ANSWERS TO SOME EXERCISES

1.3 (i) the integers (ii) positive rationals (iii) rationals.

1.9 (i) no (ii) no

1.12 (ii) $\left(t_{1}+t_{2}\right)+\left(t_{3}+t_{4}\right)=\left(t_{1}+t_{3}\right)+\left(t_{2}+t_{4}\right)$

1.14 From 1.13 we see that if $A B$ and $C D$ are perp., so are $A C$ and BD , and also AD and BC , and that any one of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, is the orthocentre of the triangle formed by the other three.

1.15 XYZ is a straight line parallel to the axis.

At each point $y=\frac{a}{2}\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$
1.18 (i) $a .\left(a^{\prime}+b\right)=a . b$
(ii) $y \cdot z+z \cdot x+x \cdot y=(y+z) \cdot(z+x) \cdot(x+y)$
(iii) $(a . b)^{\prime}=a^{\prime}+b^{\prime}$
(iv) $(a+b) \cdot(b+c) \cdot\left(c+a^{\prime}\right)=(a+b) \cdot\left(c+a^{\prime}\right)$
1.21 If a, b, c are three lines through a point F , and similarly for $a^{\prime} b^{\prime}, c^{\prime}$ through F^{\prime}, and also

$$
\begin{aligned}
& b^{\prime} c \text { and } b c^{\prime} \text { determine the line } x \\
& \begin{array}{llllll}
c a^{\prime} & , & c^{\prime} a & \# & \# & , \\
a b^{\prime} & \# & a^{\prime} b & \# & \# & , \\
z
\end{array}
\end{aligned}
$$

then x, y, z meet in P .

1.22 The dual theorem is also the converse.
1.26 (i) $0 \quad$ (ii) 1
1.29 (I) no similar form
(II) If $A \geqslant B$, then $B \leqslant A$
(III) If $A \geqslant B$ and $B \geqslant C$, then $A \geqslant C$
1.30 Both laws apply to both operations.

There is symmetry about a diagonal.
1.31

\cap	1	0
1	1	0
0	0	0

2.8 (i) In (6) put $A=1$
(ii) $\ldots \ldots \ldots \mathrm{A}=0$
(iii) \ldots (6D) $. . A=1$
(iv) $\ldots \ldots \ldots \mathrm{A}=0$
2.10 (i) In (7) put $A=0$
(ii) $\ldots(7 \mathrm{D}) . \mathrm{A}=1$
$2.130 \cup 0^{\prime}=1$
$0^{\prime} \cup 0=1$
$0^{\prime}=1$
2.14 Follows from 2.12 and 2.13.
2.15 (2D), (4), (1D) and (3D).
2.16 (i) $(A \cup B) \cap\left(A^{\prime} \cap B^{\prime}\right)$

```
\(=\left[A \cap\left(A^{\prime} \cap B^{\prime}\right)\right] \cup\left[B \cap\left(A^{\prime} \cap B^{\prime}\right)\right]\)
\(=\left[\left(A \cap A^{\prime}\right) \cap B^{\prime}\right] \cup\left[\left(B \cap B^{\prime}\right) \cap A^{\prime}\right]\)
\(=\left(0 \cap B^{\prime}\right) \cup\left(0 \cap A^{\prime}\right)\)
\(=0 \cup 0\)
\(=0\)
```

$(A \cup B) \cup\left(A^{\prime} \cap B^{\prime}\right)$
$=A \cup B \cup\left(B^{\prime} \cap A^{\prime}\right)$
$=A \cup\left(B \cup A^{\prime}\right)$
$=\left(A \cup A^{\prime}\right) \cup B$
$=1 \cup B$
$=1$
(ii) $A \cap(P \cup Q \cup R)$
$=A \cap[(P \cup Q) \cup R]$
$=[A \cap(P \cup Q)] \cup(A \cap R)$
$=(A \cap P) \cup(A \cap Q) \cup(A \cap R)$
$(A \cup B) \cap(P \cup Q)$
$=[(A \cup B) \cap P] \cup[(A \cup B) \cap Q]$
$=(A \cap P) \cup(A \cap Q) \cup(B \cap P) \cup(B \cap Q)$
$(A \cup B \cup C)^{\prime}$
$=\{(A \cup B) \cup C\}^{\prime}$
$=(A \cup B)^{\prime} \cap C^{\prime}$
$=\left(A^{\prime} \cap B^{\prime}\right) \cap C^{\prime}$
$=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}$
2.18 (3D) \& (4); (2); (1) \& (1D); 8.
2.19
but

$$
\begin{array}{rlr}
A \cup B & =A \cup C & \\
A^{\prime} \cap(A \cup B) & =A^{\prime} \cap(A \cup C) & \text { (IVD) } \\
\left(A^{\prime} \cap A\right) \cup\left(A^{\prime} \cap B\right) & =\left(A^{\prime} \cap A\right) \cup\left(A^{\prime} \cap C\right) & \text { (2) } \\
0 \cup\left(A^{\prime} \cap B\right) & =0 \cup\left(A^{\prime} \cap C\right) & \text { (1D, 4D) } \\
A^{\prime} \cap B & =A^{\prime} \cap C & \text { (3) } \\
A \cap B & A \cap C & \\
\left(A^{\prime} \cap B\right) \cup(A \cap B) & =\left(A^{\prime} \cap C\right) \cup(A \cap C) & 1.27 \text { (III), } \\
B \cap\left(A \cup A^{\prime}\right) & =C \cap\left(A \cup A^{\prime}\right) & \text { (1, (ID, } \\
B \cap 1 & =C \cap 1 & \text { (4) } \\
B & =C & \text { (3D) } \tag{4}
\end{array}
$$

