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Abstract
In this paper, we suggest and analyze an iterative algorithm to approximate a
common solution of a hierarchical fixed point problem for nonexpansive mappings,
a system of variational inequalities, and a split equilibrium problem in Hilbert spaces.
Under some suitable conditions imposed on the sequences of parameters, we prove
that the sequence generated by the proposed iterative method converges strongly to
a common element of the solution set of these three kinds of problems. The results
obtained here extend and improve the corresponding results of the relevant
literature.
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1 Introduction
Let H1 and H2 be two real Hilbert spaces, whose inner product and norm are denoted
by 〈·, ·〉 and ‖ · ‖. And let C1 and C2 be two nonempty closed convex subsets of H1 and
H2, respectively. Recall that the mapping T : C1 → C1 is nonexpansive if ‖Tx – Ty‖ ≤ ‖x –
y‖ for all x, y ∈ C1. We denote the fixed point set of T by Fix(T) = {x ∈ C1 : x = Tx}. If
T is nonexpansive, then Fix(T) is nonempty, closed, and convex. Next, we consider the
following three kinds of problems, which are paid attention to in our paper.

Problem 1 (Hierarchical fixed point problem (HFPP)) In 2006, Moudafi and Mainge [23]
introduced and studied the following hierarchical fixed point problem (in short HFPP) for
a nonexpansive mapping T with respect to another nonexpansive mapping S on C1: Find
x ∈ Fix(T) such that

〈x – Sx, y – x〉 ≥ 0, ∀y ∈ Fix(T), (1)
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which amounts to saying that x ∈ Fix(T) satisfies the variational inequality depending on
a given criterion S, namely, find x ∈ C1 such that

0 ∈ (I – S)x + NFix(T)(x),

where I is the identity mapping on C1 and NFix(T) is the normal cone to Fix(T) at x defined
by

NFix(T)(x) =

⎧
⎨

⎩

{u ∈ H1 : 〈y – x, u〉 ≤ 0,∀y ∈ Fix(T)} if x ∈ Fix(T),

∅ otherwise.

We know that the hierarchical fixed point problem links with some monotone varia-
tional inequalities and convex programming problems, see [39] and the references therein.
In 2007, Moudafi [22] introduced the following Krasnoselski–Mann algorithm for solving
HFPP (1):

xn+1 = (1 – αn)xn + αn
(
σnSxn + (1 – σn)Txn

)
,

where {αn} and {σn} are two real sequences in (0,1).
On the other hand, in 2011, Ceng, Anasri, and Yao [8] proposed the following iterative

method:

xn+1 = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
,

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. Under some approximate assumptions, they proved that the sequence {xn} generated
by the above iterative algorithm converges strongly to the unique solution of the varia-
tional inequality

〈
ρU(x) – μF(x), y – x

〉 ≥ 0, ∀y ∈ Fix(T). (2)

Note that HFPP (2) is more general than HFPP (1).

Problem 2 (Split equilibrium problem (SEP)) Let H be a real Hilbert space and C be a
nonempty closed convex subset of H . Let F be a bifunction of C × C into R, where R is the
set of real numbers. The equilibrium problem(in short, EP) for F : C × C → R is to find
x ∈ C such that

F(x, y) ≥ 0, ∀y ∈ C, (3)

which was introduced and studied by Blum and Oettli [3]. It contains many problems, such
as fixed point problem, variational inequality problem, Nash equilibrium problem, opti-
mization problem, and complementarity problem as special cases, see, e.g., [1, 2, 20, 31]
and the references therein. In 1997, Combettes and Hirstoaga [15] introduced an iterative
scheme of finding the best approximation to the initial data when a set of solutions (3) is
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nonempty and proved a strong convergence theorem. We denote the solution set of EP (3)
by EP(F) = {x ∈ C : F(x, y) ≥ 0,∀y ∈ C}.

Recently, Kazmi and Rizvi [21] considered the following split equilibrium problem (in
short, SEP): Let F1 : C1 × C1 → R and F2 : C2 × C2 → R be two nonlinear bifunctions and
A : H1 → H2 be a bounded linear operator, then the SEP is to find x∗ ∈ C1 such that

F1
(
x∗, x

) ≥ 0, ∀x ∈ C1 (4)

and

F2
(
y∗, y

) ≥ 0, ∀y ∈ C2, (5)

where y∗ = Ax∗ ∈ C2. The solution set of SEP (4)–(5) is denoted by � = {p ∈ EP(F1) : Ap ∈
EP(F2)}. This formalism is also the core of modeling of many inverse problems arising in
phase retrieval and other real word problems, for example, in sensor networks in com-
puterized tomography, in intensity-modulated radiation therapy treatment planning, and
data compression, see, e.g., [5, 6, 12–14] and the references therein.

Problem 3 (System of variational inequalities (SVI)) Let C1 be a nonempty closed convex
subset of H1 and A, B : C1 → H1 be two mappings. Ceng, Wang, and Yao [11] considered
the following problem which finds (x∗, y∗) ∈ C1 × C1 such that

⎧
⎨

⎩

〈λ1Ay∗ + x∗ – y∗, x – x∗〉 ≥ 0, ∀x ∈ C1,

〈λ2Bx∗ + y∗ – x∗, x – y∗〉 ≥ 0, ∀x ∈ C1.
(6)

Problem (6) is called a general system of variational inequalities, where λ1 > 0 and λ2 > 0
are constants. In 2015, Jitsupa et al. [19] introduced the following system of variational
inequalities in a Hilbert space H1, that is, finding x∗

i ∈ C1(i = 1, 2, . . . , N) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈λN BN x∗
N + x∗

1 – x∗
N , x – x∗

1〉 ≥ 0, ∀x ∈ C1,

〈λN–1BN–1x∗
N–1 + x∗

N – x∗
N–1, x – x∗

N 〉 ≥ 0, ∀x ∈ C1,
...

〈λ2B2x∗
2 + x∗

3 – x∗
2, x – x∗

3〉 ≥ 0, ∀x ∈ C1,

〈λ1B1x∗
1 + x∗

2 – x∗
1, x – x∗

2〉 ≥ 0, ∀x ∈ C1,

(7)

which is called a more general system of variational inequalities, where λi > 0 and Bi : C1 →
H1 is a nonlinear mapping for all i ∈ {1, 2, . . . , N}. The solution set of SVI (7) is denoted by
GSVI(C1, Bi).

