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Abstract 

Drug resistance is always a great obstacle in any endocrine therapy of breast cancer. Although the combination of 
endocrine therapy and targeted therapy has been shown to significantly improve prognosis, refractory endocrine 
resistance is still common. Dysregulation of the Hippo pathway is often related to the occurrence and the develop-
ment of many tumors. Targeted therapies of this pathway have played important roles in the study of triple negative 
breast cancer (TNBC). Targeting the Hippo pathway in combination with chemotherapy or other targeted therapies 
has been shown to significantly improve specific antitumor effects and reduce cancer antidrug resistance. Further 
exploration has shown that the Hippo pathway is closely related to endocrine resistance, and it plays a “co-correlation 
point” role in numerous pathways involving endocrine resistance, including related pathways in breast cancer stem 
cells (BCSCs). Agents and miRNAs targeting the components of the Hippo pathway are expected to significantly 
enhance the sensitivity of breast cancer cells to endocrine therapy. This review initially explains the possible mecha-
nism of the Hippo pathway in combating endocrine resistance, and it concludes by recommending endocrine ther-
apy in combination with therapies targeting the Hippo pathway in the study of endocrine-resistant breast cancers.
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Introduction
The incidence of breast cancer ranks first among all 
female malignancies [1]. Most breast cancers are surely 
estrogen receptor-positive (ER +) and can depend on 
estrogen for tumor cell growth. The major treatment 
strategy for endocrine therapies focused on ER + breast 
cancer is estrogen deprivation. The current drugs to this 
end can be classed as aromatase inhibitors, selective 

estrogen receptor degraders, and selective estrogen 
receptor modulators. However, about one-third of 
patients still develop recurrence after long-term endo-
crine therapy [2]. Drug resistance to endocrine therapy 
has become a pivotal obstacle to treatment, although 
endocrine therapy is effective in reducing mortality and 
improving survival rates [3]. The reasons for drug resist-
ance are multiple and complex, and they involve vari-
ous molecules. Currently, targeted therapies combined 
with endocrine therapy have been shown to be effec-
tive for combating endocrine resistance, as illustrated 
in Table  1, which includes targets of Cyclin-dependent 
kinases (CDKs) 4 and 6, mammalian targets of rapa-
mycin (mTOR) and phosphoinositide 3-kinase (PI3K). 
Their combination as first or second-line treatments for 
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hormone receptor-positive metastatic breast cancer has 
been recommended by AMA guidelines, which was cor-
roborated by a network meta-analysis [4]. Unfortunately, 
the combination of CDK 4 and 6 inhibitors still does not 
completely overcome drug resistance [5, 6]. The Hippo 
pathway, a newly targeted pathway, has been found to be 
related to multiple malignancies and modulation of this 
pathway may be able to effectively overcome endocrine 
resistance. In this review, the therapeutic potential of the 
Hippo pathway in the promotion of endocrine therapy is 

addressed, which provides theoretical references for the 
design of further studies and clinical consequences.

Mechanism of endocrine resistance in breast 
carcinoma
The complex reasons of endocrine resistance involves 
the estrogen receptor (ER) pathway, the growth factor 
receptor (GFR) pathways, and the CDK 4 and 6 pathway, 
as well as epigenetic modification. In recent years, the 
interdependence between BCSCs and drug resistance has 
emerged, and it often involves BCSC-related pathways, 
offering new insight into endocrine resistance.

Refractory resistance facilitated by escaped BCSCs
BCSC-related markers, such as  CD44+CD24−/low [12], 
ALDH [13], CD133 [14],Nanog [15], Sox2 [12], and Sox9 
[16], were found to be enriched or positive in tamoxifen-
resistant [12–16], letrozole-treated [17], and fulvestrant-
treated cells [18]. The proportion of cells bearing stem 
cell markers in resistant cell line stronger increased than 
that of non-resistant [12]. On the one hand, dormant 
and self-renewal deficient BCSC populations are gen-
erated during long-term endocrine therapy, leading to 
endocrine resistance after these cells exit from metabolic 

Table 1 Targeted agents approved for combination with 
endocrine therapy for the treatment of breast cancer

CDK cyclin-dependent kinase, mTOR mammalian target of rapamycin, PI3K 
phosphoinositide 3-kinase

Targets Agents Mechanism References

mTOR Everolimus Generates a complex that 
inhibits the activation of 
mTOR

[7]

