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Abstract

Background: Fuchs endothelial corneal dystrophy is a hereditary disease and the most frequent cause of corneal
transplantation in the worldwide. Its main clinical signs are an accelerated decrease in the number of endothelial
cells, thickening of Descemet’s membrane and formation of guttae in the extracellular matrix. The cornea’s ability to
maintain stromal dehydration is impaired, causing painful epithelial bullae and loss of vision at the point when the
amount of corneal endothelial cells cannot be compensated. At present, apart from corneal transplantation, there is
no other effective treatment that prevents blindness.

Main text: In this review, we first summarized the mutations of COL8A2, TCF4, TCF8, SLC4A11 and AGBL1 genes in
Fuchs endothelial corneal dystrophy. The molecular mechanisms associated with Fuchs endothelial corneal
dystrophy, such as endoplasmic reticulum stress and unfolded protein response pathway, oxidative stress,
mitochondrial dysregulation pathway, apoptosis pathway, mitophagy, epithelial-mesenchymal transition pathway,
RNA toxicity and repeat-associated non-ATG translation, and other pathogenesis, were then explored. Finally, we
discussed several potential treatments related to the pathogenesis of Fuchs endothelial corneal dystrophy, which
may be the focus of future research.

Conclusions: The pathogenesis of Fuchs endothelial corneal dystrophy is very complicated. Currently, corneal
transplantation is an important method in the treatment of Fuchs endothelial corneal dystrophy. It is necessary to
continuously explore the pathogenesis of Fuchs endothelial corneal dystrophy and establish the scientific
foundations for the development of next-generation corneal therapeutics.
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Background
Fuchs endothelial corneal dystrophy (FECD) is a genetic-
ally heterogenous disease accompanied by irreparable
damage to the corneal endothelium [1]. FECD can occur
via autosomal dominant inheritance, but it is usually a
sporadic disease [2, 3]. In 2016, FECD accounted for 36%

of corneal transplantation in United States [4]. FECD is
characterized by a thickening of Descemet’s membrane
(DM) and the appearance of guttae [5]. The accelerated
loss of corneal endothelial cells (CECs) first appears in the
center of the cornea, and the same clinical signs appear on
the periphery of the cornea. The mosaic defect of the
corneal endothelium due to cell loss causes living cells to
respond by proliferating and migrating, resulting in abnor-
malities in uniform size (polymegathism) and variations in
hexagonal shape (pleomorphism) [6, 7].
The most recent International Classification of Cor-

neal Dystrophies categorizes FECD into two types: 1)
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rare early-onset FECD, and 2) more common late-onset
FECD. Early-onset FECD, ascribed to mutations in the
collagen type VIII alpha 2 chain (COL8A2, MIM 12052)
[8], usually begins in the first decade of life. On average,
late-onset FECD manifests in the fifth decade of life and
implicates rare mutations in solute carrier family 4 so-
dium borate transporter member 11 (SLC4A11, MIM
610206) [9, 10], transcription factor 8 gene (TCF8, MIM
189909) [11], transcription factor 4 gene (TCF4, MIM
602272) [12], lipoxygenase homology domains 1
(LOXHD1, MIM 613072) [13] and ATP/GTP binding
protein like 1 (AGBL1, MIM 615496) [4].
The emerging clinical technologies prompted us to

learn more about the clinical manifestations of FECD.
As the disease develops, the epithelium does not change
significantly during the early stage to the painful epithe-
lial bullae caused by damage to the corneal pump func-
tion [1]. Confocal microscopy reveals that the Bowman
layer is bright and reflective, with increased reflectivity
in the basal epithelial and anterior stromal layers in
FECD patients [14]. The collagen fibers in the posterior
stroma with fewer fibrous connections are looser than in
the anterior stroma. This corneal edema leads to an in-
crease in the posterior corneal hydration, causing the
posterior stroma to swell to the anterior chamber and
the central cornea to thicken [15]. In normal corneal tis-
sue, DM comprises two layers and is secreted by CECs.
In adults, an anterior banded layer has a constant thick-
ness of 3 μm, and a posterior non-banded layer has an
approximate thickness of 10 μm throughout its lifespan
[16]. Guttae, the focal nodules in DM, are deposited in
the center of the cornea, spreading out from this point
in FECD. As the density of endothelial cells decreases,
the shape and size of the endothelial cell changes. Over-
all, having a better understanding of FECD’s genetic mu-
tations and molecular mechanisms provides us with
unique insights into FECD development and potential
treatment options. The purpose of this article is to re-
view gene mutations, molecular mechanisms and future
therapies of FECD, which form the basis and rationale
for the proposed management for FECD.