In view of these different three kinds of problems, there are some new research results
on numerical algorithm in the recent literature. Under the setting of uniformly convex Ba-
nach spaces, in [27–30], the Thakur three-step iterative process in the context of Suzuki-
type nonexpansive mappings or generalized nonexpansive mappings enriched with prop-
erty (E) was studied, and a comparative numerical experiment was performed with the
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visualization of some convergence behaviors. In [25], an S-iteration technique for find-
ing common fixed points for nonself quasi-nonexpansive mappings was developed, and
convergence properties of the proposed algorithm were analyzed. And in [17], a hybrid
projection algorithm for a countable family of mappings was considered, and the strong
convergence of the algorithm converging to the common fixed point of the mappings was
given. Very recently, Dadashi and Postolache [18] constructed a forward–backward split-
ting algorithm for approximating a zero of the sum of an α-inverse strongly monotone op-
erator and a maximal monotone operator. They proved the strong convergence theorem
under mild conditions. Especially, they added a nonexpansive mapping in the algorithm
and proved that the generated sequence converged strongly to a common element of the
fixed point set of a nonexpansive mapping and the zero point set of the sum of monotone
operators. They also applied their main result both to equilibrium problems and convex
programming.

On the other hand, Ceng et al. [9] introduced a hybrid viscosity extragradient method
for finding the common elements of the solution set of a general system of variational
inequalities and the common fixed point set of a countable family of nonexpansive map-
pings and zero points of an accretive operator in real smooth Banach spaces. Moreover,
they [10] proposed an implicit composite extragradient-like method based on the Mann
iteration method, the viscosity approximation method, and the Korpelevich extragradient
method for solving a general system of variational inequalities with a hierarchical varia-
tional inequality constraint for countably many uniformly Lipschitzian pseudocontractive
mappings and an accretive operator in a real Banach space. In [36, 38], Yao, Postolache, and
Yao suggested a projected type algorithm and an extragradient algorithm for finding the
common solutions of two variational inequalities and the common element of the set of
fixed points of a pseudocontractive operator and the set of solutions of the variational in-
equality problem in Hilbert spaces, respectively. In [35, 37], Yao et al. introduced iterative
algorithms for solving a split variational inequality and a fixed point problem that requires
finding a solution of a generalized variational inequality whose image is a fixed point of
a pseudocontractive operator or a fixed point of two quasi-pseudocontractive operators
under a nonlinear transformation in Hilbert spaces. In [33, 34], Yao et al. constructed iter-
ative algorithms for solving the split feasibility problem and the fixed point problem, the
split equilibrium problems and fixed point problems involved in the pseudocontractive
mappings in Hilbert spaces and proved their strong convergence.

Inspired and motivated by the above research work, we suggest an iterative approxima-
tion method for finding an element of the common solution set of HFPP (2), SEP (4)–(5),
and SVI (7) involved in nonexpansive mappings. To our best knowledge, there is no fur-
ther study on finding the element of the common solution set of HFPP (2), SEP (4)–(5),
and SVI (7). When the mappings take different types of cases, we can obtain a corollary
on the common element of the set of fixed points of a nonexpansive mapping, the solution
set of a variational inequality and an equilibrium problem. So, our results presented here
are new and very interesting.

The paper is organized as follows. In Sect. 2, we recall some concepts and lemmas which
are needed in proving our main results. In Sect. 3, we suggest an iterative algorithm for
solving the three different kinds of problems and prove its strong convergence. At last, the
conclusion is given.
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2 Preliminaries
In this section, we list some fundamental results that are useful in the consequent analysis.

Let H be a real Hilbert space, C be a nonempty closed and convex subset of H .
Then, for all x, y ∈ H , the following inequalities hold:

‖x – y‖2 = ‖x‖2 – ‖y‖2 – 2〈x – y, y〉, ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

A function F : C × C → R is called an equilibrium function if it satisfies the following
conditions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(A3) lim supt↓0 F(tz + (1 – t)x, y) ≤ F(x, y) for all x, y, z ∈ C;
(A4) for each x ∈ C, y → F(x, y) is convex and lower semi-continuous;
(A5) Fix r > 0 and z ∈ C, there exists a nonempty compact convex subset K of H and

x ∈ C ∩ K such that

F(y, x) +
1
r
〈y – x, x – z〉 < 0, ∀y ∈ C\K .

Lemma 2.1 ([16]) Assume that F : C × C → R is an equilibrium function. For r > 0, define
a mapping Rr,F : H → C as follows:

Rr,F (x) =
{

z ∈ C : F(x, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(B1) Rr,F is single-valued;
(B2) Fix (Rr,F ) = EP(F) and EP(F) is a nonempty closed and convex subset of C;
(B3) Rr,F is a firmly nonexpansive mapping, i.e.,

∥
∥Rr,F (x) – Rr,F (y)

∥
∥2 ≤ 〈

Rr,F (x) – Rr,F (y), x – y
〉
, ∀x, y ∈ H .C.

Lemma 2.2 Let F : C × C → R be an equilibrium function, and let Rr,F be defined as in
Lemma 2.1 for r > 0. Let x, y ∈ H and r1, r2 > 0, then

∥
∥Rr2,F (y) – Rr1,F (x)

∥
∥ ≤ ‖y – x‖ +

∣
∣
∣
∣
r2 – r1

r2

∣
∣
∣
∣

∥
∥Rr2,F (y) – y

∥
∥.

Lemma 2.3 ([32]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 – αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑

n=1

αn = ∞; (ii) lim sup
n→∞

δn

αn
≤ 0 or

∞∑

n=1

|δn| < ∞.

Then limn→∞ an = 0.
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Lemma 2.4 Let PC denote the projection of H onto C. It is known that PC is nonexpansive
and the following inequalities hold:

‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H ,

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2, ∀x ∈ H , y ∈ C,
∥
∥(x – y) – (PCx – PCy)

∥
∥2 ≥ ‖x – y‖2 – ‖PCx – PCy‖2, ∀x, y ∈ H .

Lemma 2.5 If B is an α-inverse-strongly monotone mapping of C into H , and λ ∈ [0, 2α],
then I – λB is a nonexpansive mapping.

Proof For any w, u ∈ C1, we have

∥
∥(I – λB)w – (I – λB)u

∥
∥2 =

∥
∥(w – u) – λ(Bw – Bu)

∥
∥2

= ‖w – u‖2 – 2λ〈Bw – Bu, w – u〉 + λ2‖Bw – Bu‖2

≤ ‖w – u‖2 + λ(λ – 2α)‖Bw – Bu‖2

≤ ‖w – u‖2,

which implies that I – λB is nonexpansive, completing the proof. �

Lemma 2.6 ([7]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Bi : C → H be an αi-inverse-strongly monotone mapping, where i ∈ {1, 2, . . . , N}. Let G :
C → C be a mapping defined by

G(x) = PC(I – λN BN )PC(I – λN–1BN–1) · · ·PC(I – λ2B2)PC(I – λ1B1)x, ∀x ∈ C.