CDK4/6 Palbociclib Inhibits CDK4/6, allowing 
restoration of control of 
cell cycle

[8]

Ribociclib [9]

Abemaciclib [10]

PI3K Alpelisib Specifically inhibits PI3Kα [11]

Fig. 1 Illustration of preliminary mechanisms driving endocrine resistance in breast cancer. ER signaling drives cell growth in breast cancer. These 
driving forces convert from ER signaling to GFR signaling, with the interruption or the gradual reduction of ER signaling and the increase of GFR 
signaling. Interactions between GFR signaling and BCSC-related pathways will form stronger driving forces and lead to refractory breast cancer
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dormancy [19]. On the other hand, ER activity affects the 
enrichment of BCSCs via mutations in the ESR1 gene 
(estrogen receptor-gene), including Y537N, Y537S, and 
D598G, which are involved in ligand-independent acti-
vation of ER [20]. Moreover, ER-α36 [21], ERβ [22], and 
G protein-coupled estrogen receptor (GPER) [23] are all 
involved in the promotion or maintenance of breast can-
cer stem cell character. Moreover, BCSC populations are 
considered to be estrogen receptor negative (ER −) and 
can regulate ER expression [24, 25], giving them the abil-
ity to generate ER + cells [26] or differentiate into cells 
that have lost ERα expression [27]. Therefore, the core 
reason for drug resistance is the stem cell behavior of 
breast cancers.

The interaction between ER signaling, GFR signaling, 
and BCSC-related pathways
BCSC-related pathways include the Hippo pathway, and 
those that signal via Hedgehog (Hh) signaling, transform-
ing growth factor β (TGF-β) signaling, Notch signal-
ing, PI3K/Akt/mTOR pathway, Wnt pathway, epidermal 
growth factor receptor (EGFR) pathway, ER signaling, 
and mitogen-activated protein kinase (MAPK) pathway. 
GFR signaling includes human epidermal growth fac-
tor receptor 2 (HER2) signaling, fibroblast growth fac-
tor receptor 1 (FGFR) signaling, and PI3K/Akt pathway, 
and they are three BCSC-related pathways. And other 
GFR signaling pathways are insulin-like growth factor 1 

receptor (IGF-1R) signaling, MAPK signaling, and EGFR 
pathway. ER signaling is considered to be the main 
source of driving forces for the growth of ER + breast 
carcinomas. Changes in ER signaling are the first step 
for acquiring endocrine resistance, and this can include 
downregulation of ERα expression or loss of ERα expres-
sion caused by mutation or methylation of ERα-related 
genes [28]. These driving forces convert from ER signal-
ing to GFR signaling [29, 30], as described in Fig. 1. The 
cross talk between GFR signaling and BCSC-related path-
ways may be the next step that leads to refractory resist-
ance [28, 31, 32]. The preliminary relationship between 
part of BCSC-related pathways and endocrine resistance 
is diverse and complex, as illustrated in Table 2. And sev-
eral signaling pathways of GFR are also BCSC-related 
pathways in this table. This reveals the dual roles of PI3K/
Akt/mTOR, EGFR and MAPK pathways involve in endo-
crine resistance and breast cancer stem cell character. 
Moreover, it also reveals the extensive and complex role 
about BCSCs and BCSC-related pathways for endocrine 
resistance. BCSCs can depend on the GFR signaling 
pathway to survive, and escape from estrogen deprivation 
based on their ER − status [29, 33, 34]. Eventually, BCSCs 
will become the root cause of refractory resistance and 
escort breast cancers toward “permanent survival”. The 
combinations of targeted therapies focused on IGF-1R 
[35], HER2 [36, 37], or epidermal growth factor recep-
tor [38–40] and endocrine therapy, even dual-targeting 
therapies plus endocrine therapy, have been shown not to 
reverse endocrine resistance or significantly enhance the 
effects of endocrine therapy. It has been suggested that 
breast cancers can still maintain endocrine resistance 
through the synergy of other pathways after inhibiting a 
small portion of these pathways. In conclusion, the pro-
cess of endocrine resistance in breast carcinomas is the 
synergy of multiple mechanism. A new solution needs to 
be conceived.

The Hippo pathway
The Hippo pathway is also called the Salvador/Warts/
Hippo pathway, and can precisely control the number of 
cells and stop organism growth in a timely manner dur-
ing the development of mammals.