2.21 (i) (12), (12).
(ii) (12D), (12D), (9).
2.22 (i) $\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)^{\prime}$
(ii) $A \cup\left(B^{\prime} \cup C^{\prime}\right)^{\prime} \cup\left(B^{\prime} \cup C \cup D^{\prime}\right)^{\prime}$
2.25 (a) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}$
(b) 1
(c) 0
(d) $(B \cap C) \cup\left(A^{\prime} \cap B^{\prime}\right)$
2.27 (i) (ii) (iii) yes, (iv) no.
2.29 (a) $\left(\mathrm{X}^{\prime} \cap \mathrm{Y}^{\prime}\right) \cup\left(\mathrm{Y}^{\prime} \cap \mathrm{Z}^{\prime}\right) \cup\left(\mathrm{Z}^{\prime} \cap \mathrm{X}^{\prime}\right) \cup(\mathrm{X} \cap \mathrm{Y} \cap \mathrm{Z})$
(b) $\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)$
(c) $(\mathrm{B} \cap \mathrm{C} \cap \mathrm{D}) \cup(\mathrm{C} \cap \mathrm{D} \cap \mathrm{A}) \cup(\mathrm{D} \cap \mathrm{A} \cap \mathrm{B})$ $\cup(A \cap B \cap C)$
2.30 There are two ways of choosing the first factor-it is either A_{1} or A_{1}^{\prime}-and so on.
2.31 (i) A.B.C $+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{C}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime}$
(ii) $\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}+\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}+\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot \mathrm{Z}^{\prime}+\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}$
(iii) No change is necessary
2.32 (i) A (ii) B^{\prime} (iii) A.B
2.34 (i) $(A+B+C) .\left(A+B^{\prime}+C\right)$
(ii) $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}\right)$
$2.37 \mathrm{E}_{1} \cdot \mathrm{E}_{2}=\left(\mathrm{X} . \mathrm{Y}+\mathrm{X}^{\prime} . \mathrm{Y}^{\prime}+\mathrm{X} . \mathrm{Z}\right) \cdot\left(\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} . \mathrm{Y}^{\prime}+\mathrm{Y}^{\prime} . \mathrm{Z}\right)$
$=\mathrm{X} . \mathrm{Y}+\mathrm{X}^{\prime} . \mathrm{Y}^{\prime}+\mathrm{X} . \mathrm{Y}^{\prime} . \mathrm{Z}$
$=\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}+\mathrm{X} \cdot\left(\mathrm{Y}+\mathrm{Y}^{\prime} . \mathrm{Z}\right)$
$=\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}+\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})$
$=\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}+\mathrm{X} . \mathrm{Y}+\mathrm{X} . \mathrm{Z}$
$=\mathrm{E}_{1}$
$\mathrm{E}_{1} \cdot \mathrm{E}_{2}^{\prime}=\left(\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}+\mathrm{X} \cdot \mathrm{Z}\right) \cdot(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}\right)$

$$
\begin{aligned}
& \left(\cdot\left(\mathrm{Y}+\mathrm{Z}^{\prime}\right)\right. \\
& =\left(\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}\right) \cdot\left(\mathrm{X} \cdot \mathrm{Y}^{\prime}+\mathrm{X}^{\prime} \cdot \mathrm{Y}\right) \\
& =0
\end{aligned}
$$

2.39 (ii) If $\mathrm{A} \cdot \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}=0$,
then
so

$$
\begin{aligned}
A \cdot B^{\prime} & =A^{\prime} \cdot B=0 \\
A+A^{\prime} \cdot B & =A \\
A+B & =A \text { and similarly } A+B=B \\
A & =B
\end{aligned}
$$

2.41 (i) $\mathrm{L}=(\mathrm{A}+\mathrm{C}) \cdot(\mathrm{P}+\mathrm{R})^{\prime}+(\mathrm{P}+\mathrm{R}) \cdot(\mathrm{A}+\mathrm{C})^{\prime}$
$M=(B+C) \cdot(Q+R)+(Q+R) \cdot(B+C)$
$N=C \cdot P^{\prime} \cdot Q^{\prime} \cdot R^{\prime}+R \cdot A^{\prime} \cdot B^{\prime} \cdot C^{\prime}$
(ii) (a) $\mathrm{B}^{\prime} \cdot \mathrm{X}+\left(\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{B}^{\prime}\right) \cdot \mathrm{X}^{\prime}=0$ if $\mathrm{AB}^{\prime}=0$
(b) $B \cdot X^{\prime}+(A+B) X=0 \quad$ if $\quad A=0$
3.1 $\mathrm{A}=\mathrm{C}, \mathrm{B}=\mathrm{D}=\mathrm{E}$
3.2 (i) All are equivalent; $n(\mathrm{~A})=n(\mathrm{~B})=\cdots=n(\mathrm{E})=3$
(ii) The different uses of ' $=$ ' in the two statements.
3.4 (i) $\mathrm{M}^{\prime}=$ the soa women
(ii) $1=$, , human parents
3.5 (a) (i) the soa one's brothers, and oneself, if a male
(ii) ", rectangles
(b) (i) ", "children
(ii) ", " positive integers
3.7 $\mathrm{A}+\mathrm{A}^{\prime} . \mathrm{B}=\mathrm{A}+\mathrm{B}($ see 2.6, theorem 11)
3.10 (i)

$$
A+B=B
$$

$$
\begin{equation*}
(\mathrm{A}+\mathrm{B}) \cdot \mathrm{B}^{\prime}=\mathrm{B} \cdot \mathrm{~B}^{\prime} \tag{2}
\end{equation*}
$$

1.27 (IVD)
$A . B^{\prime}+B . B^{\prime}=B . B^{\prime}$
A. $\mathrm{B}^{\prime}+0=0$
$A \cdot B^{\prime}=0$ and $A \subseteq B$
(ii) $(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{A}^{\prime}=\left(\mathrm{A} \cdot \mathrm{A}^{\prime}\right) \cdot \mathrm{B}$

$$
\begin{align*}
& =0 . B \tag{5D}\\
& =0 \quad \text { so } \quad(A . B) \subseteq A
\end{align*}
$$