Main text
FECD genetic mutations
COL8A2 gene mutations in FECD
The COL8A2 gene is found on chromosome 1; it en-
codes the α2 chain of short-chain collagen VIII, which is
an extracellular matrix (ECM) protein and constitutes a
major component of DM [8]. The COL8A2 gene is
closely related to early-onset FECD. Here, the substitu-
tion of glutamine for lysine is caused by a point muta-
tion (p.Q455K) that was traced to an English family
lineage [17]. Subsequently, a study of FECD patients
showed a leucine-to-tryptophan substitution (p.L450W)

in COL8A2 [8]. A study that genotyped FECD from Ko-
rean patient revealed a glutamine-to-valine (p.Q455V)
variation, which was projected to disrupt the interplay
between COL8A2 and COL8A1 [18]. Mutations of the
COL8A2 found in recent FECD studies are shown in
Table 1 [8, 17–21].

TCF4 gene mutations in FECD
The TCF4 gene, also known as E2–2, is found on
chromosome 18 and encodes the E2–2 protein, which
belongs to a family of basic helix-loop-helix transcription
factors. TCF4 plays a valuable role in many developmen-
tal processes and is related to transforming growth
factor-β (TGF-β) signaling pathways and epithelial-
mesenchymal transition (EMT) and programmed cell
death [22–24]. TCF4 gene mutation is the leading factor
causing FECD. A genome-wide association study analysis
revealed four single-nucleotide polymorphisms (SNPs)
(rs17595731, rs613872, rs9954153, and rs2286812) in
TCF4 that were independently correlated with FECD
[12]. Subsequent studies confirmed that TCF4
(rs613872) has a significant correlation with FECD [25–
28]. Of note, a recent genome-wide association study

Table 1 Mutations of COL8A2 gene on chromosome 1p34.3
and changes in its protein domain

Gene Nucleotide change Amino acid change References

COL8A2 c.464G > A p.R155Q [17–20]

NA p.R304Q [17, 19]

NA p.R434H [17, 19]

NA p.Q455K [17, 19]

NA p.G357R [17, 19]

NA p.P575L [17, 19]

c.1370-1371CA > GT p.Q455V [18, 19]

c.105G > A p.A35A [18–20]

c.1485G > A p.G495G [18–20]

c.1505C > T p.T502M [18, 20]

NA p.G3R [19]

c.1330 T > C p.A441A [19]

c.1349 T > G p.L450W [8, 19]

NA p.P486P [19]

c.1610G > A p.D537N [19]

c.1643A > G p.N548S [19]

NA p.P586P [19]

c.1951G > A p.Y648Y [19]

c.1005C > G p.L335L [20]

c.1526C > A p.P508P [21]

c.1491G > A p.A497T [21]

NA not available
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reported that TCF4 SNP rs784257 was the most influen-
tial SNP in FECD among the discovery specimens; it had
a strong correlation imbalance with rs613872 [29]. An-
other study, the results of which remain to be verified,
reported that a SNP was situated in close proximity to
the CTG repeat sequence [30]. Moreover, the genome-
wide association study identified three novel loci meet-
ing genome-wide significance (P < 5 × 10−8): KANK4
rs79742895, LAMC1 rs3768617 and LINC00970/
ATP1B1 rs1200114 [29]. Interestingly, the mutated genes
were sex-specific, with LAMC1 mutation at a higher risk
in women and TCF4 mutation at a higher risk in men
[29].
TCF4 was first found to be caused by the CTG trinu-

cleotide repeat (TNR) amplification in the third intron
[31]. Wieben et al.’s study showed that 79% of the Cau-
casian FECD patients carried repeat lengths of more
than 50. In contrast, there were usually only less than 40
repeats in unaffected individuals included in the study.
Using genotyping, CTG18.1 allele amplified in a Chinese
population was found to have a strong correlation with
FECD. Indeed, it may be the main pathogenic variant of
FECD in this population [32]. In the Caucasian popula-
tion, the severity of the disease may be directly related
to the repeat length, whereas no such association was
found in a Japanese cohort [33–35]. Although the correl-
ation between CTG repeat amplified polymorphism and
FECD is stronger than that of the TCF4 rs613872 poly-
morphism, the combination of the two may better pre-
dict susceptibility to FECD [27].

TCF8 gene mutations in FECD
The TCF8 gene, also called the zinc finger E-box binding
homeobox 1 (ZEB1, MIM 189909), is situated on
chromosome 10 and encodes the ZEB1 protein, which
can be up-regulated by TCF4 expression [36]. It restrains
collagen I expression and mediates EMT; here, the char-
acteristics of epithelial cells disappear, such as cell-cell
interaction, and migration and mesenchymal phenotypes
are gained [24]. A study examining TCF8 variants in
FECD patients (55 women, 19 men) in China found that
heterozygous mutations (p.N696S) in TCF8 were present
in only one of the patients [37]. Subsequently, another
study on a FECD cohort of Caucasian adult males and
females identified five missense mutations (p.N78T,
p.Q810P, p.Q840P, p.A905G, and p.P649A) in TCF8; a
change of one single nucleotide caused a different amino
acid to be inserted into the resulting protein [11]. The
mutations of the TCF8 gene found in recent FECD stud-
ies are shown in Table 2 [11, 19, 37–39].