If λi ∈ [0, 2αi], i = 1, 2, . . . , N , then G : C → C is nonexpansive.

Proof Putting Ti = PC(I – λiBi)PC(I – λi–1Bi–1) · · ·PC(I – λ2B2)PC(I – λ1B1), i = 1, 2, . . . , N ,
and T0 = I , where I is an identity mapping on C. Then G = TN . For all x, y ∈ C, we have

∥
∥G(x) – G(y)

∥
∥ =

∥
∥TN (x) – TN (y)

∥
∥

=
∥
∥PC(I – λN BN )TN–1x – PC(I – λN BN )TN–1y

∥
∥

≤ ∥
∥(I – λN BN )TN–1x – (I – λN BN )TN–1y

∥
∥

≤ ∥
∥TN–1x – TN–1y

∥
∥

...

≤ ‖x – y‖.

Then G is nonexpansive, which completes the proof. �

Lemma 2.7 ([8]) Let U : C → H be a τ -Lipschitzian mapping, and let F : C → H be a k-
Lipschitzian mapping and η-strongly monotone mapping, then, for 0 ≤ ρτ < μη, μF – ρU
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is (μη – ρτ )-strongly monotone, i.e.,

〈
(μF – ρU)x – (μF – ρU)y, x – y

〉 ≥ (μη – ρτ )‖x – y‖2, ∀x, y ∈ C.

Lemma 2.8 ([26]) Suppose that λ ∈ (0, 1) and μ > 0. Let F : C → H be a k-Lipschitzian and
η-strongly monotone mapping. In association with a nonexpansive mapping T : C → C,
define the mapping Tλ : C → H by

Tλ(x) = T(x) – λμFT(x), ∀x ∈ C.

Then Tλ is a contractive mapping with μ < 2η

k2 , that is,

∥
∥Tλx – Tλy

∥
∥ ≤ (1 – λν)‖x – y‖, ∀x, y ∈ C,

where ν = 1 –
√

1 – μ(2η – μk2).

Lemma 2.9 ([24]) Each Hilbert space H satisfies the Opial condition, that is, for any
sequence {xn} with xn converging weakly to x, the inequality lim infn→∞ ‖xn – x‖ <
lim infn→∞ ‖xn – y‖ holds for every y ∈ H with y �= x.

Lemma 2.10 ([4] Demiclosedness principle) Let C be a closed convex subset of a real
Hilbert space H , and let T : C → C be a nonexpansive mapping. Then I – T is demiclosed
at zero, that is, xn converges weakly to x, xn – Txn → 0 implies x = Tx.

3 Main results
Theorem 3.1 For i ∈ {1, 2}, let Hi be a real Hilbert space, Ci be a nonempty closed convex
subset of Hi, let Fi : Ci × Ci → R be an equilibrium function. Let A : H1 → H2 be bounded
linear operators with their adjoint operators A∗. Let Bi be ξi-inverse-strongly monotone,
respectively, where i ∈ {1, 2, . . . , N}. Let F : C1 → C1 be a k-Lipschitzian mapping and η-
strongly monotone, and let U : C1 → C1 be a τ -Lipschitzian mapping. Let S, T : C1 → C1

be two nonexpansive mappings such that � = � ∩ Fix(G) ∩ Fix(T) �= ∅. For a given x0 ∈ C1

arbitrarily, let the iterative sequences {un}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = Rrn ,F1 (xn + γ A∗(Rrn ,F2 – I)Axn),

yn = PC1 (I – λN BN )PC1 (I – λN–1BN–1) · · ·PC1 (I – λ2B2)PC1 (I – λ1B1)un,

zn = βnSxn + (1 – βn)yn,

xn+1 = PC1 [αnρU(xn) + (I – αnμF)(T(zn))],

(8)

where {rn} ⊂ (0,∞),γ ∈ (0, 1/LA), LA is the spectral radius of the operators A∗A. Suppose
that the parameters satisfy 0 < μ < 2η

k2 , k ≥ η, 0 ≤ ρτ < ν , where ν = 1 –
√

1 – μ(2η – μk)2,
and {αn}, {βn} are the sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞,
∑∞

n=1 |αn–1 – αn| < ∞;
(ii) lim supn→∞

βn
αn

= 0, βn ≤ αn(n ≥ 1) and
∑∞

n=1 |βn–1 – βn| < ∞;
(iii) lim infn→∞ rn > 0,

∑∞
n=1 |rn–1 – rn| < ∞.

Then the sequence {xn} generated by (8) converges strongly to w ∈ �.
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Proof Let p ∈ �, i.e., p ∈ �, that is, p = Rrn ,F1 (p) and Ap = Rrn ,F2 (Ap). For convenience, we
split the proof into several steps.

Step 1. We show that {xn}, {un}, {yn}, {zn} are bounded.
First, by (8) and the expansiveness of Rrn ,F1 , we estimate

‖un – p‖2 =
∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
– p

∥
∥2

=
∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
– Rrn ,F1 (p)

∥
∥2

≤ ∥
∥xn + γ A∗(Rrn ,F2 – I)Axn – p

∥
∥2

= ‖xn – p‖2 + γ 2∥∥A∗(Rrn ,F2 – I)Axn
∥
∥2 + 2γ

〈
xn – p, A∗(Rrn ,F2 – I)Axn

〉
. (9)

It follows from the definition of LA that

γ 2∥∥A∗(Rrn ,F2 – I)Axn
∥
∥2

= γ 2〈(Rrn ,F2 – I)Axn, AA∗(Rrn ,F2 – I)Axn
〉

≤ LAγ 2∥∥(Rrn ,F2 – I)Axn
∥
∥2. (10)

By using Lemma 2.4, we have

2γ
〈
xn – p, A∗(Rrn ,F2 – I)Axn

〉

= 2γ
〈
A(xn – p), (Rrn ,F2 – I)Axn

〉

= 2γ
〈
A(xn – p) + (Rrn ,F2 – I)Axn – (Rrn ,F2 – I)Axn, (Rrn ,F2 – I)Axn

〉

= 2γ
{〈

Rrn ,F2 Axn – Ap, (Rrn ,F2 – I)Axn
〉
–

∥
∥(Rrn ,F2 – I)Axn

∥
∥2}

≤ 2γ

{
1
2
∥
∥(Rrn ,F2 – I)Axn

∥
∥2 –

∥
∥(Rrn ,F2 – I)Axn

∥
∥2

}

= –γ
∥
∥(Rrn ,F2 – I)Axn

∥
∥2. (11)