(iii) $\mathrm{A} \cdot(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A} \cdot \mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}$
(iv) If $\mathrm{A} \subseteq \mathrm{B}, \mathrm{A} \cdot \mathrm{B}^{\prime}=0$

$$
\begin{equation*}
\mathbf{B}^{\prime} \cdot\left(\mathbf{A}^{\prime}\right)^{\prime}=0 \tag{4D,6D}
\end{equation*}
$$

$\mathrm{B}^{\prime} \subseteq \mathrm{A}^{\prime}$
3.8
(v) $\mathrm{X} . \mathrm{Y}=\mathrm{X}$, dual of 3.9 (i) or
$\mathrm{X} . \mathrm{Y}^{\prime}=\mathrm{X} . \mathrm{Y} . \mathrm{Y}^{\prime}=0$
(IVD, 4D, 6D)
so $\mathrm{X} \subseteq \mathrm{Y}$
conversely $\mathrm{X}=\mathrm{X} .1$

$$
\begin{align*}
& =\mathrm{X} \cdot\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right) \tag{3D}\\
& =\mathrm{X} . \mathrm{Y}+\mathrm{X} . \mathrm{Y}^{\prime} \tag{4}\\
& =\mathrm{X} \cdot \mathrm{Y}+0 \text { since } \mathrm{X} \subseteq \mathrm{Y} \tag{2}\\
& =\mathrm{X} . \mathrm{Y} \tag{3}
\end{align*}
$$

A BOOLEAN ALGEBRA

3.14 (I) $\mathrm{G}+\mathrm{G}^{\prime} . \mathrm{S}=\mathrm{G}+\mathrm{S}$
(II) $\mathrm{A} . \mathrm{S}^{\prime}+\mathrm{A}^{\prime} . \mathrm{S}$ or $(\mathrm{A}+\mathrm{S})$. (A.S) ${ }^{\prime}$
(III) $\mathrm{G}^{\prime} . \mathrm{S}+\mathrm{G} . \mathrm{S}^{\prime}$
3.15 (i) (ii) and (iv) yes, (iii) no.
3.16 No.
3.17 Uncle Bertrand, Roger, Tom, and Vera.
3.19 (a) (i)

(ii)

(iii)

(b) The points P, Q.
$n(\mathrm{~A} . \mathrm{B})=0$ when a and b do not meet
$n(\mathrm{~A} . \mathrm{B})=1$ " ", touch one another
3.206 liked apples only

3.22 (i) $A^{\prime} B^{\prime} C^{\prime}$
(ii) B. C^{\prime}

3.25 (i) $n(\mathrm{P}+\mathrm{Q}+\mathrm{R}+\mathrm{S})=n(\mathrm{P})+n(\mathrm{Q})+n(\mathrm{R})+n(\mathrm{~S})$
$-n(\mathrm{P} . \mathrm{Q})-n(\mathrm{P} . \mathrm{R})-n(\mathrm{P} . \mathrm{S})-n(\mathrm{Q} . \mathrm{R})-n(\mathrm{Q} . \mathrm{S})$
$-n(\mathrm{R} . \mathrm{S})+n(\mathrm{Q} . \mathrm{R} . \mathrm{S})+n(\mathrm{R} . \mathrm{S} . \mathrm{P})+n(\mathrm{~S} . \mathrm{P} . \mathrm{Q})$
$+n(\mathrm{P} . \mathrm{Q} . \mathrm{R})$
$-n($ P.Q.R.S)
3.27 (i) Draw APQ through A
(ii) P on FE to Q on BD by lines parallel to AB P , „, , R , BC " „ through A
(iii) $0<x<1 ; 1<y<2 ; 1<z$ correspondence established by

$$
\begin{aligned}
& y=1+x \\
& z=1 / x
\end{aligned}
$$

$3.30 n \in \mathrm{~N}$, then:
(i) $\{x \mid x=3 n\}$
(ii) $\left\{y \mid y=n^{2}\right\}$
(iii) there is no greatest prime, and then arrange them in ascending order.
4.2 Every function can be expressed as a polynomial; each constituent mononomial will be the product of a number of 1 's and 0 's, etc.
4.3 (i) Use (10) (10D).

4.5 | A | B | C | $\mathrm{A}^{\prime} . \mathrm{B} . \mathrm{C}$ | $\mathrm{A}+\mathrm{A}^{\prime} . \mathrm{B} . \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

(ii)

X	Y	Z	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	$\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$	$(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$.$\left(\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)$
1	1	1	1	0	0
0	1	1	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	0	0	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	0	0	0	1	0

4.6 $\mathrm{X}=\mathrm{P} \cap \mathrm{Q}^{\prime} \cap \mathrm{R} \cap \mathrm{S}^{\prime}$
$\mathrm{Y}=\mathrm{P}^{\prime} \cap \mathrm{Q}^{\prime} \cap \mathrm{R}^{\prime} \cap \mathrm{S}^{\prime}$
4.8 (i) Show that $\mathrm{X}+\mathrm{Y}=1$, and $\mathrm{X} . \mathrm{Y}=0$
(ii) $1=\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}+\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot \mathrm{Z}+\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}+\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}^{\prime}+\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}$

$$
+\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}+\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}
$$

and use A.B.C + A.B. $\mathrm{C}^{\prime}=$ A.B. $\left(\mathrm{C}+\mathrm{C}^{\prime}\right)=$ A.B, etc.
$4.11 \mathrm{~A} \cdot \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}=1$

$$
\begin{align*}
\left(\mathrm{A} \cdot \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}\right)^{\prime}=1^{\prime} & =0 \\
\left(\mathrm{~A}^{\prime}+\mathrm{B}\right) \cdot\left(\mathrm{A}+\mathrm{B}^{\prime}\right) & =0 \\
\mathrm{~A} \cdot \mathrm{~B}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} & =0 \\
\mathrm{~A} \cdot\left(\mathrm{~B}^{\prime}\right)^{\prime}+\mathrm{A}^{\prime} \cdot\left(\mathrm{B}^{\prime}\right) & =0 \\
\mathrm{~A} & =\mathrm{B}^{\prime} \tag{ii}
\end{align*}
$$