LOXHD1 gene mutations in FECD
The LOXHD1 gene is situated on chromosome 18 and
encodes the LOXHD1 protein, which is believed to

direct proteins to the plasma membrane [40]. LOXHD1
was initially related to human autosomal recessive and
progressive hearing loss [41, 42]. A missense mutation
(p.R547C) in LOXHD1 was first confirmed in three large
families with FECD. Moreover, a study on a cohort of
sporadically affected individuals revealed 14 additional
nonsynonymous coding variants and a missense variant
(p.L635P); these were absent from control chromosomes
[13]. The mutations of the LOXHD1 gene found in re-
cent FECD studies about are shown in Table 3 [13, 38].

SLC4A11 gene mutations in FECD
The SLC4A11 gene is situated on chromosome 20 and
encodes the protein SLC4A11, which is usually situated
on the cell surface and performs membrane transport
functions (OH−/H+/NH3/H2O) [43–45]. SLC4A11 is as-
sociated not only with FECD but with other types of
corneal dystrophy, such as congenital hereditary corneal
dystrophy type 2 and Harboyan syndrome [46]. In 2008,
three missense variations (p.E399K, p.G709E and
p.T754M) and a deletion variation (c.99-100delTC) that
did not show up in matched controls were confirmed in
FECD patients from India and China- all the variants are
presumed to be pathogenic mutations [47]. The study

Table 2 Mutations of TCF8 (ZEB1) gene on chromosome
10p11.22 and changes in its protein domain

Gene Nucleotide change Amino acid change References

TCF8 (ZEB1) c.2522A > C p.Q841P [38]

c.619A > G p.S207G [38]

c.192T > C p.D64D [37, 39]

NA p.T232T [39]

c.2197G > A p.E733K [39]

c.2453C > T p.A818V [39]

c.2840 T > A p.L947stop [39]

NA p.S234S [39]

c.2519A > C p.Q840P [11, 39]

c.2087A > G p.N696S [37]

c.232A > G p.N78T [11]

c.1945C > G p.P649A [11]

c.2429A > C p.Q810P [11]

c.2714C > G p.A905G [11]

c.666 T > C p.S201S [19]

c.852 T > C p.S263S [19]

c.1721A > G p.K553R [19]

c.1738C > T p.P559S [19]

c.2037C > G p.N658K [19]

c.2124A > C p.P687P [19]

c.2623C > A p.Q854K [19]

NA not available
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also reported 15 non-pathogenic mutations (ten silent
mutations and five missense mutations) [47]. In 2010,
seven heterozygous missense novel variations (p.E167D,
p.R282P, p.G583D, p.G742R, p.Y526C, p.V575M and
p.G834S) resulting in the pathogenesis of adult FECD
were identified in a study of 192 sporadic cases and a
three-generation family [9]. The mutations of the
SLC4A11 gene found in recent FECD studies are shown
in Table 4 [9, 19, 20, 47–49].

AGBL1 gene mutations in FECD
The AGBL1 gene, also called cytosolic carboxypeptidase
4, is situated on chromosome 15 and encodes the
AGBL1 protein [49]. A genome-wide linkage scan of 92
individuals from 22 families with FECD revealed that
chromosome 15 was related to FECD [50]. Sequencing
of AGBL1 confirmed a causal nonsense mutation
(p.R1028*) in a three-generation FECD family. Further
sequencing of two FECD-affected cases confirmed this
result, and another missense mutation (p.C990S) was
found in three unrelated individuals (see Table 5) [51].
Further, an immunoprecipitation assay suggested that
AGBL1 protein bound to TCF4 but not to TCF8-a mu-
tation of AGBL1 significantly reduced binding affinity to
TCF4 [51].

Table 3 Mutations of LOXHD1 gene on chromosome 18q21.1
and changes in its protein domain

Gene Nucleotide change Amino acid change References

LOXHD1 c.5272A > T p.T1758S [13]

c.1904 T > C p.L635P [13]

NA p.D53E [13]

NA p.S81N [13]

c.469C > T p.R157C [13]

NA p.R524C [13]

c.1639C > T p.R547C [13]

c.1759C > T p.R587W [13]

c.1945G > A p.D649N [13]

c.2251C > T p.R751W [13]

NA p.R787C [13]

NA p.L1292F [13]

NA p.E1742K [13]

c.5395C > T p.R1800W [13]

NA p.E1985Q [13]

NA p.H2038N [13]

c.6413G > A p.R2138Q [38]

c.3463A > G p.R1155G [38]

c.6107 T > C p.A2036V [38]

NA not available

Table 4 Mutations of SLC4A11 gene on chromosome 20p13
and changes in its protein domain
Gene Nucleotide change Amino acid change References