From (9)–(11) and γ ∈ (0, 1/LA) it follows that

‖un – p‖2 ≤ ‖xn – p‖2 + γ (LAγ – 1)
∥
∥(Rrn ,F2 – I)Axn

∥
∥2 ≤ ‖xn – p‖2. (12)

It follows from (8), (12), and Lemma 2.6 that we have

‖yn – p‖ =
∥
∥TN un – TN p

∥
∥ ≤ ‖un – p‖ ≤ ‖xn – p‖. (13)

Next, we prove that the sequence {xn} is bounded. Note βn ≤ αn for all n ≥ 1. Put Vn =
αnρU(xn) + (I – αnμF)(T(zn)),

from (8), we get

‖xn+1 – p‖ =
∥
∥PC1

[
αnρU(xn) + (I – αnμF)

(
T(zn)

)]
– p

∥
∥

≤ αn
∥
∥ρU(xn) – μF(p)

∥
∥ +

∥
∥(I – αnμF)

(
T(zn)

)
– (I – αnμF)

(
T(p)

)∥
∥

= αn
∥
∥ρU(xn) – ρU(p) + (ρU – μF)(p)

∥
∥
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+
∥
∥(I – αnμF)

(
T(zn)

)
– (I – αnμF)

(
T(p)

)∥
∥

≤ αnρτ‖xn – p‖ + αn
∥
∥(ρU – μF)(p)

∥
∥ + (1 – αnν)‖zn – p‖

≤ αnρτ‖xn – p‖ + αn
∥
∥(ρU – μF)(p)

∥
∥

+ (1 – αnν)
∥
∥βnSxn + (1 – βn)yn – p

∥
∥

≤ αnρτ‖xn – p‖ + αn
∥
∥(ρU – μF)(p)

∥
∥

+ (1 – αnν)
(
βn‖Sxn – Sp‖ + βn‖Sp – p‖ + (1 – βn)‖yn – p‖)

≤ αnρτ‖xn – p‖ + αn
∥
∥(ρU – μF)(p)

∥
∥

+ (1 – αnν)
(
βn‖xn – p‖ + βn‖Sp – p‖ + (1 – βn)‖xn – p‖)

≤ (
1 – αn(ν – ρτ )

)‖xn – p‖ + αn
∥
∥(ρU – μF)(p)

∥
∥

+ (1 – αnν)βn‖Sp – p‖
≤ (

1 – αn(ν – ρτ )
)‖xn – p‖ + αn

∥
∥(ρU – μF)(p)

∥
∥ + βn‖Sp – p‖

≤ (
1 – αn(ν – ρτ )

)‖xn – p‖ + αn
(∥
∥(ρU – μF)(p)

∥
∥ + ‖Sp – p‖)

≤ (
1 – αn(ν – ρτ )

)‖xn – p‖ +
αn(ν – ρτ )

ν – ρτ

(∥
∥(ρU – μF)(p)

∥
∥ + ‖Sp – p‖)

≤ max

{

‖x0 – p‖,
1

ν – ρτ

(∥
∥(ρU – μF)(p)

∥
∥ + ‖Sp – p‖)

}

. (14)

So {xn} is bounded, and consequently we can deduce that {un}, {yn}, {zn} are also
bounded.

Step 2. We will show the following:

(a) lim
n→∞‖xn+1 – xn‖ = 0; (b) lim

n→∞‖un – xn‖ = 0; (c) lim
n→∞‖un – yn‖ = 0.

Noting un = Rrn ,F1 (xn + γ A∗(Rrn ,F2 – I)Axn) and un–1 = Rrn–1,F1 (xn–1 + γ A∗(Rrn–1,F2 –
I)Axn–1), from Lemma 2.2, we have

‖un – un–1‖
= ‖Rrn ,F1 vn – Rrn–1,F1 vn–1‖
≤ ∥

∥xn – xn–1 + γ A∗[(Rrn ,F2 – I)Axn – (Rrn–1,F2 – I)Axn–1)
]∥
∥

+
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
– xn – γ A∗(Rrn ,F2 – I)Axn

∥
∥

≤ ∥
∥xn – xn–1 – γ A∗A(xn – xn–1)

∥
∥ + γ

∥
∥A∗∥∥‖Rrn ,F2 Axn – Rrn–1,F2 Axn–1‖

+
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣δn–1

≤ {‖xn – xn–1‖2 – 2γ ‖Axn – Axn–1‖2 + γ 2‖A‖4‖xn – xn–1‖2} 1
2

+ γ ‖A‖
{

‖Axn – Axn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣‖Rrn ,F2 Axn – Axn‖

}

+
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣δn–1

≤ (
1 – 2γ ‖A‖2 + γ 2‖A‖4) 1

2 ‖xn – xn–1‖ + γ ‖A‖2‖xn – xn–1‖
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+
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣γ ‖A‖σn–1 +

∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣δn–1

= ‖xn – xn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)
, (15)

where

δn–1 =
∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
–

(
xn + γ A∗(Rrn ,F2 – I)Axn

)∥
∥,

σn–1 = ‖Rrn ,F2 Axn – Axn‖.

So, from Lemma 2.6, we have

‖yn – yn–1‖ =
∥
∥G(un) – G(un–1)

∥
∥ ≤ ‖un – un–1‖

≤ ‖xn – xn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)
. (16)

Then from (16) we get

‖zn – zn–1‖ =
∥
∥βnSxn + (1 – βn)yn – βn–1Sxn–1 – (1 – βn–1)yn–1

∥
∥

≤ βn‖xn – xn–1‖ + |βn – βn–1|
(‖Sxn–1‖ + ‖yn–1‖

)
+ (1 – βn)‖yn – yn–1‖

≤ βn‖xn – xn–1‖ + |βn – βn–1|
(‖Sxn–1‖ + ‖yn–1‖

)

+ (1 – βn)
{

‖xn – xn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)
}

≤ ‖xn – xn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)

+ |βn – βn–1|
(‖Sxn–1‖ + ‖yn–1‖

)
. (17)

Next, by Lemma 2.8, we estimate

‖xn+1 – xn‖
=

∥
∥PC[Vn] – PC[Vn–1]

∥
∥

≤ ∥
∥αnρ

(
U(xn) – U(xn–1)

)
+ (αn – αn–1)ρU(xn–1) + (I – αnμF)

(
T(zn)

)

– (I – αnμF)
(
T(zn–1)