$$
2.4 \text { (iv) }
$$

similarly for 4.10 (f).
4.15 (a) $A \cup B^{\prime} \neq B \cup A^{\prime}$
(b) If
$A \rightarrow B$ then $A^{\prime} \cup B=1$
4.14
$A \cap B^{\prime}=0$
(12, 9, 10D)
and if

$$
P \subseteq Q \quad, \quad P \cap Q^{\prime}=0
$$

the algebraic conditions for material implication and for a subset are the same.
(c) Use 4.15 (b) and 3.9 (v), or

$$
\begin{array}{crr}
\mathrm{A}^{\prime} \cup \mathrm{B}=1, \quad \mathrm{~B}^{\prime} \cup \mathrm{C}=1 & 4.14 \\
\mathrm{~B}^{\prime} \cap\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right)=\mathrm{B}^{\prime}, & \mathrm{B} \cap\left(\mathrm{~B}^{\prime} \cup \mathrm{C}\right)=\mathrm{B} & (\mathrm{IVD}) \\
\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}=\mathrm{B}^{\prime}, & \mathrm{B} \cap \mathrm{C}=\mathrm{B} & (2,4 \mathrm{D}, 6 \mathrm{D}) \\
\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \cup(\mathrm{B} \cap \mathrm{C})=\mathrm{B} \cup \mathrm{~B}^{\prime}=1 & (\mathrm{IV}, 4) \\
\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right) \cap\left(\mathrm{A}^{\prime} \cup \mathrm{C}\right) \cap\left(\mathrm{B}^{\prime} \cup \mathrm{B}\right) \cap\left(\mathrm{B}^{\prime} \cup \mathrm{C}\right)=1 & 2.33 \\
1.1 .1 .\left(\mathrm{A}^{\prime} \cup \mathrm{C}\right)=1 & 4.14(4) \\
\mathrm{A}^{\prime} \cup \mathrm{C}=1 & \text { (3D) } \\
\mathrm{A} \rightarrow \mathrm{C} & 4.14
\end{array}
$$

$\begin{array}{rlrl}\text { 4.16 } & (A \rightarrow B) & =A^{\prime} \cup B \\ \text { so } & \mathrm{P} \cup \mathrm{Q} & =\left(\mathrm{P}^{\prime} \rightarrow \mathrm{Q}\right) \\ \text { and } & \mathrm{R} \cap \mathrm{S} & =\left(\mathrm{R}^{\prime} \cup \mathrm{S}^{\prime}\right)^{\prime} \\ & & & =\left(\mathrm{R} \rightarrow \mathrm{S}^{\prime}\right)^{\prime}\end{array}$
The whole argument is false. ($\mathrm{A} \rightarrow \mathrm{B}$) is a statement which has a meaning only when A and B are statements. $\mathrm{A} \subseteq \mathrm{B}$ is a statement which has meaning if A and B are sets. We can regard \rightarrow as an operation, but not \subseteq. For in the application of our algebra to logic, the elements are statements, and $\mathrm{A} \rightarrow \mathrm{B}$ is a statement, and so the set of elements is closed (see 1.3) under this operation. \subseteq does not qualify, as $\mathrm{P} \subseteq \mathrm{Q}$ is also a statement, not a set.

$$
4.18 \text { (a) } \begin{align*}
\mathrm{A} \downarrow \mathrm{~B} & =\mathrm{A} \cdot \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \\
& =\mathrm{A} \cdot \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \tag{2,4,3D}\\
& =\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \tag{1,9,11}\\
& =(\mathrm{A} \cdot \mathrm{~B})^{\prime} \tag{12}
\end{align*}
$$

or use $(A \downarrow B)^{\prime}=A . B$ from 4.17.
(b) $\mathrm{A} \downarrow \mathrm{A}=(\mathrm{A} \cap \mathrm{A})^{\prime}$
$=\mathrm{A}^{\prime}$
(c) $\mathrm{A} \downarrow \mathrm{B}=(\mathrm{A} . \mathrm{B})^{\prime}$

$$
=(B \cdot A)^{\prime}
$$

$$
\begin{equation*}
=\mathrm{B} \downarrow \mathrm{~A} \tag{a}
\end{equation*}
$$

(d) $(A \downarrow A) \downarrow(A \downarrow A)=\left(A^{\prime}\right) \downarrow\left(A^{\prime}\right)$

$$
=\left(\mathrm{A}^{\prime}\right)^{\prime}
$$

$$
\begin{equation*}
=\mathrm{A} \tag{b}
\end{equation*}
$$

(e) Use (b), (a), (12), (9).
(f) \cup eliminated by using (e)

$$
\begin{equation*}
\cap \quad, \quad, \quad, \quad \mathrm{A} \cap \mathrm{~B}=(\mathrm{A} \downarrow \mathrm{~B})^{\prime} \tag{a}
\end{equation*}
$$

(h) $A^{\prime} \downarrow\left(A^{\prime} \downarrow B\right)=A^{\prime} \downarrow B^{\prime}$

$(\mathrm{A} \downarrow \mathrm{A}) \downarrow\left\{\left(\mathrm{A}^{\prime} \downarrow \mathrm{B}\right) \downarrow\left(\mathrm{A}^{\prime} \downarrow \mathrm{B}\right)\right\}=(\mathrm{A} \downarrow \mathrm{A}) \downarrow(\mathrm{B} \downarrow \mathrm{B})$
$(A \downarrow A) \downarrow[\{(A \downarrow A) \downarrow B\} \downarrow\{(A \downarrow A) \downarrow B\}]$ $=(A \downarrow A) \downarrow(B \downarrow B)$
4.19 (v) $(A \uparrow B) \uparrow C=\left(A^{\prime} \cap B^{\prime}\right) \uparrow C$

$$
\begin{aligned}
& =\left(A^{\prime} \cup B^{\prime}\right) \cap C^{\prime} \\
& =(A \cup B) \cap C^{\prime} \\
& =\left(A \cap C^{\prime}\right) \cup\left(B \cap C^{\prime}\right) \\
& =\left(A^{\prime} \uparrow C\right) \cup\left(B^{\prime} \uparrow C\right)
\end{aligned}
$$