Hippo pathway and its dysregulation
When the phosphorylation cascades of the Hippo path-
way become blocked, these cells will differentiate abnor-
mally and gradually develop into malignancies [70]. Then, 
inhibited or disabled Hippo phosphorylation cascades 
of Hippo pathway will further facilitate the invasion 
and migration of tumor cells [71, 72]. The mechanism 
of the canonical Hippo pathway and its dysregulation 
is described in Fig.  2. The activated Hippo pathway 

Fig. 2 Illustration of the canonical Hippo pathway and its 
dysregulation. MST1/2 and LATS1/2 are kinases. SAV1 (WW45) 
and MOB1A/B are adaptors. The phosphorylation cascade in the 
Hippo pathway can negatively regulate YAP/TAZ and inhibit the 
proliferation-promoting effects of YAP/TAZ. Dysregulation leads to 
proliferation, invasion, and migration of malignancies via the nuclear 
translocation of YAP and TAZ
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participates in the reasonable regulation of apoptosis 
and cell growth, when transcriptional coactivator with 
PDZ-binding motif (TAZ), and homologous component 
the yes-associated protein (YAP) are inactivated via their 
phosphorylation cascade. A variety of upstream signals 
activate mammalian sterile20-like (MST) kinases, and 
then MST kinases phosphorylate large tumor suppres-
sor (LATS) kinases [73]. The activated LATS1/2 kinases 
can change the status of the phosphorylation and distri-
bution of YAP/TAZ [74] resulting in the arrest of the cell 
cycle [75, 76]. LATS [77]and MST [73] are considered 
to have antitumor effects, and play negative roles in the 
regulation of TAZ and YAP. The entry of phosphorylated 
YAP/TAZ into the nucleus is restricted, and YAP/TAZ 
will be degraded after transferring into the cytoplasm 
from the nucleus, which can turn off antiapoptotic gene 

transcriptions and  the cell cycle progression [78]. Con-
versely, when the Hippo pathway is dysregulated, the 
expression of downstream target genes of the Hippo path-
way will promote cell proliferation and inhibit apoptosis 
genes, facilitating malignancies [79]. Dysregulation of the 
Hippo pathway showed results in excessive activation [80] 
or increased nuclear localization of YAP/TAZ by rela-
tively decreasing YAP/TAZ phosphorylation [81], inhibit-
ing LATS [82] and MST [83, 84]. Therefore, activated YAP 
and homologous TAZ are the core regulators of this path-
way, since both of them exert oncogenic roles [85, 86] in 
the presence of a dysregulated Hippo pathway. Moreover, 
the low expression of MST and LATS will lead to the loss 
of control of YAP and TAZ [87]. Beyond this, additional 
non-canonical roles of the Hippo pathway in breast can-
cer have gradually emerged in recent years.

Fig. 3 Preliminary illustration of non-canonical roles between the Hippo pathway and ER signaling in breast cancer. Feedback was formed between 
YAP/TAZ and ER. YAP and TEAD function as co-regulators of ER signaling to facilitate gene transcription of ER signaling genes
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Breast cancer stem cell character suppression by the Hippo 
pathway
It has been confirmed that TAZ, YAP, LATS, and TEA 
domain family members (TEAD) are involved in the 
regulation of BCSCs. Cordenonsi et  al. [88] first linked 
the Hippo pathway to the concept of BCSC prolifera-
tion. Since then, studies have confirmed that BCSCs can 
be facilitated by TAZ [89–93]. YAP [94–97], as a homol-
ogy of TAZ, the same as LATS [98] or TEAD [99], can 
also regulate BCSCs. Liu et al. [90] showed the restora-
tion of sensitivity to tamoxifen and suppressed BCSCs 
by inhibiting TAZ expression. Moreover, dysregulation 
of the Hippo pathway is one of the prerequisites for the 
progress of an epithelial-mesenchymal transition (EMT) 
[100], which enables tumor to maintain the stem cell 
character [88]. MiR-520b activates the Hippo/YAP sign-
aling pathways by targeting LATS, increasing the mRNA 

level of BCSC markers, such as CD133, CD44, and 
ALDH1, and the EMT marker N-cadherin in breast can-
cer [94]. Therefore, reactivating the Hippo pathway can 
effectively combat endocrine resistance and the expres-
sion of several oncogenes facilitated by BCSC transition.