)
+ (I – αnμF)

(
T(zn–1)

)
– (I – αn–1μF)

(
T(zn–1)

)∥
∥

≤ αnρτ‖xn – xn–1‖ + |αn – αn–1|
(∥
∥ρU(xn–1)

∥
∥ +

∥
∥μF

(
T(zn–1)

)∥
∥
)

+ (1 – αnν)‖zn – zn–1‖. (18)

From (17) and (18), we get

‖xn+1 – xn‖
≤ αnρτ‖xn – xn–1‖ + |αn – αn–1|

(∥
∥ρU(xn–1)

∥
∥ +

∥
∥μF

(
T(zn–1)

)∥
∥
)

+ (1 – αnν)
{

‖xn – xn–1‖ +
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)
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+ |βn – βn–1|
(‖Sxn–1‖ + ‖zn–1‖

)
}

≤ (
1 – (ν – ρτ )αn

)‖xn – xn–1‖ + |αn – αn–1|
(∥
∥ρU(xn–1)

∥
∥ +

∥
∥μF

(
T(zn–1)

)∥
∥
)

+
∣
∣
∣
∣1 –

rn–1

rn

∣
∣
∣
∣

(
γ ‖A‖σn–1 + δn–1

)
+ |βn – βn–1|

(‖Sxn–1‖ + ‖zn–1‖
)

≤ (
1 – (ν – ρτ )αn

)‖xn – xn–1‖ + M
(

|αn – αn–1| +
1
ε
|rn–1 – rn| + |βn – βn–1|

)

, (19)

where M = max{supn≥1(‖ρU(xn–1)‖ + ‖μF(T(zn–1))‖), supn≥1(γ ‖A‖σn–1 + δn–1),
supn≥1(‖Sxn–1‖ + ‖zn–1‖)}. And ε is a real number such that 0 < ε < rn. So, it follows from
Conditions (i)–(iii) and Lemma 2.3 that

lim
n→∞‖xn+1 – xn‖ = 0. (20)

Next, we show that limn→∞ ‖un – xn‖ = 0. In view of (8), (9), (12), and (13), we obtain

‖xn+1 – p‖2 =
〈
PC[Vn] – p, xn+1 – p

〉

=
〈
PC[Vn] – Vn, PC[Vn] – p

〉
+ 〈Vn – p, xn+1 – p〉

≤ 〈
αn

(
ρU(xn) – μF(p)

)
+ (I – αnμF)

(
T(zn)

)

– (I – αnμF)
(
T(p)

)
, xn+1 – p

〉

=
〈
αnρ

(
U(xn) – U(p)

)
, xn+1 – p

〉
+ αn

〈
ρU(p) – μF(p), xn+1 – p

〉

+
〈
(I – αnμF)

(
T(zn)

)
– (I – αnμF)

(
T(p)

)
, xn+1 – p

〉

≤ αnρτ‖xn – p‖‖xn+1 – p‖ + αn
〈
ρU(p) – μF(p), xn+1 – p

〉

+ (1 – αnν)‖zn – p‖‖xn+1 – p‖
≤ αnρτ

2
(‖xn – p‖2 – ‖xn+1 – p‖2) + αn

〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)

2
(‖zn – p‖2 – ‖xn+1 – p‖2)

≤ (1 – αn(ν – ρτ ))
2

‖xn+1 – p‖2 + αn
〈
ρU(p) – μF(p), xn+1 – p

〉

+
αnρτ

2
‖xn – p‖2 +

(1 – αnν)
2

‖zn – p‖2

≤ (1 – αn(ν – ρτ ))
2

‖xn+1 – p‖2 + αn
〈
ρU(p) – μF(p), xn+1 – p

〉

+
αnρτ

2
‖xn – p‖2 +

(1 – αnν)
2

(
βn‖Sxn – p‖2 + (1 – βn)‖yn – p‖2). (21)

From the above inequality and (12), (13), we get

‖xn+1 – p‖2 ≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )
{‖xn – p‖2 + γ (LAγ – 1)

∥
∥(Rrn ,F2 – I)Axn

∥
∥2}
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≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )
{
γ (LAγ – 1)

∥
∥(Rrn ,F2 – I)Axn

∥
∥2}, (22)

which means that

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

{
γ (1 – LAγ )

∥
∥(Rrn ,F2 – I)Axn

∥
∥2}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2 – ‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+ βn‖Sxn – p‖2 +
(‖xn – p‖ + ‖xn+1 – p‖)‖xn+1 – xn‖. (23)

Since αn → 0, βn → 0 and limn→∞ ‖xn+1 – xn‖ = 0, we obtain

lim
n→∞

∥
∥(Rrn ,F2 – I)Axn

∥
∥ = 0.

And since Rrn ,F1 is firmly nonexpansive, from (8) we get

‖un – p‖2

=
∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
– p

∥
∥2

=
∥
∥Rrn ,F1

(
xn + γ A∗(Rrn ,F2 – I)Axn

)
– Rrn ,F1 (p)

∥
∥2

≤ 〈
un – p, xn + γ A∗(Rrn ,F2 – I)Axn – p

〉

=
1
2
{‖un – p‖2 +

∥
∥xn + γ A∗(Rrn ,F2 – I)Axn – p

∥
∥2

–
∥
∥un – p –

[
xn + γ A∗(Rrn ,F2 – I)Axn – p

]∥
∥2}

=
1
2
{‖un – p‖2 +

∥
∥xn + γ A∗(Rrn ,F2 – I)Axn – p

∥
∥2

–
∥
∥un – xn – γ A∗(Rrn ,F2 – I)Axn

∥
∥2}

=
1
2
{‖un – p‖2 + ‖xn – p‖2 + 2γ

〈
xn – p, A∗(Rrn ,F2 – I)Axn

〉

+ γ 2∥∥A∗(Rrn ,F2 – I)Axn
∥
∥2

–
[‖un – xn‖2 – 2γ

〈
un – xn, A∗(Rrn ,F2 – I)Axn

〉
+ γ 2∥∥A∗(Rrn ,F2 – I)Axn

∥
∥2]}

=
1
2
{‖un – p‖2 + ‖xn – p‖2 + 2γ

〈
un – p, A∗(Rrn ,F2 – I)Axn

〉
– ‖un – xn‖2}, (24)

which implies that

‖un – p‖2 ≤ ‖xn – p‖2 – ‖un – xn‖2 + 2γ
∥
∥A(un – p)

∥
∥
∥
∥(Rrn ,F2 – I)Axn

∥
∥. (25)
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So, from (21) and (25) we have