(vi) $\mathrm{A} \cup \mathrm{B}=\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)^{\prime}$

$$
=(\mathrm{A} \uparrow \mathrm{~B})^{\prime}
$$

(viii) $A \cap\left(A^{\prime} \cup B\right)=A \cap B$
becomes $(A \uparrow A) \uparrow\{(A \uparrow A) \uparrow B\}=(A \uparrow A) \uparrow(B \uparrow B)$
4.20 If A is the statement 'Andrew tells the truth', etc.

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{B} \cdot \mathrm{C} & \mathrm{C}=\mathrm{E} \cdot \mathrm{~F}+\mathrm{E}^{\prime} \cdot \mathrm{F}^{\prime} \\
\mathrm{D}=\mathrm{A}+\mathrm{B} & \mathrm{E}=\mathrm{A} \cdot \mathrm{~B} \\
\mathrm{~B}=\mathrm{E} \cdot \mathrm{~F}^{\prime}+\mathrm{E}^{\prime} \cdot \mathrm{F} & \mathrm{~F}=(\mathrm{B} \cdot \mathrm{C})^{\prime} \\
\mathrm{B}=\mathrm{D}=\mathrm{F}=1 & \\
\mathrm{~A}=\mathrm{C}=\mathrm{E}=0 &
\end{array}
$$

```
\(4.21 \quad 1=(A \cup B) \cap\left(A^{\prime} \cup C^{\prime}\right)\)
    \(=\left(A^{\prime} \cap B^{\prime}\right)^{\prime} \cap\left(A^{\prime} \cup C^{\prime}\right)\)
    \(=(1)^{\prime} \cap\left(\mathrm{A}^{\prime} \cup \mathrm{C}^{\prime}\right)\)
    \(=0 \cap\left(\mathrm{~A}^{\prime} \cup \mathrm{C}^{\prime}\right)\)
\[
=0
\]
```

and the statements are inconsistent.
4.22 Let A be the statement 'Atlantia sends a contingent', etc., and we have

$$
\begin{align*}
\mathrm{W} \cdot \mathrm{Y} & =0 \tag{i}\\
\mathrm{~A} \cdot \mathrm{D} & =0 \tag{ii}\\
\mathrm{~V} \cdot \mathrm{~W} \cdot \mathrm{Z} & =0 \tag{iii}\\
\mathrm{~W}^{\prime} \cdot \mathrm{C} \cdot \mathrm{D} & =0 \tag{iv}\\
\mathrm{Z}^{\prime} \cdot \mathrm{E} & =0 \tag{v}\\
\mathrm{Z} \cdot \mathrm{~B} & =0 \tag{vi}\\
\mathrm{X} \cdot \mathrm{C} & =0 \tag{vii}
\end{align*}
$$

from (v) and (vi) B. $\left.\mathrm{Z}^{\prime} . E\right)+\mathrm{E} .(\mathrm{B} . \mathrm{Z})=0$
B. $\mathrm{E}=0$
(ii)
A. $\mathrm{D}=0$

3 from among $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}=1$,
so $C=1$
from (vii)

$$
X=0
$$

" (i) and (iii)

$$
" \quad(\mathrm{vi})
$$

$$
\text { so } \mathrm{E}=1
$$

, (iv)

5.5

(i)

(ii)

(iii)

5.6 (i) $\mathrm{X} . \mathrm{Y} . \mathrm{Z}+\mathrm{X}^{\prime}+\mathrm{X} . \mathrm{Y} . \mathrm{Z}^{\prime}$
$=\mathrm{X}^{\prime}+\mathrm{X} . \mathrm{Y} .\left(\mathrm{Z}+\mathrm{Z}^{\prime}\right)$
$=\mathrm{X}^{\prime}+\mathrm{X} . \mathrm{Y}$
$=\mathrm{X}^{\prime}+\left(\mathrm{X}^{\prime}\right)^{\prime} . \mathrm{Y}$
$=X^{\prime}+Y$
(ii) A.B.C $+\mathrm{B}^{\prime} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C}^{\prime}+\mathrm{A} \cdot \mathrm{C} \cdot \mathrm{D}^{\prime}$
$=C \cdot\left(\mathrm{~B}^{\prime}+\mathrm{B}^{\prime} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{B}+\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{D}^{\prime}\right)$
$=C \cdot\left\{B^{\prime}+B \cdot\left(A+A^{\prime}\right)+B^{\prime} \cdot D+A \cdot D^{\prime}\right\}$
$=C \cdot\left(B^{\prime}+B+B^{\prime} \cdot D+A \cdot D^{\prime}\right)$
$=C \cdot\left(1+B^{\prime} \cdot D+A \cdot D^{\prime}\right)$
$=\mathrm{C}(1)$
$=\mathrm{C}$

```
5.7 (i) A.B.C.D \(+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{A} . \mathrm{B} \cdot \mathrm{C}^{\prime} . \mathrm{D}+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{C}^{\prime} . \mathrm{D}\)
    \(=\left(A+A^{\prime}\right) \cdot B \cdot C \cdot D+\left(A+A^{\prime}\right) \cdot B \cdot C^{\prime} \cdot D\)
    \(=B \cdot C \cdot D+B \cdot C^{\prime} \cdot D\)
    \(=B \cdot D \cdot\left(C+C^{\prime}\right)\)
    \(=\mathrm{B} \cdot \mathrm{D}\)
```