The cross talk between the Hippo pathway 
and multiple pathways involved in endocrine 
resistance
Breast cancer can rely on ER signaling to promote cell 
proliferation, which is different from other tumors. The 
Hippo pathway is indeed associated with almost all path-
ways related to endocrine resistance, including ER sign-
aling. Researchers have found partial cross talk between 
the Hippo pathway and ER signaling. Recent studies have 
found that targeting and activating the Hippo pathway 

Fig. 4 Illustration of the roles of the Hippo pathway in ER + breast cancer. Overexpression of ZNF367 facilitates metastasis and activates Hippo/
YAP signaling by inhibiting LATS [110]. Overexpression of USP9X stimulates cell proliferation by deubiquitinating and stabilizing YAP1 [111]. NE and 
EPI suppress breast cancer via rapid phosphorylation and cytoplasmic retention of YAP [112]. ZEB1, a transcriptional activator, interacts with YAP1 
and promotes transcription [113]. The interaction of LATS1 and CRABP2 inhibits the ubiquitination of LATS1 to suppress cell invasion [106]. The 
STARD13-correlated ceRNA network regulates TAZ distribution, and it can inhibit the stem cell character of breast cancer through upregulation of 
LATS1/2 [114]
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can negatively regulate BCSCs and overcome endocrine 
resistance. Moreover, it also seems to be involved in the 
integration of GFR signaling pathways and Hippo path-
way. This indicates that the Hippo pathway may make 
an unexpected contribution to endocrine therapy in 
ER + breast cancers.

The correlation between the Hippo pathway and the ER 
signaling pathway
Preliminary non-canonical roles between the Hippo 
pathway and ER signaling in breast cancer is described in 
Fig.  3. On the one hand, the non-canonical roles of the 
components in Hippo pathway play a vital role in the 
management of ER signaling. YAP1 and TEAD4, co-regu-
lators of ERα on enhancers, are augmented upon estrogen 
stimulation and transduction of target genes of ER signal-
ing [101]. In addition, the expression of ERα was shown 
to directly be increased by YAP1 or indirectly mediated 
by the fork head box protein M1 (FOXM1) in the absence 
of the tumor suppressor Ras-association domain fam-
ily 1 [102]. YAP/TAZ have also been shown to mediate 
the process of target gene induction by GPER [103]. On 
the other hand, ER can also affect the Hippo pathway. A 
study on mouse morula and trophoblast stem cells found 
that the nuclear localization of YAP was indeed regu-
lated by ERα [104]. Moreover, the invasion and migration 
of TNBC were inhibited when the nuclear localization 
of YAP was inhibited, while sometimes the same situ-
ation did not appear in ER + breast cancer, which may 
have been related to the compensatory increase in the 
nuclear localization of YAP mediated by ER [105]. The 
status of ER can also affect the interaction between cel-
lular retinoic acid binding protein 2 (CRABP2) and LATS 
to regulate the Hippo pathway and modulate sensitivity 
to endocrine therapy [106]. Moreover, GPER facilitates 
the progression of breast cancer by activating YAP/TAZ 
[103]. A study of tumor breast (226 samples) and nor-
mal (40 samples) from microarray samples found that 
the level of YAP expression was evidently downregulated 
in invasive cancer samples compared to normal tissues 
samples, and decreased expression of YAP was remark-
ably associated with ER − status [107]. This suggested 
that invasive breast cancer cells with reduced expres-
sion of YAP were more likely to be ER − and may have 
an lower threshold for becoming resistant to endocrine 
therapy. Feedback regulation of hormone receptors on 
the Hippo pathway in turn was weakened by the down-
regulation of ERα expression, and also was decreased by 
downward fluctuation of YAP. It may be the explanation 
for the lower YAP levels in invasive breast cancer are rel-
ative to normal breast tissue. The non-canonical Hippo 
pathway can in turn act on ER receptors to antagonize 
endocrine therapy, which can eventually leads to driving 

forces for tumor growth conversion to GFR signaling 
after estrogen-deprivation therapy. The regulation of the 
Hippo pathway for breast cancers dependent on different 
ER status and the different stage of endocrine resistance 
may be different [98, 106]. Thus, the study of the Hippo 
pathway in breast cancer cannot be generalized like other 
hormone-independent tumors.