SLC4A11 c.501G > C p.E167D [9]

c.845G > C p.R282P [9]

c.1577A > G p.Y526C [9]

c.1723G > A p.V575M [9]

c.1748G > A p.G583D [9]

c.2224G > A p.G742R [9]

c.2500G > A p.G834S [9]

c.497A > G p.N150S [19]

c.522C > T p.R158R [19]

c.1437G > A p.T463T [19]

c.2232G > A p.H728H [19]

c.2706C > T p.D886D [19]

c.1659C > T p.N553N [19]

c.1195G > A p.E399K [47]

c.2126G > A p.G709E [47, 48]

c.2261C > T p.T754M [47]

c.99-100delTC p.S33SfsX18 [47]

c.405G > A p.A135A [19, 47]

c.481A > C p.R161R [19, 47]

c.639G > A p.S213S [19, 20, 47]

c.951G > A p.T317T [47]

c.1179C > T p.F393F [47]

c.1215C > T p.I405I [47]

c.1620C > T p.L540L [47]

c.1938G > A p.A646A [47]

c.2499G > A p.T833T [19, 20, 47]

c.215A > C p.N72T [47]

c.271A > G p.M91V [47]

c.1694C > T p.S565L [47]

c.719G > C p.W240S [48]

c.1304C > T p.T434I [48]

c.1519G > A p.V507I [48]

c.2027A > G p.Q676R [49]

c.2195dupT p.L732fs [49]

c.1237G > A p.G413R [49]

c.2263C > T p.R755W [49]

NA p.R869H [49]

NA not available

Table 5 Mutations of AGBL1 gene on chromosome 15q25.3 and
changes in its protein domain

Gene Nucleotide change Amino acid change References

AGBL1 c.2969G > C p.C990S [51]

c.3082C > T p.R1028* [51]

*indicates that the mutation causes the stop codon to appear prematurely at
position 1028
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Molecular mechanisms
Endoplasmic reticulum stress and unfolded protein
response pathway
Proper protein folding is critical to overall cellular func-
tioning. Cells have a conservation mechanism in the
endoplasmic reticulum (ER) that allows them to avoid
protein misfolding and deal with cytotoxic misfolded
proteins, of which the excessive accumulation results in
ER stress. Unfolded protein response (UPR) is a pro-
survival response; it reduces unfolded protein accumula-
tion and restores normal ER function. However, if pro-
tein aggregation persists and stress cannot be resolved,
the signal changes from pro-survival to pro-apoptotic.
COL8A2 accumulates in the ER of the corneal endothe-
lia of FECD patients with L450W COL8A2 mutations
[52]. Two studies confirmed that a COL8A2 transgenic
knock-in mouse model of FECD exhibited dilated rough
ER, overexpression of UPR-associated genes and pro-
teins and UPR-associated apoptosis [53, 54]. A subse-
quent study confirmed that the missense mutations of
SLC4A11 in FECD patients resulted in mutant proteins
that accumulated in the ER [47]. Moreover, the
LOXHD1 proteins aggregate in corneal cells carrying

LOXHD1 mutations in FECD [13]. Analysis of the cor-
neal endothelium from the FECD patients showed en-
largement of rough ER and upregulated UPR markers,
including the α subunit of the eukaryotic initiation factor
2 (eIF2α), a glucose-regulated protein and a C/EBP hom-
ologous protein (CHOP) [55]. TGF-β signaling in the
CECs of FECD contributes to the abnormal accumula-
tion of ECM protein in the ER, eventually leading to the
formation of unfolded protein and resulting in apoptosis
via UPR [23]. One study demonstrated that the depos-
ition of unfolded protein continuously stimulates ER
stress, which in turn activates UPR. When the UPR can-
not balance with the unfolded protein, it triggers the
apoptosis mechanism via three signal transducers: acti-
vating transcription factor 6 (ATF6), pancreatic endo-
plasmic reticulum kinase (PKR)-like endoplasmic
reticulum kinase (PERK) and inositol-requiring enzyme
1 (IRE1) (Fig. 1a) [56]. ATF6 is transferred to the Golgi
body, where it is hydrolyzed by the Golgi site-1 and site-
2 proteases, which subsequently activates the ATF6. Ac-
tivated ATF6 leads to an increased activity of the CHOP
protein (Fig. 1a) [57], which is also activated by activated
PERK via phosphorylation of eIF2α (Fig. 1a) [58]. The