 \(B-D\)
 (ii) \(\mathrm{X} . \mathrm{Y} . \mathrm{Z}+\mathrm{X} . \mathrm{Y} . \mathrm{Z}^{\prime}+\mathrm{X} . \mathrm{Y}^{\prime} \cdot \mathrm{Z}+\mathrm{X} . \mathrm{Y}^{\prime} . \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \cdot \mathrm{Y} . \mathrm{Z}\)
 \(+X^{\prime} . Y . Z^{\prime}+X^{\prime} . Y^{\prime} . Z\)
 \(=\mathrm{X} \cdot \mathrm{Y} \cdot\left(\mathrm{Z}+\mathrm{Z}^{\prime}\right)+\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot\left(\mathrm{Z}+\mathrm{Z}^{\prime}\right)+\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot\left(\mathrm{Z}+\mathrm{Z}^{\prime}\right)\)
 \(+\mathrm{X} . \mathrm{Y}^{\prime} . \mathrm{Z}\)
 \(=X . Y+X . Y^{\prime}+X^{\prime} \cdot Y+X^{\prime} \cdot Y^{\prime} \cdot Z\)
 \(=X \cdot\left(Y+Y^{\prime}\right)+X^{\prime} \cdot\left(Y+Y^{\prime} \cdot Z\right)\)
 \(=\mathrm{X}+\mathrm{X}^{\prime} .(\mathrm{Y}+\mathrm{Z})\)
 \(=X+(Y+Z)\)
 \(=X+Y+Z\)

5.8

5.10 (i) 219 (ii) 11000011

5.16 'There is "one to carry" if both the digits are 1 (if $A_{0} . B_{0}=1$, then $A_{0}=B_{0}=1$), but if, of A_{0} and B_{0}, one and only one is equal to 1 , then their sum is 1 .'
5.18 Because the addition of numbers is commutative.
5.19

5.20

The half-subtractor and the subtractor

6.2 (i) $2 / 7$ (ii) $1 / 2$ (iii) $1 / 7$

6.3 80 (there are two genders in French and three in German).
$6.4150 / 199,24 / 199$.
$6.5 \quad 2^{N-1}$.
6.6 The expression

$$
(\mathrm{H}+\mathrm{T}) \cdot(\mathrm{H}+\mathrm{T}) \cdot(\mathrm{H}+\mathrm{T}) \cdot(\mathrm{H}+\mathrm{T}) \cdot(\mathrm{H}+\mathrm{T})
$$

can be regarded as a diagram of five coins, of which each must be a head or a tail. We can also regard H and T as numbers, and the array as representing $(\mathrm{H}+\mathrm{T})^{5}$.

To every member of the soa ways of getting four heads and a tail, there is one and only one term in H^{4}. T in the expansion of $(\mathrm{H}+\mathrm{T})^{5}$, and conversely. But

$$
\begin{aligned}
(\mathrm{H}+\mathrm{T})^{5}=\mathrm{H}^{5}+5 \cdot \mathrm{H}^{4} \cdot \mathrm{~T}+10 \cdot \mathrm{H}^{3} \cdot \mathrm{~T}^{2}+ & 10 \cdot \mathrm{H}^{2} \cdot \mathrm{~T}^{3} \\
& +5 \cdot \mathrm{H} \cdot \mathrm{~T}^{4}+\mathrm{T}^{5}
\end{aligned}
$$

and so the probability of having at least four coins alike is

$$
\frac{1+5+5+1}{1+5+10+10+5+1}=\frac{3}{8}
$$

6.9 A bus in Mary's direction goes from John's stop 9 minutes after a bus in Dora's direction, then 3 minutes later is the next bus in Dora's direction; probability of visiting Mary is then

$$
\frac{9 \text { minutes }}{12 \text { minutes }}=\frac{3}{4}
$$

6.11 If x, y are the two shorter pieces of the stick, total length L , then

$$
\frac{\mathrm{L}}{2}<x+y<\frac{2 \mathrm{~L}}{3}
$$

so, by the method of 6.10 , the required probability is

$$
\frac{\text { area of APQB }}{\text { area of OPQ }}=\frac{7}{16}
$$

6.12 Axes as in diagram; there is a one-to-one relation between the times waited at stations and the points of the figure $O A B C C^{\prime} B^{\prime} A^{\prime} D^{\prime}$.

For early arrival the point must lie below the plane $P Q R$, i.e.

$$
\begin{gathered}
x+y+z=M \\
a+b+c-M=d
\end{gathered}
$$

and probability is

$$
\frac{\text { volume of } \mathrm{OABRQPC} \mathrm{C}^{\prime} \mathrm{O}^{\prime}}{\text { volume of } \mathrm{OABCC} \mathrm{~B}^{\prime} \mathrm{A}^{\prime} \mathrm{O}^{\prime}}=\frac{6 a b c-d^{3}}{6 a b c}
$$

1.3/1
(i) yes
(ii) yes
(iii) no
(iv) no

$$
\begin{aligned}
1.6 / 1 & \frac{x}{a} \cdot \cos \frac{\alpha+\beta}{2}+\frac{y}{b} \cdot \sin \frac{\alpha+\beta}{2}=\cos \frac{\alpha-\beta}{2} \\
& \cos (-A)=\cos A
\end{aligned}
$$

$$
\begin{array}{ll}
1.16 / 1 & (a+b) \cdot(a+c)=a+b \cdot c \\
& a^{2}+a \cdot(b+c)=a \quad \text { and } \quad a \neq 0 \\
& a+b+c=1
\end{array}
$$