Antagonism of the Hippo pathway for endocrine resistance 
in ER + breast cancer
Studies in the MCF7 cell line (ER-positive breast can-
cer) have confirmed that correcting dysregulation of 
the Hippo pathway is a feasible scheme to inhibit breast 
cancer and overcome acquired drug resistance. The 
roles of the Hippo pathway in ER + breast carcinoma are 
described in Fig. 4. In summary, YAP and TAZ surely are 
carcinogenic. Although the regulation of Hippo has been 
rarely studied in endocrine-resistant cells, the great pros-
pect for modulation of the Hippo pathway has become 
an important research object. Zhou et  al. [103] found 
that GPER’s role in inducing endocrine resistance could 
be regulated by the Hippo pathway and found that TAZ 
was overexpressed in  GPERhi breast cells. GPER activated 
YAP/TAZ, suggesting that blockage of GPER by knock-
down of YAP/TAZ was a great strategy for overcoming 
tamoxifen resistance in  GPERhi breast cancers. Moreover, 
Zheng et al. [108] found that the YAP-glycolysis axis was 
also a target for overcoming tamoxifen resistance, based 
on the fact that the Hippo pathway was downstream of 
GPER. Li et al. [109] confirmed that downregulated YAP 
phosphorylation and upregulated YAP nuclear transloca-
tion directly resulted in tamoxifen resistance, which was 
reversed by YAP silencing.

Cross talk between the Hippo pathway and BCSC-related 
pathways
The Hippo pathway plays a “co-correlation point” role 
in several networks of BCSC-related pathways, includ-
ing Notch, Wnt, EGFR, PI3K/Akt, MAPK/ERK1, Hh/
GLI2,TGF-β pathway. Clara et  al. [85] first proposed 
that the Hippo pathway may be the “hub” of cancer stem 
cell related pathways. The cross talk between Hippo and 
BCSC-related pathways except ER signaling has been 
shown as described in Fig. 5. Hippo pathway does cross-
talk these seven pathways, and  there forms “bridges” 
between Hippo, Wnt, EGFR and PI3K/Akt pathways 
through WBP2. And these “bridges” do enable GFR 
signaling pathways and BCSC-related pathways to form 
crosstalk. Extensive integration and local interlinkages 
reveal the advantages of Hippo pathway in regulation of 
drug resistance through breast cancer stem cell character. 
In addition, Hippo, TGF-β, Hh, MAPK, Wnt, PI3K/Akt, 
Notch, EGFR, and ER signaling were all associated with 
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the EMT process. It has been further revealed that these 
pathways facilitate the synergistic regulation of breast 
cancer and can cause endocrine resistance in breast 
cancer. It is of no doubt, then, that the dysregulation of 
the Hippo pathway indeed facilitated the progression of 
breast cancer, and exert intricate cross talk on BCSC-
related pathways. BCSCs are the key to maintaining 
refractory survival and drug resistance for tumor cells, 
which is based on the coregulation of these pathways. 
Therefore, the “co-correlation point” role of the Hippo 
pathway in BCSC-related pathways may highlight a new 
solution for overcoming endocrine resistance.

The interrelation between the Hippo pathway, GFR, 
and the Cyclin-dependent kinase 4 and 6 pathways
The rest of GFR signaling pathways and Cyclin-depend-
ent kinase 4 and 6 pathways involved in endocrine 
resistance also exert cross talk on the Hippo pathway. 
With regards to patients with luminal B subtypes, sam-
ples with low TAZ resulted in higher pathological 
complete response rates after trastuzumab-based neo-
adjuvant therapy, suggesting that HER2 linked with 
TAZ expression in a consistent manner [126]. YAP/TAZ 
dephosphorylation and overexpression increased in tras-
tuzumab-resistant breast cancer cells, suggesting that the 
dysregulated Hippo pathway further facilitated cancer 
cells in coordination with HER2 [127]. Inhibiting YAP 
and TAZ could eliminate Lapatinib resistance, suggesting 
that dual target therapy for HER2 and the Hippo pathway 
had good prospects [128]. The Hippo pathway mediated 
FGFR signaling, the MAPK pathway, and PI3K signaling 
during tumorigenesis, and YAP/TAZ were shown to be 
possible therapeutic targets in RTK-driven cancers [129]. 
The phosphorylation of MST1 depended on the activity 
of fibroblast growth factor receptor 4 kinase. Moreover, 
short-term suppression or knockdown of FGFR4 led 
to increased activation of MST1/2 [130]. The IGF-1R/ 
YAP axis has been shown to be involved in the growth 

of TNBC [131]. Dysregulation of the Hippo pathway also 
can increase resistance to CDK4/6 inhibitors through 
accumulation of TAZ and YAP transcription factors on 
the promoter of Cyclin-dependent kinase 6 [5]. These 
studies further demonstrated the great potential of the 
Hippo pathway for remedying breast cancer.