Fig. 1 Possible pathways leading to the loss of FECD CECs. a Gene mutations lead to the accumulation of unfolded proteins, which continue to
activate ER stress, and further induce apoptosis through the three UPR pathways (ATF6, PERK, IRE1). Meanwhile, sustained ER stress can induce
cell apoptosis through the mitochondria. b Ca2+ overload in FECD CECs may lead to apoptosis and SLC4A11 mutations are likely to result in CECs
edema and rupture. eIF2α: α-subunit of eukaryotic translation initiation factor 2; JNK: c-Jun N-terminal kinase; S1P: site-1 protease; S2P: site-2
protease. The pieces of DNA in red represent the missense mutations of COL8A2 and/or SLC4A11 and/or LOXHD1. The purple cells represent
dysfunctional CECs in FECD. The blue moons represent the guttae-the focal excrescences of DM
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activation of CHOP can lead to apoptosis [59] and
down-regulates B-cell lymphoma-2 (Bcl-2) known as
anti-apoptotic protein (Fig. 1a) [60]. Phosphorylation of
the c-Jun N-terminal kinase induced by IRE1, subse-
quently inhibits antiapoptotic genes such as Bcl-2, and
thus inhibits apoptosis (Fig. 1a) [61]. Meanwhile, ER
stress stimulates the release of Ca2+, which comes into
the mitochondria, contributing to mitochondria produ-
cing more ATP. At the same time, more reactive oxygen
species (ROS) are produced, when the increase of ROS
level exceeds a certain threshold, mitochondria will re-
lease the mitochondrial cytochrome c, which can acti-
vate the apoptosis of CECs by caspase-9 and caspase-3
(Fig. 1a) [62].

Oxidative stress
The corneal endothelium is particularly vulnerable to
oxidative stress because it is exposed to light and vigor-
ous metabolic activity caused by a high oxygen demand.
Increased nitrotyrosine, a by-product of ROS, suggests
that oxidative damage indeed occurs in FECD [63]. Be-
cause CECs are rich in mitochondria when they are
stopped after mitosis, they are highly susceptible to oxi-
dative damage due to their metabolically active pump
and barrier functions. Peroxiredoxin are antioxidants
that are anti-apoptotic, and Prx-2, -3, -5, and -6 are
expressed in different parts of human corneal endothe-
lial cells. A proteomic study confirmed the downregula-
tion of peroxiredoxin (Prx-2, -3 and -5) in corneal
endothelia, hinting at an incremental susceptibility to
oxidant-induced damage [64]. NADPH quinone oxidore-
ductase 1 (NQO1) is a highly inducible and cell-
protective flavoprotein that restrains the occurrence of
ROS and free radicals in a cellular condition [65]. The
expression of NQO1 is up-regulated by the nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) transcription fac-
tor via binding to the sequence of antioxidant reaction
elements in the upstream promoter region of NQO1
[66–68]. The antioxidant response related to protective
Nrf2 is significantly decreased, resulting in the oxidant-
antioxidant imbalance that characterizes FECD [66]. A
recent report detected that the NQO1 protein levels in
FECD specimens down-regulated quite dramatically, a
reduction that was further confirmed in FECD patient-
derived immortalized cell lines that presented with oxi-
dative DNA damage [69]. The overexpression of NQO1
significantly decreases ROS levels and DNA damage
caused by menadione (MN) and catechol estrogen
stressors [69]. Moreover, Liu et al. [70] established a
nongenetic FECD animal model by exposure to ultravio-
let A, which caused greater mitochondrial DNA
(mtDNA) and nuclear DNA damage in female mice. The
sex-dependent effect of UVA was driven by the activa-
tion of estrogen-metabolizing enzyme CYP1B1 and

formation of reactive estrogen metabolites and estrogen-
DNA adducts in female but not male mice, causing
CYP1B1-mediated estrogen genotoxicity. Together, these
data confirm that an oxidant-antioxidant imbalance in
FECD can induce oxidative DNA damage and apoptosis.

Mitochondrial dysregulation pathway
Mitochondria, found in eukaryotic cells, are organelles
covered by two membranes. They are the main site of
ATP production within the electron transport chain. In
addition to energy supply, mitochondria participate in
other cell processes such as regulating calcium levels
and apoptosis. The cornea is highly exposed to external
elements; it receives a large amount of atmospheric oxy-
gen and sunlight, including ultraviolet light, which
prompts ROS generation in the cornea, mitochondrial
dysfunction and oxidative damage to the cells. Further-
more, due to its post-mitotic nature, the corneal endo-
thelium tends to accumulate mtDNA damage. Corneal
tissue from FECD patients revealed an increase in ROS
and 8-hydroxy-2′-deoxyguanosine (both of which are
signs of oxidative damage) mainly in the mtDNA of
CECs gathered around the rosettes [66]. In one study,
FECD patients presented with significantly more
mtDNA damage and lower DNA repair efficacy com-
pared to normal controls [71]. Compared with normal
corneal specimens, FECD human corneal endothelial cell
lines and FECD CECs showed extensive mtDNA and
nuclear DNA damage, as measured via quantitative poly-
merase chain reactions [72]. Subsequent studies in-
creased endogenous cellular oxidative stress with MN, a
quinone metabolized by a 1-electron reducing enzyme
to produce intracellular superoxide and an unstable
semiquinone radical that increases intracellular ROS, to
model the pathognomonic rosette formation-a charac-
teristic morphological change of FECD. MN induced
rosette formation and damaged the mtDNA and nuclear
DNA, which were rescued with N-acetyl-cysteine pre-
treatment [72]. One study featuring the FECD explants
reported that mtDNA levels increased and telomeres
shortened [73]. FECD does not evenly affect the integrity
of CECs. Some of the surviving FECD CECs were in a
compensatory state of function. The surviving CECs
may compensatively increase the mitochondrial content
and produce ATP required by the Na/K-ATPase ion
pump to maintain the relative dehydrating state of the
corneal stroma. Therefore, the level of mtDNA is in-
creased in the surviving FECD CECs. Interestingly, cell
culture can rehabilitate mtDNA levels, telomere length,
oxidant-antioxidant gene expression balance, and sensi-
tivity to oxidative stress-induced cell death. Therefore,
choosing the more functional FECD CECs for cell cul-
ture may provide a basis for future treatments [73].
Méthot et al. [74] studied a series of events leading to
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mitochondrial exhaustion as follows: FECD CECs ini-
tially helped to generate more ATP by adding mito-
chondrial calcium to compensate for endothelial cell
loss, leading to increased oxidation. The CECs then
increased mitochondrial mass, mitochondrial calcium
and mitochondrial membrane potential in response to
the continuous demand for more ATP. In this phase,
the CECs peaked at their maximum capacity and
began to respond to irreversible oxidative damage
leading to mitochondrial burnout, causing cell death
via apoptosis. Meanwhile, the mitochondrial mem-
brane potential decreased, and calcium was released
from the mitochondria.