1.22/1

1.22/2

1.25/1 $\quad 0^{\prime}=0^{\prime}+0$ 1.23
$=0+0^{\prime}$ 1.4
$=1$ 1.24
$1^{\prime}=1^{\prime} .1$ 1.23
$=1.1^{\prime}$ 1.4
$=0$ 1.24

```
\(1.25 / 2\) (i) \(\mathrm{A} \cap \mathrm{A}=\mathrm{A}\)
    (ii) \(\mathrm{A} \cap 0=0\)
    (iii) \((A \cap B) \cup\left(A \cap B^{\prime}\right)=A\)
    (iv) \(\left(A \cup B \cup C^{\prime}\right) \cap(A \cup B \cup C)=A \cup B\)
    (v) \(A \cap B \cap\left(A^{\prime} \cup B^{\prime}\right)=0\)
    (vi) \(\mathrm{A} \cup\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)=\mathrm{A} \cup \mathrm{B}\)
```

$1.27 / 1$ (I) $a \mathrm{Fa}$ a true
(II) If $a \mathrm{~F} b$, then $b \mathrm{Fa}$ false
(III) If $a \mathrm{Fb}$, and $b \mathrm{~F} c$, then $a \mathrm{~F} c$ true
(IV) If $a \mathrm{~F} b$, then $(a+c) \mathrm{F}(b+c)$ false
(IVD) If $a \mathrm{~F} b$, then $a . c \mathrm{~F} b . c$ true
$2.9 / 1$ (i), (ii), (iii) use $\mathrm{P} \cup(\mathrm{P} \cap \mathrm{Q})=\mathrm{P}$
$2.16 / 1$ (i) $\mathrm{C}^{\prime} .\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)$
(ii) $X+Y+Z$
(iii) $A \cup B \cup C \cup D$
(iv) $\mathrm{X}^{\prime} \cap \mathrm{Y}^{\prime} \cap \mathrm{Z}^{\prime}$
(v) no simpler form
(vi) R
2.19/1 (i)

$$
\begin{align*}
\mathrm{A} \cdot \mathrm{X} & =\mathrm{A} \cdot \mathrm{Y} \\
\mathrm{~A}^{\prime} \cdot \mathrm{X} & =\mathrm{A}^{\prime} \cdot \mathrm{Y} \\
\mathrm{~A} \cdot \mathrm{X}+\mathrm{A}^{\prime} \cdot \mathrm{X} & =\mathrm{A} \cdot \mathrm{Y}+\mathrm{A}^{\prime} \cdot \mathrm{Y} \tag{IV}\\
1 \cdot \mathrm{X} & =1 \cdot \mathrm{Y} \\
\mathrm{X} & =\mathrm{Y}
\end{align*}
$$

(ii)

$$
\begin{align*}
\mathrm{A}+\mathrm{X} & =\mathrm{A}+\mathrm{Y} \\
\mathrm{~A}^{\prime}+\mathrm{X} & =\mathrm{A}^{\prime}+\mathrm{Y} \\
(\mathrm{~A}+\mathrm{X}) \cdot\left(\mathrm{A}^{\prime}+\mathrm{X}\right) & =(\mathrm{A}+\mathrm{Y}) \cdot\left(\mathrm{A}^{\prime}+\mathrm{Y}\right) \tag{IVD}\\
\mathrm{X}+\mathrm{A} \cdot \mathrm{~A}^{\prime} & =\mathrm{Y}+\mathrm{A} \cdot \mathrm{~A}^{\prime} \tag{2D}\\
\mathrm{X}+0 & =\mathrm{Y}+0 \\
\mathrm{X} & =\mathrm{Y}
\end{align*}
$$

$2.29 / 1$ (i) $\mathrm{B}^{\prime} . \mathrm{C}^{\prime}+\mathrm{C} \cdot \Lambda^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}$
(ii) $\mathrm{X}^{\prime} \cup \mathrm{Y}$
$2.30 / 2$ (i) $\mathrm{X} . \mathrm{Y}+\mathrm{X} . \mathrm{Y}^{\prime}+\mathrm{X}^{\prime} . \mathrm{Y}$
(ii) same answer as 2.30
(iii) A.B.C $+\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}^{\prime}+\mathrm{A} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime}$
$2.30 / 4$ (i) $\mathrm{A}^{\prime}+\mathrm{B}$
(ii) 1
(iii) $\mathrm{P} \cdot \mathrm{R}+\mathrm{Q}^{\prime} \cdot\left(\mathrm{P}^{\prime} \cdot \mathrm{R}+\mathrm{P} \cdot \mathrm{R}^{\prime}\right)$
(iv) $A^{\prime} \cdot \mathbf{B}+\mathbf{C}^{\prime} \cdot\left(\mathrm{A} \cdot \mathrm{B}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}\right)$
$2.43 / 1 \quad$ (i) $\quad(A \Delta B) \Delta C$
$=\left(A \cdot B^{\prime}+A^{\prime} \cdot B\right) \cdot C^{\prime}+\left(A \cdot B+A^{\prime} \cdot B^{\prime}\right) \cdot C$
$=A \cdot\left(B \cdot C+B^{\prime} \cdot C^{\prime}\right)+A^{\prime} \cdot\left(B^{\prime} \cdot C+B \cdot C^{\prime}\right)$
= etc.
(ii) similar to (i)
(iii) see 2.39 (ii)
2.43/2 $\quad Z^{\prime}=A \Delta B \Delta C \Delta D$
3.2/1 (i) the soa strings of a violin
(ii) ,, , toes on a human foot
(iii) ", members of a hockey team
(iv) ", " months of the year
(v) ", "fish in the sea
(vi) ", " prime numbers
$3.2 / 2 \quad \frac{9!}{4!5!}$
3.4/1 (i) The soa members of the House of Lords
(ii) ," ," real numbers
(iii) $\{$ Tom, Dick, Harry, Jack, Jill\}
(iv) $\{e\}$
(v) $\{2\}$
3.5/2 (a) I; (b) II; (c) II; (d), (e) III.
3.13/1 $\quad \mathrm{M}=$ the soa racing motorists
$\mathrm{T}=$ ", " profound thinkers
$\mathrm{P}=$ " " philosophers
$\mathrm{Q}=,, \quad$, quick-witted men
$\mathrm{M} \subseteq \mathrm{Q}, \quad\{$ Plato $\} \subseteq \mathrm{T}, \quad \mathrm{P} \subseteq \mathrm{T}, \mathrm{Q} . \mathrm{T}=0, \quad$ or $\mathrm{Q} \subseteq \mathrm{T}^{\prime}$, $\{$ Plato $\} \subseteq T \subseteq Q^{\prime} \subseteq M^{\prime}$, and $P \subseteq T \subseteq \ldots$.