Integration of Hippo pathway in complex mechanism 
of endocrine resistance
These roles of Hippo pathway in the integration of ER 
signaling are unique to breast cancers. The regulation 
of Hippo pathway on cancer stem cells is also affirmed, 
including BCSCs. Hippo pathway can not only com-
bat BCSCs, but also can integrate these multiple path-
ways involve in endocrine resistance, including GFR 
(PI3K/Akt/mTOR, EGFR, MAPK, HER2, IGF-1R and 
FGFR),BCSC-related pathways (Wnt, PI3K/Akt/mTOR, 
Hh, EGFR, Notch, MAPK, TGF-β, ER), and CDK4/6 
pathway. The “co-correlation point” role  of Hippo path-
way in the multiple mechanism of endocrine resistance 
as described in Fig.  6. To sum up, utilizing the Hippo 
pathway as a therapeutic target for combating endocrine-
resistant breast cancer may be a promising approach.

Agents and miRNAs for research proposals 
focusing on the Hippo pathway
In the process of endocrine therapy, the main driving 
forces for tumor growth were related to GFR signal-
ing and even BCSC-related pathways. A dysregulated 
Hippo pathway did exert cross talk on these endocrine 
resistance-related pathways. A new therapeutic scheme 
that could be proposed to combat the “co-correlation 
point” of these pathways would focus on targeting the 
Hippo pathway. The combination of endocrine ther-
apy and targeted therapy focusing on the Hippo path-
way is expected to significantly improve the prognosis 
of patients with ER + breast cancers. There are many 
agents that can target the Hippo pathway, including 

Fig. 5 Illustration of the crosstalk of the Hippo pathway and BCSC-related pathways. Linc-OIP5 promotes transcription via forming a positive 
feedback circuit between YAP and Notch signaling [115]. IMP3 indirectly promotes Wnt5B via miR145-5p and facilitates TAZ-driven gene expression 
[116]. YAP and TAZ can promote the Wnt/β-catenin/TCF axis and induce target genes by interaction with β-catenin, while WBP2 integrates 
the Hippo, Wnt, and PI3K pathway [117–119]. Mir-613 inhibits EGFR via directly inhibiting WBP2 and positive correlation of EGFR and WBP2 is 
confirmed, while EGFR promotes WBP2 phosphorylation, contributing to integration of the Wnt/β-catenin and Hippo pathways [118, 119]. YAP/
TAZ mediate the synergistic function and oncogene expression induced by the PI3K and dysregulated Hippo pathways [120]. The MAPK/ERK1 
pathway negatively regulates breast cancer proliferation by inhibiting YAP/TEAD [121]. YAP induces gene transcription and promotes glycolysis by 
wiring up the Hh/GLI2 axis [108]. The SnoN oncoprotein exerts negative feedback regulation on TGF-β signaling, while promoting TAZ signaling 
and enhancing gene transcription in breast cancers [122]. Zyxin forms a ternary complex with LATS and Siah, which facilitates the degradation of 
LATS, activation of YAP and subsequently cell proliferation [123]. The tumor suppressor Merlin can inhibit YAZ/TAZ and maintain Smad7 stability, 
suppressing the adaptive glycolysis facilitated by the interaction between YAP/TAZ and Smads [124]. Ski inhibits breast cancer by suppressing TAZ 
in a LATS-dependent manner or in a LATS-independent manner, in which NCoR1 is recruited by Ski and suppresses TAZ by binding to the TEAD-TAZ 
complex [125]

