes make up 
90% and 10% of effector immune cells, respectively, within 
the lung parenchymal tissue [117]. Alveolar macrophages 
nonspecifically ingest foreign particles and, if a pathogen is 
identified, are responsible for the transfer antigen presenta-
tion to lymphocytes in the lymph nodes (APCs). In the pres-
ence of an antigen, chemokines produced by macrophages 
invoke adaptive immunity by recruiting lymphocytes to the 
specific locations of inflammation [86]. Tissue-resident 
cytotoxic T cells play a key role in antiviral immunity and 
have direct relevance to studies on SARS-CoV-2 infection 
therapy. The adaptive response type is defined by the immu-
nomodulatory cytokine secretion profile. The induction of 
a primarily T helper 1 (IL-2, IFN-γ, TNF-α and GM-CSF) 
or T helper 2 (IL-4, IL-5, IL-9, IL-10 and IL-13) response 
affects the subsequently activated cell population, pathogen 
clearance mechanism and type of tissue damage [118]. The 
secretion of immunomodulatory factors from lung epithelial 
cells in response to stimulatory antigens also plays a critical 
role in defining the extent of immune response [119].

Recent efforts have aimed at recreating specific 
immune–epithelial cell interactions within lung-on-a-chip 
systems to better model intrinsic behaviors. In one specific 
study, primary bronchial or small airway epithelial cells 
were seeded on collagen-coated Transwell membranes and 
cultured under perfusion with an air–liquid interface to cre-
ate matured upper or lower respiratory tract models, respec-
tively [120]. Antigen-presenting cells, namely dendritic cells 
or macrophages, and fungal pathogens were seeded onto the 
membrane to evaluate the response of these immune cells 
within the epithelial network. The presence of pathogens in 
this model rapidly increased epithelial RANTES and IL-8 
expression (within 30 min), induced dendritic cell matura-
tion and migration through the tissue, and led to macrophage 
phagocytosis. This model can be expanded for infections 
with other airborne pathogens and subsequent evaluations 
of immune responses [121, 122]. In a different approach, 
Benam et al. incorporated mature airway epithelial cells 
into an air–liquid interface and an endothelial layer that 
separates the differentiated epithelium from flowing medium 
within a microfluidic device [76]. In this model, neutrophils 
could be introduced via the media channel and the result-
ing adhesion to the endothelial membrane could be evalu-
ated. The delivery of viral RNA mimics polycytidylic acid 
into the matured device increased levels of RANTES, IL-6 
and IP-10, which were markedly higher when both epithe-
lial and endothelial cell populations were present, which 

elucidates the important role of pulmonary vasculature in 
mimicking intrinsic immune responses more closely. The 
application of this system for chronic obstructive pulmo-
nary disease (COPD) epithelial cells with IL-13-induced 
asthma, or PLA-induced respiratory infection models, was 
used to evaluate therapeutics. The primary goal of these 
treatments is to reduce the extent of immune system over-
activation featured in COPD patients. The observed reduc-
tion in neutrophil adhesion, adhesion marker mRNA levels 
and inflammatory secretion was sufficient to demonstrate 
differences between treatment with budesonide (Fig. 4a3), 
which has been noted as clinically ineffective for COPD, and 
a novel bromodomain-containing protein 4 (BRD4) inhibitor 
[76]. This lung device was further expanded to model the 
induced inflammatory environment following viral infec-
tion in asthmatic patients. By increasing the pore size of 
the cell-seeded membrane to 3 µm, the transmigration of 
flowing neutrophils could be evaluated. Changes due to an 
IL-13-induced asthma phenotype and infection with human 
rhinovirus 16 were evaluated based on cellular remodeling, 
temporal measurements of cytokine secretion (independently 
measured from the epithelial layer and media efflux) and 
neutrophil behaviors. This platform was sufficient to capture 
the altered immune response of asthmatic patients and to 
evaluate the therapeutic efficacy of a treatment that reduces 
neutrophil migration [123].

Bronchus-associated lymphoid tissues are found within 
the bronchioles and act as the local sites of B and T cell 
accumulation, antigen presentation and activation and con-
sequent differentiation [117]. This process is dependent on 
both myeloid and plasmacytoid dendritic cells within the 
airway epithelium, which engulf antigens and, upon activa-
tion, migrate to the lymph nodes for antigen presentation 
[118, 124, 125]. Certain studies have explored the use of 
plasmacytoid dendritic cell-secreted interferon to counter-
act the SARS-CoV and SARS-CoV-2 suppression of innate 
immunity [126, 127]. Interestingly, the interferon-induced 
enzyme hydroxylation of cholesterol was shown to block 
viral replication [128], whereas a different study regarded 
cholesterol as important for viral entry [129]. Artificial 
lymph node structures and functions have been engineered 
through independently developed platforms, typically via 
immune cell encapsulation within hydrogel matrices under 
flow [130]. Compartmentalized dendritic, B-, and T-cell 
populations [131], antigen presentation and lymphocyte 
activation [132], and vaccination-mediated antibody pro-
duction responses from patient-derived cells [133] have 
been demonstrated in various models. The introduction of 
relevant immune cells and secondary lymphoid-like tissues 
within lung-on-a-chip models would provide more biologi-
cally relevant responses to antigens and therapeutic treat-
ments, interactions with endogenous cell types, and enable 
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studies of vaccine development via the in vitro generation of 
antigen-specific antibodies and memory lymphocytes.