‖xn+1 – p‖2

≤ (1 – αn(ν – ρτ ))
2

‖xn+1 – p‖2 + αn
〈
ρU(p) – μF(p), xn+1 – p

〉

+
αnρτ

2
‖xn – p‖2 +

(1 – αnν)
2

(
βn‖Sxn – p‖2 + (1 – βn)‖un – p‖2)

≤ (1 – αn(ν – ρτ ))
2

‖xn+1 – p‖2 + αn
〈
ρU(p) – μF(p), xn+1 – p

〉
+

αnρτ

2
‖xn – p‖2

+
(1 – αnν)

2
{
βn‖Sxn – p‖2 + (1 – βn)

(‖xn – p‖2 – ‖un – xn‖2

+ 2γ
∥
∥A(un – p)

∥
∥
∥
∥(Rrn ,F2 – I)Axn

∥
∥
)}

, (26)

which implies that

‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 +

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

{‖xn – p‖2 – ‖un – xn‖2

+ 2γ
∥
∥A(un – p)

∥
∥
∥
∥(Rrn ,F2 – I)Axn

∥
∥
}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )
{

–‖un – xn‖2 + 2γ
∥
∥A(un – p)

∥
∥
∥
∥(Rrn ,F2 – I)Axn

∥
∥
}

. (27)

Hence

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

‖un – xn‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2 – ‖xn+1 – p‖2

+
2(1 – αnν)(1 – βn)γ

1 + αn(ν – ρτ )
∥
∥A(un – p)

∥
∥
∥
∥(Rrn ,F2 – I)Axn

∥
∥

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 +

(‖xn – p‖ + ‖xn+1 – p‖)‖xn+1 – xn‖. (28)
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Since limn→∞ αn = 0, limn→∞ βn = 0, limn→∞ ‖xn+1 – xn‖ = 0, and limn→∞ ‖(Rrn ,F2 –
I)Axn‖ = 0, we have

lim
n→∞‖un – xn‖ = 0.

Then, by Lemma 2.5 and Lemma 2.6, we obtain

∥
∥TN un – TN p

∥
∥2

=
∥
∥PC1 (I – λN BN )TN–1un – PC1 (I – λN BN )TN–1p

∥
∥2

≤ ∥
∥(I – λN BN )TN–1un – (I – λN BN )TN–1p

∥
∥2

≤ ∥
∥TN–1un – TN–1p

∥
∥2 + λN (λN – 2ξN )

∥
∥BN TN–1un – BN TN–1p

∥
∥2

≤ ‖un – p‖2 +
N∑

i=1

λi(λi – 2ξi)
∥
∥BiTi–1un – BiTi–1p

∥
∥2

≤ ‖xn – p‖2 +
N∑

i=1

λi(λi – 2ξ i)
∥
∥BiTi–1un – BiTi–1p

∥
∥2. (29)

From (21), we obtain

‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )

{

‖xn – p‖2 +
N∑

i=1

λi(λi – 2ξi)
∥
∥BiTi–1un – BiTi–1p

∥
∥2

}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2

+ ‖xn – p‖2 +
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )

{ N∑

i=1

λi(λi – 2ξ i)
∥
∥BiTi–1un – BiTi–1p

∥
∥2

}

, (30)

which implies that

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

{ N∑

i=1

λi(2ξi – λi)
∥
∥BiTi–1un – BiTi–1p

∥
∥2

}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2 – ‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2
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+
2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 +

(‖xn – p‖ + ‖xn+1 – p‖)‖xn – xn+1‖. (31)

Since limn→∞ αn = 0, limn→∞ βn = 0 and limn→∞ ‖xn+1 – xn‖ = 0, we have

lim
n→∞

∥
∥BiTi–1un – BiTi–1p

∥
∥ = 0.

By Lemma 2.4, we obtain

‖yn – p‖2

=
∥
∥TN un – TN p

∥
∥2

=
∥
∥PC(I – λN BN )TN–1un – PC(I – λN BN )TN–1p

∥
∥2

≤ 〈
(I – λN BN )TN–1un – (I – λN BN )TN–1p, TN un – TN p

〉

=
1
2
(‖yn – p‖2 +

∥
∥(I – λN BN )TN–1un – (I – λN BN )TN–1p

∥
∥2

–
∥
∥(I – λN BN )TN–1un – (I – λN BN )TN–1p –

(
TN un – TN p

)∥
∥2)

≤ 1
2
(‖yn – p‖2 +

∥
∥TN–1un – TN–1p

∥
∥2

–
∥
∥TN–1un – TN un + TN p – TN–1p – λN

(
BN TN–1un – BN TN–1p

)∥
∥2), (32)

which implies

‖yn – p‖2

≤ ∥
∥TN–1un – TN–1p

∥
∥2

–
∥
∥TN–1un – TN un + TN p – TN–1p – λN

(
BN TN–1un – BN TN–1p

)∥
∥2

=
∥
∥TN–1un – TN–1p

∥
∥2 –

∥
∥TN–1un – TN un + TN p – TN–1p

∥
∥2

– λ2
N
∥
∥BN TN–1un – BN TN–1p

∥
∥2

+ 2λN
〈
TN–1un – TN un + TN p – TN–1p, BN TN–1un – BN TN–1p

〉

≤ ∥
∥TN–1un – TN–1p

∥
∥2 –

∥
∥TN–1un – TN un + TN p – TN–1p

∥
∥2

+ 2λN
∥
∥TN–1un – TN un + TN p – TN–1p

∥
∥
∥
∥BN TN–1un – BN TN–1p

∥
∥. (33)

By induction and (12), we have

‖yn – p‖2 ≤ ‖xn – p‖2 –
N∑

i=1

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥2

+
N∑

i=1

2λi
∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥
∥
∥BiTi–1un – BiTi–1p

∥
∥. (34)
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It follows from (21) and (34) that we have

‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 +

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

{

‖xn – p‖2

–
N∑

i=1

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥2

+
N∑

i=1

2λi
∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥
∥
∥BiTi–1un – BiTi–1p

∥
∥

}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )

{

–
N∑

i=1

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥2

+
N∑

i=1

2λi
∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥
∥
∥BiTi–1un – BiTi–1p

∥
∥

}

, (35)

which implies

(1 – αnν)(1 – βn)
1 + αn(ν – ρτ )

{ N∑

i=1

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥2

}

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 + ‖xn – p‖2 – ‖xn+1 – p‖2

≤ αnρτ

1 + αn(ν – ρτ )
‖xn – p‖2 +

2αn

1 + αn(ν – ρτ )
〈
ρU(p) – μF(p), xn+1 – p

〉

+
(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sxn – p‖2 +

(‖xn – p‖ + ‖xn+1 – p‖)‖xn – xn+1‖

+
(1 – αnν)(1 – βn)