(See figure on next page.)
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Pevonedistat, Verteporfin, stains, and Metformin [85, 
132]. Statins and Metformin are commonly used to reg-
ulate metabolism of lipids and glucoses. In recent years, 
there are clinical trials targeting the Hippo pathway by 

them, although no available results. Clinical trials are 
designed for targeting the Hippo pathway as illustrated 
in Table  3. Clinical trials of combination of endocrine 
therapy and agents targeting Hippo pathway for ref-
erence as illustrated in Table  4. Moreover, the regula-
tion of miRNAs is also an alternative tool. MiRNAs are 
related to the Hippo pathway in breast cancers, as illus-
trated in Table  5 and Fig.  7. Partial miRNAs can also 
be involved in the regulation of EMT [94, 133–135] 
and the maintenance of stem cell character in breast 
cancer [94, 134, 135]. MiR-125a-5p [136], the miR-200 
family [137], miR-375 [138], and miR-181b [139], have 
all been recommended as therapeutic agents, since all 
of them can regulate endocrine resistance and were 
confirmed to be related to the Hippo pathway in other 
tumors. Upregulation of miR-125a-5p in tamoxifen 
resistant MCF7 cells may inhibit the growth of BCSCs 
by suppression of TAZ, which is an effective promoter 
of BCSCs. It is expected that the results of preclinical 
and clinical data will confirm its role in the future.

Conclusion and prospects
Targeting the Hippo pathway has been researched in a 
variety of tumors and has been shown to have remark-
able results. The combination of targeted therapy for 
the Hippo pathway and chemotherapy or other targeted 

Fig. 6 Illustration of the “co-correlation point” role of Hippo pathway 
in the multiple mechanism of endocrine resistance

Table 3 Designed clinical trials of agents targeting the Hippo pathway

Agents Mode of action Study phase Outcome Study Title NCT number

Zoledronate, Atorvastatin Inhibition of YAP/TAZ Phase 2 No results available Neoadjuvant Zoledronate and Atorv-
astatin in TNBC

NCT03358017

Atorvastatin Inhibits TAZ Phase 2 No results available Targeting the Hippo transducer TAZ 
in breast cancer with Statins

NCT 02416427

Zoledronate Inhibits YAP/TAZ Phase 2 No results available Pre-operative zoledronate in TNBC NCT 02347163

Table 4 Clinical trials of endocrine therapy combined with agents targeting Hippo pathway for reference

Agents Study phase Outcome NCT number Possible mechanisms

Hippo pathway Endocrine therapy

Atorvastatin Letrozole, Fulvestrant Phase 2 No results available NCT02958852 Stains inhibits YAP/TAZ nuclear 
localization, and suppressed the 
self-renewal capability of cancer 
stem cells via opposing nuclear

TAZ activity [140]
Metformin inhibits YAP nuclear 

localization [141]

Metformin, Simvastatin Fulvestrant Phase 2 No results available NCT03192293

Metformin Toremifene Phase 2 No results available NCT02506790

Metformin Fulvestrant Phase 2 No results available NCT04300790

Metformin Everolimus, Exemestane Phase 2 The clinical benefit rate 
was 54.5%

NCT01627067
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therapies has also achieved initial results in breast can-
cers. Although its dysregulation can promote the occur-
rence and progression of tumors, reasonable regulation 
of this pathway can effectively inhibit tumors and com-
bat endocrine resistance. However, the Hippo pathway 
is powerful, diverse, and complex. Breast cancers differ 
from other tumors, in that the former is derived from 
more of the non-canonical roles of the Hippo pathway 
via hormone receptors. More studies are needed to verify 
the feasibility and risk of regulation of the Hippo path-
way in endocrine-resistant breast cancer. Moreover, our 
laboratory has shown that aromatase inhibitors such as 

Formestane can rely on ER-independent but androgen 
receptor-dependent roles to suppress ER + breast cancer, 
suggesting that aromatase inhibitors may be highly rec-
ommended as promising agents combined with targeting 
the Hippo pathway to significantly overcome endocrine 
resistance stimulated by estrogen-deprivation therapy in 
postmenopausal women [157]. Targeting the Hippo path-
way will create promising new tools in the fight against 
endocrine-resistant breast cancer.