Physiologically and pathologically relevant 
lung models for COVID‑19

Design criteria

In order to best evaluate therapeutics against COVID-19 and 
its associated tissue trauma, the development of lung mod-
els must combine design criteria spanning relevance to (1) 
native tissue structure and function and (2) disease-specific 
or multi-disease pathology. Based on our review of relevant 
scientific literature, we believe that the modular platform 
of lung MPS is the most promising candidate, owing to the 
capacity of incorporating multiple cells types, biochemical 
and biophysical stimulation, and diverse characterization 
and output parameters in 3D microenvironments [12]. Based 
on previous reports, in order to induce the distinct multi-
cell differentiation present in native lung tissue, suggested 
components include: lung airway epithelial cells, endothelial 
cells and collagen-based matrix in the presence or absence 
of an air–liquid interface, liquid flow and stretching stimuli. 
The use of PDMS or other materials to house the tissue with 
micron-size features has demonstrated consistent success for 
incorporating single-circuit or multi-circuit microfluidic 
devices. Ongoing work seeks to make these devices easily 
manufactured at commercial scales, higher throughput with 
in situ spatiotemporal analysis, and from patient-derived cell 
types.

As previously discussed, novel models that integrate 
SARS-CoV-2 viral entry, immune responses and disease-
specific pathology will be the best option to evaluate thera-
peutics across early- to late-stage infections. The first step 
is to employ lung primary cells (ex. alveolar type II) or cell 
lines that balance physiological relevance with ACE2 and 
TMSPR2 expression. Functions of inflammation and immu-
nity can be introduced via exogenous cytokines (TNF-α, 
IL-6, IL-12), macrophages, neutrophils and/or lymphocytes. 
A key design component, via either membrane pores or com-
partmentalization, is the capacity for immune cell migration 
and maturation to enact direct and paracrine effects on lung 
tissue cells. We earlier discussed the most prevalent com-
plications associated with COVID-19, namely coagulation, 
pulmonary edema and fibrosis. A corresponding disease-
specific phenotype can be introduced and modeled via bio-
chemical stimulation (LPS, IL-2, or TGF-β, respectively), 
additional cell types, genetic modifications, or changes in 
material stiffness. The direct integration or circuit connec-
tion of multiple disease elements should allow for thera-
peutic intervention and quantifiable disease outcomes for 
treatment evaluation in a higher-throughput fashion.

The integration of these intricate systems within a single 
tissue model represents a formidable challenge. However, 
COVID-19, which is currently affecting a rather large por-
tion of the population with relatively unexplored long-term 
side-effects, justifies these efforts. An ideal system that can 
accurately determine effective therapeutics for each disease 
stage is therefore expected to have a significant impact.

Lung MPS in a multi‑system MPS

While lung microphysiological systems play an important 
role in testing leads for COVID development, interfacing 
a lung MPS device with multi-organ MPS or body-on-a-
chip is necessary for determining secondary and systemic 
effects [134]. Systemic adverse effects such as cardiotox-
icity and hepatotoxicity are among the leading causes of 
post-market drug withdrawal [135]. Testing compounds in 
multi-organ MPS can catch adverse effects missed by lung-
only or independent MPS setups. Lung MPS can be incor-
porated into MPSs that model the liver, heart, pancreas, gut, 
kidney, endothelium and brain [136–138]. This is particu-
larly important for testing COVID-19 therapeutics because 
of the exacerbation of disease severity by cardiometabolic 
comorbidities. IL-6-mediated inflammation plays a role in 
both COVID-19-derived cytokine storm, and cardiometa-
bolic pathologies in the heart, kidney, pancreas and systemic 
vasculature [87]. The allometric scaling of additive compo-
nents must be considered when generating a multi-organ 
MPS [137, 139]. In the combination of organ and endothe-
lium representing total body vasculature, scaling based on 
the cell number gave better metabolic performance com-
pared to scaling calculated by surface area [139]. Efforts 
should also be made to conform measures of drug absorp-
tion in each compartment with metrics such as mucus parti-
tion coefficient and mucosal epithelial permeability [140]. 
Furthermore, relating measures to physiological parameters 
such as TEER would allow interchangeability between cell 
types and facile the introduction of additional organ system 
compartments.