Apoptosis pathway
Apoptosis, the spontaneous and orderly death of genet-
ically controlled cells, is characterized by cell shrinkage,
membrane blebbing, chromatin condensation and DNA
fragmentation [75]. Apoptosis is considered to be an im-
portant mechanism of FECD. Analysis of endothelium
flatmounts showed apoptotic CECs in the FECD group,
and the control group showed no apoptotic cells. Fur-
ther, the observed percentage of apoptotic endothelial
cells was much higher in the FECD group compared to
the controls. These are the first findings that demon-
strate that apoptosis plays a significant role in endothe-
lial cell death in FECD [76]. Subsequently, intense Fas,
FasL and Bax staining were found in FECD patients, and
faint staining of Bcl-2 was observed occasionally in
FECD patients, all of which points to a disturbance in
apoptotic regulatory molecules [77]. Eleven of the 14
corneas with FECD showed positive TUNEL labelling,
indicating the activation of apoptosis [78]. A recent
study detected mitochondrial dysfunction, which can
lead to cytochrome c release and subsequent caspase
breakage, promoting cell death by apoptosis [72]. Hence,
these studies prove that apoptosis is closely related to
FECD pathogenesis. Previous studies suggest that CECs’
death may also be caused by other mechanisms. For ex-
ample, apoptotic CECs in FECD show an increase in
mitochondrial Ca2+ [74]. A massive and/or a prolonged
accumulation of Ca2+ in the mitochondria can lead to
the release of cytochrome c, which drives the activation
of caspase-3 [79]. Therefore, an increase in mitochon-
drial Ca2+ of FECD CECs probably promotes apoptosis
(Fig. 1b). Moreover, SLC4A11, localized at the basolat-
eral surface of CECs, contributes to osmotically-driven
water flux from the stroma to aqueous humor to main-
tain the relative dehydration of the cornea [80], and four
mutations associated with corneal endothelial dystrophy
can impair solute transport (water flux) function [80,
81]. Therefore, SLC4A11 gene mutations potentially re-
sult in FECD CECs edema and rupture (Fig. 1b).

Mitophagy
Autophagy is a cellular process featuring ER stress and
oxidative stress. Forming autophagosomes and combin-
ing them with lysosomes, autophagosomes phagocytose
the resulting substance and the organelles in the cell.
Autophagy plays an important protective role in cells.
However, autophagy defects or overactivation can lead
to cell death [82]. In animal models of FECD, DNA-
damage regulated autophagy marker 1 was up-regulated
[54]. Lithium therapy increased autophagy in mice sub-
jects with FECD, possibly contributing to enhanced
endothelial cell survival [83]. Mitochondrial health is de-
termined by mitochondrial quality control namely, fis-
sion, fusion and mitophagy [84]. When mitochondrial
fission and fusion occurs in repetitive cycles but cannot
reduce mitochondrial damage, mitophagy is activated to
clear the mitochondria [84]. Increased numbers of au-
tophagic vacuoles were found in FECD tissues contain-
ing degraded and swollen mitochondria with cristolysis
[85]. In the same study, the elevated autophagosome
components (microtubule-associated protein 1 light
chain 3-II and lysosomal-associated membrane protein
1) and the downregulation of mitochondrial fusion pro-
tein mitofusin 2 in mitochondrial fractions suggested a
loss of mitochondrial fusion ability; here, fragmented
mitochondria entered the pre-autophagic pool and
activated autophagy [85]. Furthermore, in FECD,
intracellular oxidative stress induces Parkin-mediated
mitochondrial fragmentation whereby endogenous
Dynamin-related protein 1 and PTEN-induced putative
kinase 1 are segregated for degradation via mitophagy in
the process of degenerative cell loss after mitosis of
ocular tissue [86].