1 + αn(ν – ρτ )

{ N∑

i=1

2λi
∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥

× ∥
∥BiTi–1un – BiTi–1p

∥
∥

}

. (36)

Since limn→∞ αn = 0, limn→∞ βn = 0 and limn→∞ ‖BiTi–1un – BiTi–1p‖2 = 0, we have

lim
n→∞

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥ = 0. (37)
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From (37), we obtain

‖un – yn‖ =
∥
∥T0un – TN un

∥
∥ ≤

N∑

i=1

∥
∥Ti–1un – Tiun + Tip – Ti–1p

∥
∥, (38)

which means limn→∞ ‖un – yn‖ = 0. Note limn→∞ ‖un – xn‖ = 0, limn→∞ ‖un – yn‖ = 0, then
we have limn→∞ ‖xn – yn‖ = 0. Since T(xn) ∈ C1, we have

∥
∥xn – T(xn)

∥
∥ ≤ ‖xn – xn+1‖ +

∥
∥xn+1 – T(xn)

∥
∥

= ‖xn – xn+1‖ +
∥
∥PC1 [Vn] – PC1

[
T(xn)

]∥
∥

≤ ‖xn – xn+1‖ +
∥
∥αn(ρU(xn) – μF

(
T(yn)

)
+ T(yn) – T(xn)

∥
∥

≤ ‖xn – xn+1‖ + αn
∥
∥ρU(xn) – μF(T(yn)

∥
∥ + ‖yn – xn‖

≤ ‖xn – xn+1‖ + αn
∥
∥ρU(xn) – μF(T(yn)

∥
∥ +

∥
∥βnSxn + (1 – βn)yn – xn

∥
∥

≤ ‖xn – xn+1‖ + αn
∥
∥ρU(xn) – μF(T(yn)

∥
∥

+ βn‖Sxn – xn‖ + (1 – βn)‖yn – xn‖.

Noting that limn→∞ αn = 0, limn→∞ βn = 0, limn→∞ ‖xn – yn‖ = 0,and limn→∞ ‖xn+1 – xn‖ =
0, we have limn→∞ ‖xn – T(xn)‖ = 0.

Step 3. We show that z ∈ F(T). Assume that z /∈ F(T). Since xni converges weakly to z
and Tz �= z, by Lemma 2.9, we have

lim inf
n→∞ ‖xni – z‖

< lim inf
n→∞ ‖xni – Tz‖ ≤ lim inf

n→∞
(‖xni – Txni‖ + ‖Txni – Tz‖) ≤ lim inf

n→∞ ‖xni – z‖,

which is a contradiction. Thus, we obtain z ∈ F(T). To prove the convergence of the se-
quence {xn}, we need to prove the following conclusion, that is, the sequence {xn} gen-
erated by (8) converges strongly to w, which is the unique solution of the variational in-
equality

〈
ρU(w) – μF(w), x – w

〉 ≤ 0, ∀x ∈ �.

In fact, noting that un = Rrn,F1
(xn + γ A∗(Rrn,F2

– I)Axn and

F1(un, y) +
1
rn

〈y – un, un – xn〉 –
1
rn

〈
y – un,γ A∗(Rrn ,F2 – I)Axn

〉 ≥ 0, ∀y ∈ C1.

From the monotonicity of F1, we have

–
1
rn

〈
y – un,γ A∗(Rrn ,F2 – I)Axn

〉
+

1
rn

〈y – un, un – xn〉 ≥ F1(y, un), ∀y ∈ C1,

and

–
1

rni

〈
y – uni ,γ A∗(Rrni ,F2 – I)Axni

〉
+

〈

y – uni ,
uni – xni

rni

〉

≥ F1(y, uni ), ∀y ∈ C1.



Zhao et al. Journal of Inequalities and Applications        (2021) 2021:111 Page 18 of 22

Since ‖un – xn‖ → 0, ‖(Rrn ,F2 – I)Axn‖ → 0, we get {uni} converges weakly to z. By (A4),
we know F1(y, z) ≤ 0, ∀y ∈ C1. Let yt = ty + (1 – t)z, t ∈ (0, 1], it follows from y ∈ C1, z ∈ C1

and the convexity of C1 that F1(yt , z) ≤ 0. So, from (A1), (A3), and (A4), we have

0 = F1(yt , yt) ≤ tF1(yt , y) + (1 – t)F1(yt , z) ≤ F1(yt , y).

Therefore F1(z, y) ≥ 0,∀y ∈ C1. This is z ∈ EP(F1).
Next we show that Az ∈ EP(F2), since ‖un – xn‖ → 0, there exists a subsequence {xnk } of

{xn} such that {xnk } converges weakly to z, and since A is a bounded linear operator, {Axnk }
converges weakly to Az. Setting �nk = Axnk –Rrnk ,F2 Axnk , it follows tfrom limn→∞ ‖(Rrn ,F2 –
I)Axn‖ = 0 that limk→∞ �nk = 0. By Lemma 2.1, we have

F2(Axnk – �nk , y) +
1

rnk

〈
y – (Axnk – �nk ), (Axnk – �nk ) – Axnk

〉 ≥ 0, ∀y ∈ C2.

Since F2 is upper semicontinuous in the first argument, taking limsup to the above in-
equality as k → ∞, we have F2(Az, y) ≥ 0, ∀y ∈ C2, which means that Az ∈ EP(F2), so
z ∈ �. Next, we claim that z ∈ Fix(G). From Lemma 2.6, we know G = TN is nonexpansive,
and

‖yn – Gyn‖ =
∥
∥TN un – TN yn

∥
∥ ≤ ‖un – yn‖.

It follows from limn→∞ ‖un – xn‖ = 0 and limn→∞ ‖xn – yn‖ = 0 that limn→∞ ‖yn – Gyn‖ =
0. Furthermore, we get

‖xn – Gxn‖ ≤ ‖xn – yn‖ + ‖yn – Gyn‖ + ‖Gyn – Gxn‖
≤ 2‖xn – yn‖ + ‖yn – Gyn‖,

which implies limn→∞ ‖xn – Gxn‖ = 0. Then, by Lemma 2.10, we obtain z ∈ Fix(G). Thus,
we have z ∈ �. Observe that the constants satisfy 0 ≤ ρτ < v and k ≥ η, from Lemma 2.7,
the operator μF – ρU is μη – ρτ strongly monotone. Then we get the uniqueness of the
solution of the variational inequality and denote it by w ∈ �.