Current challenges and future perspectives

The process of creating an in vitro model of COVID-19 
infection presents unique challenges. First, the cellular 
components need careful selection. For instance, the SARS-
CoV-2 infection induces cellular damage and an aberrant 
immune response leading to microenvironmental changes 
seen in the vascular compartment of the MPS, including 
elevated glucose, raised creatinine and markedly increased 
overall protein levels due to cell debris [141]. Although 
commercial media formulations including high glucose 
variants and elevated protein can be reproduced by the heat 
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inactivation of serum, creatinine is often overlooked in vitro. 
There is evidence demonstrating that TLR-4 (Table 1) can 
be downregulated in RAW 264.7 macrophage cells due to 
elevated creatinine levels [142]. Additional considerations 
include whether the chosen cell types express the molecules 
in the target pathway in sufficient quantities for detection, 
or if the cells need to be further manipulated [22–24]. In 
addition to ensuring that cells chosen for the MPS endog-
enously express all components of the target pathways, they 
must be able to proliferate and achieve the desired pheno-
type and tissue organization on the substrate within the MPS 
microenvironment.

On the other hand, the biophysical properties of MPS 
should be tailored to mimic the in vivo tissue environment. 
For instance, there are significant differences in the elas-
ticity of the components of lung MPS models, including 
the PDMS sidewalls, the material supporting the base-
ment membrane of the alveolar epithelial and endothelial 
layers, as well as the cells themselves and their deposited 
ECM. Therefore, it should be considered that the elasticity 
changes with the disease state in some of these compo-
nents. Lung elasticity is determined by the elastin content, 
patterning and the level of collagen isotypes [143–148]. 
The restructuring and remodeling of ECM is dependent 
on matrix metalloproteinases (MMP) regulated by tissue 
inhibitors of metalloproteinases (TIMP) [144, 149, 150] 
and involves the collagens to a much greater extent than 
elastin [145]. The ability to vary the elasticity of the sub-
strate is especially important in a COVID model, since 
ARDS induces specific patterns of lung remodeling ini-
tiated by macrophages and continued by myofibroblasts 
[144], and ECM stiffening is a characteristic of senescence 
caused by interstitial fibrosis, alveolar septal cell loss and 
septal thinning [115, 116, 143, 151]. The ECM structure 
also influences the regulation of inflammation, since ECM 
pore size can affect the M1/M2 differentiation of mac-
rophages [152]. One way of varying lung ECM in MPS is 
to use dynamically tunable biomaterials that allow for a 
noninvasive and temporal control of mechanical proper-
ties [153–155]. Alternatively, high-throughput platforms 
enabling the side-by-side comparison of various condi-
tions (elasticity, micro-/macro-structure and chemical 
components) can be developed to simulate the changes 
and functional differences under physiological and patho-
logical conditions.

The surface properties of MPS materials also need to 
be considered. Polydimethylsiloxane has many desirable 
properties, such as transparency, gas permeability, flexibil-
ity, ease of device manufacture, as well as biodegradability 
[156]. However, issues of unpolymerized oligomer leach-
ing, absorption of small molecules, adsorption of proteins 
to hydrophobic surfaces and biofouling may limit its use in 
MPS models for screening drug candidates. A significant 

portion of unpolymerized oligomers can be removed by 
Soxhlet extraction or thermal aging [156, 157]. The sur-
face binding of small molecules (200–400 kDa) is well-
characterized and primarily determined by the molecule’s 
octanol–water partition coefficient (LogP > 4). Sol–gel meth-
ods and parylene coatings can reduce lipophilic molecule 
absorption [156, 157]. The Langmuir–Freundlich isotherm 
[158, 159] is a useful quantitative technique for predicting 
channel adsorption across a range of concentrations that 
could be encountered while testing a particular lead. The 
Langmuir–Freundlich isotherm is described by the follow-
ing formula:

where qe (mg/g) represents the amount of compound (as 
solute) adsorbed, Qm (mg sorbate/ g sorbent) represents the 
maximum adsorption capacity, Ka (L/mg) represents the 
affinity constant for adsorption, Ce represents the concen-
tration at equilibrium (mg/L) and n represents the index of 
heterogeneity of the surface. The relation is semiempirical, 
allowing the aggregation of complex effects in a functional 
MPS. Alternative materials that exhibit low drug binding, 
such as polysulfones, polycarbonates and thermoplastics, 
can also be used in place of PDMS [160, 161]. Biologics 
such as antibodies and various other proteins can adsorb 
onto untreated PDMS surfaces, which reduces the concen-
tration of analyte [162–164]. Treatment with oxygen plasma 
or other high energy methods is frequently used to increase 
hydrophilicity; however, the process is transient and the 
surface reverts in 15 min [157, 161]. Longer-term surface 
passivation of PDMS can be achieved by physical adsorp-
tion of amphiphilic molecules, covalent modification of 
self-assembled monolayers or grafting hydrophilic polymers 
such as polyethylene glycol (PEG), poly(N-isopropylacryla-
mide) (PNIPAAm) or 2-hydroxyethylmethacrylate (HEMA) 
[161]. Multiple coatings can also be applied; a PDMS sur-
face coated with polyelectrolyte multilayer (PEM) and sub-
sequent covalent attachment of PEG resulted in resistance 
to protein adsorption from rat serum for five months [157]. 
Alternative materials can also reduce biofouling. Promising 
elastomers such as PTCB-isobornyl exhibit excellent resist-
ance to biofouling through their hydrophilicity and mechani-
cal properties comparable to PDMS [162].

The conceptual basis of microfluidic flow, i.e., when 
small volumes are driven through bifurcating micron-scale 
channels, is readily applied to high-throughput screen-
ing. In early cancer modeling chip systems, 100 wells of 
HeLa cells arranged in a 10 × 10 array were subjected to a 
microfluidically generated concentration gradient of analyte 
for dosage–response analysis [163]. Recently, up to 4000 
wells of cells have been fabricated on a single device [164]. 

qe =
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However, many such systems are monocultures that lack the 
complex tissue architecture that is important for an effective 
in vitro lung model. Human iPSC-derived lung organoids 
were lately used to screen drugs that blocked SARS-CoV-2 
viral entry in ACE-2-expressing cells. The study showed 
that imatinib, mycophenolic acid and quinacrine dihydro-
chloride inhibited viral infection [165]. As discussed earlier, 
an MPS model of the upper airway was multiplexed into 96 
wells for screening anti-fibrotic agents. This MPS device 
recreated an air–liquid interface, giving component cells 
a physiologically accurate microenvironment [115]. While 
pumpless and pump-driven microfluidics in MPS devices 
inherently simplify the bottleneck steps of liquid handling, 
integrating MPS with recent advances in automated liquid 
handling and continuous flow can further enhance through-
put [166–168], as well as facilitate biocontainment for stud-
ying viral disease [138].

The role of artificial intelligence (AI) in accelerating 
drug development and repurposing is an intriguing field 
that has attracted much interest. In other COVID-19-related 
areas, artificial intelligence and machine learning have 
proven useful for applications such as molecular design, 
data mining and image analysis [169]. Convolutional neural 
network (CNN) powered image analysis could be applied 
to the detection of characteristic viral cytopathology in an 
MPS without fixation and staining [170]. Integrating such 
enabling technology would likely accelerate the throughput 
of lung MPS experiments. The use of AI for synergistic 
effects of drug combinations is an actively explored topic 
[74, 171]. While methods utilizing graphics processing 
units (GPU) have accelerated molecular docking studies 
[9], their accuracy is still dependent on the scoring func-
tion used. The use of AI algorithms, such as random for-
est and neural networks, improves the accuracy of scoring 
functions and enables progress toward the rapid and accu-
rate detection of protein–ligand pairs [166, 172]. Artificial 
intelligence has been applied to determine the affinity of 
ligands to target SARS-CoV-2 proteins, though it can also 
be used to predict the toxicity of a given drug via training 
on publicly available toxicity datasets (TOXNET or Tox-
Cast) and empirically or structurally calculated molecular 
descriptors [173]. Adversarial autoencoder (AAE) algo-
rithms have been used to design novel inhibitors based on 
existing templates and desired gene expression profiles 
[174]. Although quite powerful, AI faces many barriers 
to implementation in drug development that AI propo-
nents are trying to overcome [175]. A solid strategy for 
data-driven drug development includes integration with 
in vitro preclinical validation [176]. A lightweight in vitro 
AI validation method in the form of lung MPS devices 
will certainly help accelerate drug development against the 
current pandemic.

Conclusions

The application of MPS to understand lung physiology 
and disease states is expanding at a rapid pace. Their role 
alongside other co-culture systems, such as organoids and 
Transwell systems, in drug discovery that more closely fol-
lows in vivo physiology and pathology, should become the 
next rising trend. The efficient adaptation of these in vitro 
models for the development and characterization of COVID-
19 treatments will likely benefit patients on an unparalleled 
scale and lay the groundwork toward preparedness for the 
future, where the increasing global connectedness could lead 
to pandemics of similar or even greater magnitude than that 
of the current coronavirus outbreak.
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