Epithelial-mesenchymal transition pathway
EMT is not only associated with embryonic develop-
ment, but it is also related to wound healing, organ fi-
brosis and tumor occurrence and development [87]. The
up-regulation of EMT-related genes ZEB1 and SNAI1 by
TGF-β in CECs in FECD patients was associated with
the deposition of ECM proteins [88]. Furthermore, the
TGF-βR1 inhibitor (SB431542) suppressed the expres-
sion of ZEB1 and SNAI1, leading to a decrease in ECM.
This suggests that blocking the TGF-β signaling pathway
is helpful for FECD treatment [88]. A study using an
in vitro model of FECD provided the first evidence that
oxidative stress induced by MN resulted in EMT, leading
to increased expression of SNAI1, ZEB1, fibronectin and
N-cadherin in CECs [89]. The overexpression of both
isoforms of E2–2 factors (E2–2A and E2–2B) in MDCK
cells can induce EMT [90]. Snail1 up-regulates E2–2
expression, which up-regulates ZEB1 expression [24],
suggesting that mutations in both TCF4 and TCF8 may
share a common pathologic pathway. Moreover,
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decreased expression of miR29 family members in CECs
from FECD may increase the deposition of ECM, includ-
ing collagen I, collagen IV and laminin [91, 92].

RNA toxicity and repeat-associated non-ATG translation
Wieben et al. [93] were the first to report that the cor-
neal endothelium from FECD patients harbored a
unique signature of mis-splicing events caused by CTG
TNR expansion in the TCF4 gene. They demonstrated
that TNR expansions in the TCF4 gene lead to FECD
through a mechanism associated with sequestration of
muscleblind-like protein 1 in the RNA foci. The length
of the CTG triplet repeat allele seems to be associated
with disease severity [35]. Furthermore, TGC repeat
lengths > 50 was found in up to 79% individuals with
FECD; they were found in only 3% of unrelated individ-
uals, suggesting that trinucleotide amplification may pre-
dict disease risk [31]. Interestingly, Foja and colleagues
[94] reported the CTG repeat expansion may reduce
gene expression of TCF4. By contrast, Okumura and col-
leagues [95] reported that TCF4 mRNA is upregulated
in FECD CECs, regardless of the presence or absence of
TNR expansion, but the length of the TNR in cases with
expansion tended to be positively correlated with TCF4
expression level. According to a recent study, the levels
of TCF4 transcripts change bidirectionally in response to
an expanded CTG TNR; a decrease of TCF4 expression
of proximal downstream promoters linked to these 5′
exons while an increase in the levels of TCF4 transcripts
encoded by downstream alternative 5′exons distal to the
CTG TNR, possibly indicating a compensatory mechan-
ism, explaining why previous studies on the level of
TCF4 transcripts in FECD showed different results [96].
Almost all of the TNR expansion diseases thus far have
been directly related to rare neurologic or neuromuscu-
lar diseases. Among eye diseases, FECD was first found
to be related to TNR expansion. The expanded
CTG·CAG repeat initiates transcription and translation
through non-ATG in the third intron of TCF4, which
provides a basis for studying repeat-related non-ATG
translation in the CECs of FECD patients [97]. RNA
focal points co-localized with the splicing factor
muscleblind-like protein 1 in CECs from FECD patients;
mRNA splicing changes also occurred. Combined, these
represent the first evidence of RNA toxicity and mis-
match in common non-neuro/neuromuscular diseases
associated with repetitive expansion [98].

Other pathogenesis
A recent study found that SLC4A11 is a cell adhesion
molecule, mediating CECs adhesion to DM. Four FECD-
causing mutations in SLC4A11 extracellular loop 3
(Y526C, T561M, S565L and V575M) lead to the destruc-
tion of the adhesion of CECs to DM, which may explain

the loss of CECs in FECD patients [99]. Moreover, a
study demonstrated that DNA methylation alterations
are crucial to the pathogenesis of FECD [100]. This
study showed that promoter DNA hypermethylation of
SLC4A11, which is critical to water transport in FECD
CECs. Promoters of genes involved in cytoskeletal
organization, which plays an important role in the bar-
rier integrity of the corneal endothelium and restrict
fluid leakage into the corneal stroma, tend to be hypo-
methylated in FECD. Promoter DNA hypermethylation
of genes involved in cellular metabolism plays an im-
portant energy metabolism role in FECD CECs. All of
the DNA methylation changes in genes, associated with
cytoskeletal organization, cellular metabolism, and ion
transport occurred in FECD CECs, may contribute to
the loss of corneal transparency in FECD through chan-
ging corneal endothelia biological processes [100].
Therefore, drugs targeting DNA methylation can be de-
veloped and used for FECD treatment.