Last, we show that xn → w. Note that

lim sup
n→∞

〈
ρU(w) – μF(w), xn – w

〉

= lim sup
i→∞

〈
ρU(w) – μF(w), xni – w

〉
=

〈
ρU(w) – μF(w), z – w

〉 ≤ 0,

and

‖xn+1 – w‖2

=
〈
PC[Vn] – w, xn+1 – w

〉

=
〈
PC[Vn] – Vn, PC[Vn] – w

〉
+ 〈Vn – w, xn+1 – w〉

≤ 〈
αn

(
ρU(xn) – μF(w)

)
+ (I – αnμF)

(
T(zn)

)
– (I – αnμF)

(
T(w)

)
, xn+1 – w

〉

=
〈
αnρ

(
U(xn) – U(w)

)
, xn+1 – w

〉
+ αn

〈
ρU(w) – μF(w), xn+1 – w

〉
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+
〈
(I – αnμF)

(
T(zn)

)
– (I – αnμF)

(
T(w)

)
, xn+1 – w

〉

≤ αnρτ‖xn – w‖‖xn+1 – w‖ + αn
〈
ρU(w) – μF(w), xn+1 – w

〉

+ (1 – αnν)‖zn – w‖‖xn+1 – w‖
≤ αnρτ‖xn – w‖‖xn+1 – w‖ + αn

〈
ρU(w) – μF(w), xn+1 – w

〉

+ (1 – αnν)
{
βn‖Sxn – Sw‖ + βn‖Sw – w‖ + (1 – βn)‖yn – w‖}‖xn+1 – w‖

≤ αnρτ‖xn – w‖‖xn+1 – w‖ + αn
〈
ρU(w) – μF(w), xn+1 – w

〉

+ (1 – αnν)
{
βn‖xn – w‖ + βn‖Sw – w‖ + (1 – βn)‖xn – w‖}‖xn+1 – w‖

=
(
1 – αn(ν – ρτ )

)‖xn – w‖‖xn+1 – w‖ + αn
〈
ρU(w) – μF(w), xn+1 – w

〉

+ (1 – αnν)βn‖Sw – w‖‖xn+1 – w‖

≤ (1 – αn(ν – ρτ ))
2

(‖xn – w‖2 + ‖xn+1 – w‖2) + αn
〈
ρU(w) – μF(w), xn+1 – w

〉

+ (1 – αnν)βn‖Sw – w‖‖xn+1 – w‖,

which implies that

‖xn+1 – w‖2 ≤ 1 – αn(ν – ρτ )
1 + αn(ν – ρτ )

‖xn – w‖2 +
2αn

1 + αn(ν – ρτ )
〈
ρU(w) – μF(w), xn+1 – w

〉

+
2(1 – αnν)βn

1 + αn(ν – ρτ )
‖Sw – w‖‖xn+1 – w‖

≤ (
1 – αn(ν – ρτ )

)‖xn – w‖2

+
2αn(ν – ρτ )

1 + αn(ν – ρτ )

{
1

ν – ρτ

〈
ρU(w) – μF(w), xn+1 – w

〉

+
(1 – αnν)βn

αn(ν – ρτ )
‖Sw – w‖‖xn+1 – w‖

}

.

Let σn = ‖xn – w‖2,φn = αn(ν – ρτ ) and

ϕn =
2αn(ν – ρτ )

1 + αn(ν – ρτ )

{
1

ν – ρτ

〈
ρU(w) – μF(w), xn+1 – w

〉

+
(1 – αnν)βn

αn(ν – ρτ )
‖Sw – w‖‖xn+1 – w‖

}

.

Then the above inequality turns into the following:

σn+1 = (1 – φn)σn + ϕn.

From Conditions (i) and (ii) of Theorem 3.1, we have

φn → 0(n → ∞) and

lim sup
n→∞

ϕn

φn
= lim sup

n→∞
2

1 + αn(ν – ρτ )

{
1

ν – ρτ

〈
ρU(w) – μF(w), xn+1 – w

〉

+
(1 – αnν)βn

αn(ν – ρτ )
‖Sw – w‖‖xn+1 – w‖

}

≤ 0.
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Then all conditions in Lemma 2.3 are satisfied, thus we can get σn → 0 (n → ∞), that
is, xn → w (n → ∞). This completes the proof. �

Corollary 3.1 For i ∈ {1, 2}, let Hi be a real Hilbert space, Ci be a nonempty closed convex
subset of Hi, let Fi : Ci × Ci → R be an equilibrium function. Let A : H1 → H2 be bounded
linear operators with their adjoint operators A∗. Let B1 be ξ1-inverse-strongly monotone. Let
F : C1 → C1 be a k-Lipschitzian mapping and be η-strongly monotone, and let U : C1 → C1

be a τ -Lipschitzian mapping. Let S, T : C1 → C1 be two nonexpansive mappings such that
� = � ∩ Fix(G) ∩ Fix(T) �= ∅. For given x0 ∈ C1 arbitrarily, let the iterative sequences {un},
{yn}, and {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = Rrn ,F1 (xn + γ A∗(Rrn ,F2 – I)Axn),

yn = PC1 (I – λ1B1)un,

zn = βnSxn + (1 – βn)yn,

xn+1 = PC1 [αnρU(xn) + (I – αnμF)(T(zn))],

(39)

where {rn} ⊂ (0,∞),γ ∈ (0, 1/LA), LA is the spectral radius of the operators A∗A. Suppose
that the parameters satisfy 0 < μ < 2η

k2 , k ≥ η, 0 ≤ ρτ < ν , where ν = 1 –
√

1 – μ(2η – μk)2,
and {αn}, {βn} are the sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞,
∑∞

n=1 |αn–1 – αn| < ∞;
(ii) lim supn→∞

βn
αn

= 0, and βn ≤ αn(n ≥ 1),
∑∞

n=1 |βn–1 – βn| < ∞;
(iii) lim infn→∞ rn > 0,

∑∞
n=1 |rn–1 – rn| < ∞.

Then the sequence {xn} generated by (39) converges strongly to w ∈ �.

Proof Putting N = 1 in Theorem 3.1, we can conclude the desired conclusion directly. �

4 Conclusion
In this paper, we considered a hierarchical fixed point problem (2), a split equilibrium
problem (4)–(5), and a system of variational inequalities (7) in Hilbert spaces. An iterative
algorithm for finding the common element of the solution sets of the three kinds of prob-
lems is presented. Strong convergence of the proposed algorithm is proved. The results
presented here are new and very interesting.
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