Table 5 MiRNAs that regulate the Hippo pathway in breast cancer

MiRNAs Tumor suppressor 
(−)/tumor promotor 
(+)

Cell lines Targets Mechanisms of regulation

MiR-326 [142] – MCF-7, MDA-MB-468 TAZ Circular RNA 0000511 can eliminate the 
anti-tumor effect of miR-326 by upregulat-
ing TAZ

MiR-146b [143] – MCF-7 p-YAP The process of MUC19 reducing YAP phos-
phorylation is inhibited by miR-146b

MiR-199a-3p [133] – MDA-MB-231 LATS1, YAP1 miR-199a-3p suppresses YAP1 and upregu-
lates LATS1

MiR-574-5p [135] – MDA-MB-231, T47D TAZ miR-574-5p targets Sox2 to suppress TAZ

MiR-1297 [144] – MDA-MB-231, MDA-MB-468 TAZ miR-1297 inhibits TAZ

MiR-125a-5p [145, 146] – MDA-MB-468, BT549, tamox-
ifen resistant MCF7

TAZ miR-125a-5p directly inhibits TAZ expression. 
Downregulation of CYTOR decreases pro-
tein and mRNA levels of TAZ in tamoxifen 
resistant MCF7 cells, which is rescued by 
miR-125a-5p suppression

MiR-515-5p [147]  + MDA-MB-231, MDA-MB-453 YAP, TAZ, p-TAZ Knockdown LINC00673 reduces the level of 
YAP/TAZ and increases p-YAP through miR-
515-5p inactivation

MiR-591 [148] – MCF-7, SKBR3 YAP, LATS miR-591 inhibits YAP and upregulates LATS

MiR-520b [94]  + MCF-7, MDA-MB-231 LATS2, p-YAP, YAP miR-520b promotes migration activity and 
stemness of breast cancer, which can be 
abolished by overexpression of LATS2. miR-
520b upregulates nuclear YAP and inhibits 
LATS2 as well as p-YAP

MiR-372 [149]  + MCF-7, MDA-MB-231 LATS2 miR-372 inhibits LATS2

MiR-18a [150] − Trastuzumab-resistant SKBR-3 YAP1 miR-18a directly inhibits YAP1

MiR-424 [151] − MDA-MB-231, HCC-1937 YAP miR-424 inhibits YAP

MiR-205 [134] − SUM159 TAZ miR-205 inhibits TAZ, which is involved in 
the mammospheres formation and BCSC 
renewal

MiR-135b [152]  + MDA-MB-231, MCF-7, 293 T LATS2, miR-135b inhibits LATS2

MiR-506 [153] – MDA-MB-231 YAP miR-506 inhibits YAP

MiR-31 [154]  + MDA-MB-231 LATS2 miR-31 inhibits LATS2

MiR-93 [155]  + MT-1 LATS2 miR-93 inhibits LATS2
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Abbreviations
TNBC: Triple negative breast cancer; FOXM1: Fork head box protein M1; BCSCs: 
Breast cancer stem cells; USP9X: Ubiquitin-specific protease 9X; ER + : Estrogen 
receptor-positive; CDKs: Cyclin-dependent kinases; mTOR: Mammalian target 
of rapamycin; WBP2: WW domain-binding protein 2; E2: Estradiol; PI3K: 
Phosphoinositide 3-kinase; ER: Estrogen receptor; GFR: Growth factor receptor; 
PFS: Progression-free survival; GPER: G protein-coupled estrogen receptor; 
ER − : Estrogen receptor negative; Hh: Hedgehog; TGF-β: Transforming growth 
factor β; IMP3: Insulin-like growth factor-2 mRNA-binding protein 3; EGFR: 
Epidermal growth factor receptor; ERE: Estrogen response element; MAPK: 
Mitogen-activated protein kinase; CRABP2: Cellular retinoic acid binding 
protein 2; HER2: Human epidermal growth factor receptor 2; FGFR: Fibroblast 
growth factor receptor 1; NCoR1: Nuclear transcriptional corepressor N-CoR1; 
BCAR4: Breast cancer anti-estrogen resistance 4; IGF-1R: Insulin-like growth 
factor 1 receptor; YAP: Yes-associated protein; Linc-OIP5: Linc-Opa interacting 
protein 5; TAZ: Transcriptional coactivator with PDZ-binding motif; MUC1-C: 
The mucin 1 C-terminal subunit; MST: Mammalian sterile20-like; LATS: Large 
tumor suppressor; TEAD: TEA domain family members; ZNF367: Zinc finger 

protein 367; EPI: Epinephrine; NE: Norepinephrine; ceRNA: Competing endog-
enous RNA; ERK1: Extracellular signal-related kinases 1.
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