Current therapeutic modalities
In the past few decades, penetrating keratoplasty has
been an effective treatment option for FECD. However,
with the innovation of surgical techniques, lamellar
keratoplasty effectively utilizes limited corneal speci-
mens. Endothelial keratoplasty has offered some distin-
guishing benefits such as better vision recovery, less
damage to the corneal structure and reduced incidence
of bleeding, infection and endothelial rejection. Endothe-
lial keratoplasty includes Descemet-stripping endothelial
keratoplasty [101], Descemet membrane endothelial
keratoplasty [102] and Descemetorhexis without endo-
thelial keratoplasty [103].

Future therapies
Cell-based therapy
Corneal cell therapy is a new treatment strategy for
FECD; it refers to the in vitro culture and expansion of
primary human corneal cells before transplantation.
Compared with existing healthy cells, this cell culture
can restore the molecular phenotype associated with oxi-
dative stress by selecting the more functional FECD cells
[73]. In this treatment, the operator injects human CECs
that were cultured in vitro into the anterior chamber.
The patient then performs different maneuvers, such as
assuming the prone position, to promote adhesion of the
CECs to the DM [104]. A recent significant study con-
firmed the therapeutic effect of corneal cell therapy in
patients with bullous keratopathy that was mainly
caused by FECD [105]. The study reported that injecting
cultured human CECs into the anterior chamber suc-
cessfully reversed corneal edema; the clinical results
were stable in the 2 years following the operation.
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Gene therapy
FECD is typically a sporadic disease, but it can also take
the form of autosomal dominant inheritance [2, 3]. Des-
pite FECD being a genetically heterogenous disease,
most humans with FECD, at least among Caucasian pa-
tients, have a CTG TNR expansion sequence in chromo-
some 18q21 of TCF4 [106]. The mutant TCF4 transcript
accumulates with the repeated amplification of CTG,
and its pathological effects reflect the cumulation of
RNA lesions and the isolation of RNA splicing factors in
the nucleus. This is similar to myotonic dystrophy-1,
which is a disease associated with TNR. Researchers
must keep exploring effective treatments for these dis-
eases. For example, in muscular dystrophy-1 cell lines,
inactivated Cas9 can prevent the transcription from
TNR amplification. Deactivated Cas9 enzyme (dCas9)
could be designed to efficaciously connect with the tri-
nucleotide DNA repeat sequence of myotonic dystrophy
type 1 cells, and thus restrain the transcription of ampli-
fied mRNA molecules [107]. Further evidence suggest
that these dCas9 molecules are able to complex with
pathological elongated mRNA molecules and ameliorate
deleterious effects, especially in short and intermediate
repeat lengths [107]. All of the studies indicated that
similar dCas9 strategies, especially targeting CECs
through intracameral delivery, may be able to effectively
tackle the genetic variation of FECD and restore its nor-
mal phenotype.

Other therapies
In FECD, oxidative stress causes excessive endothelial
cell apoptosis [66]. Consequently, a potential therapy for
FECD is to target this pathway. N-acetyl-cysteine, an
antioxidant and free radical scavenger, has been shown
to rescue CECs exposed to oxidative stress and ER stress
not only in vitro but also among in vivo animal models
with FECD [72, 89, 108]. Research on Nrf2-related anti-
oxidant defense deficiency provides a basis for investi-
gating whether Nrf2 stimulator play a cellular protective
role in FECD [66]. Sulforaphane, a natural glucosinolate,
was found in green cruciferous vegetables [109]; it has a
cytoprotective function, can increase the nuclear trans-
location of Nrf2, reduce the production of ROS and up-
regulate several antioxidants, and thereby reduce CECs
apoptosis [110]. Furthermore, Nrf2 levels can be rein-
forced by many other compounds (e.g., 3H-1,2-dithiole-
3-thione), which intervenes in Nrf2 degradation [111,
112]. Meanwhile, TGF-β, an important regulator of
EMT, is up-regulated in FECD, inducing the deposition
of ECM proteins and resulting in apoptosis via the UPR
in FECD [23]. Inhibition of TGF-β can suppress aggrega-
tion accumulation and the UPR as well as the activation
of apoptosis [23]. Moreover, a recent study identified a
non-steroidal anti-inflammatory drug, glafenine, which

can correct cell surface trafficking defects in some
SLC4A11 mutants, leading to increased SLC4A11-
mediated water flux in cells expressing the treated mu-
tants, providing a framework for future personalized
medicine approaches to correct SLC4A11 misfolding
mutants present in FECD CECs [113]. Further studies
are needed to demonstrate whether these approaches
are feasible therapy options for FECD patients.

Conclusions
This review reveals that our understanding of the patho-
genesis of FECD and the development of molecular gen-
etics is becoming more profound. The gene mutation
site has been established and the molecular mechanisms
are becoming clearer. However, many questions regard-
ing the pathogenesis remain elusive. Overall, the data
from the studies included here illuminate the molecular
mechanisms associated with FECD and may help to
optimize various therapeutic approaches.
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