Plato was not a racing motorist, but it cannot be deduced that he was a philosopher.
$3.13 / 3$ (i) $\left\{x \mid x=2^{n-1}\right\}$
(ii) $\{x \mid x=3 n-2\}$
(iii) $\{x \mid x=n!\}$
$3.13 / 5$ (i) the soa triangular numbers
(ii) ", " numbers numerically less than 1
(iii) " ", positive numbers
$3.13 / 6$ (i) yes (ii) no

3.13/8 (i)

There are 8; from $\{p q r s\}$ to $\{p\},\{q\},\{r\},\{s\}$, and from $\{p q r\}\{p q s\}\{p r s\},\{q r s\}$ to $\}$.
(ii) 2^{n}
3.13/9 In the diagram of $3.13 / 7$, for $\{p, q, r, s\}$ write (r, g, b, w) etc., and the point (r, b) represents red and blue full on; a line down the page, say from (r, g, b) to (r, b) thus represents a gradual subtraction of green from a combination of red, green, and blue; similarly (g) to (g, w) represents a gradual addition of white to green. A way of covering the whole figure without tracing any line twice is
$0, r, r g, g, 0, b, b g, g, g w, w, w r, r, r b, b, b w, r b w, r w, r g w, r g, r g b, r b$, $r b w, r b w g, r b g, b g, b g w, g w, r g w, r b g w, g b w, b w, w, 0$

$$
\begin{aligned}
3.13 / 10 \quad n(\mathrm{X} \cap \mathrm{Y}) & =0, \quad z>6 r \\
& =1, \quad z=6 r \\
& =2, \quad 4 r<z<6 r \\
& =4, \quad z=4 r \\
& =6, \quad 3 r<z<4 r \\
& =7, \quad z=3 r \\
& =8, \quad z<3 r
\end{aligned}
$$

3.13/12 Symmetry about $y=x$
(i)
(ii)
,
," origin
,
, $\quad x+y=0$
(iii)
"
,, $\quad y$-axis
3.13/13
(i)

(ii)

(iii)

(vi)

3.13/14 The point 4, 3

3.13/15

$(A \cap B)$ is the soa points in triangle $P Q R$.
($A \cap B \cap C$) is the soa points in the triangle LMN.
$3.13 / 16$ (i) $\{\langle x, y\rangle \mid x>0, y>0, x+y<7\}$

(ii) $\left\{\langle x, y\rangle \mid a<x<2 a, y^{2}<4 a x\right\}$

(iii) $\left\{\langle x, y\rangle \mid x^{2}+y^{2}<1, x+y>1\right\}$

3.13/17 The empty set.
3.17/1 E, F, G, T = the soa Europeans, fair, good-tempered, tall men, respectively.

$$
\begin{aligned}
& \mathrm{E} \cdot \mathrm{~F}^{\prime}+\mathrm{E}^{\prime} \cdot \mathrm{F} \subseteq \mathrm{G} \mathrm{G}^{\prime} \cdot\left(\mathrm{E} \cdot \mathrm{~F}^{\prime}+\mathrm{E}^{\prime} \cdot \mathrm{F}\right)=0 \\
& \mathrm{E} \subseteq(\mathrm{~T}+\mathrm{F}) \mathrm{E} \cdot \mathrm{~F}^{\prime} \cdot \mathrm{T}^{\prime}=0 \\
& \mathrm{E} \cdot \mathrm{~F}^{\prime} \subseteq \mathrm{T}^{\prime} \mathrm{E} \cdot \mathrm{~F}^{\prime} \cdot \mathrm{T}=0 \\
& \mathrm{E} \cdot \mathrm{~F}^{\prime} \cdot\left(\mathrm{T}+\mathrm{T}^{\prime}\right)=\mathrm{E} \cdot \mathrm{~F}^{\prime}=0 \\
& \mathrm{G}^{\prime} \cdot \mathrm{E}^{\prime} \cdot \mathrm{F}=0 \\
& \mathrm{G}^{\prime} \cdot \mathrm{F} \subseteq \mathrm{E}
\end{aligned}
$$

so
$3.17 / 2$ (i) All four tailors were members of each of the four sets mentioned.
(ii) An example of $\mathrm{A}+\mathrm{A} \cdot \mathrm{B}=\mathrm{A}$.
(iii) The first two lines imply a universal soa little girls.
(iv) 99 out of a set of 100 selected dentists, or 99% of the soa dentists?
(v) $\mathrm{C}=$ the soa men called A. B. Charles

$$
\begin{aligned}
& \mathrm{D}=", ", \text { at 73, Dover Road } \\
& \mathrm{E}=", ", \text { at Eastborough } \\
& \mathrm{F}=", ", \text { living in Kent }
\end{aligned}
$$

the addressee is a member of $\mathrm{C} \cap \mathrm{D} \cap \mathrm{E} \cap \mathrm{F}$
3.21/1 10
3.21/2 Use Venn diagram; the number of single, unemployed immigrants is -5 .
3.32/3

${ }_{A^{\prime} . B| || || |}^{\overline{\overline{\overline{1}}}}$

AuB /////
3.32/3

$$
\begin{array}{r}
A \cup B\|\| \\
A \cup C \\
(A \cup B) \cap(A \cup C)
\end{array}
$$

4.7/2 $\quad \mathrm{X}=\mathrm{A} \Delta\left(\mathrm{B}^{\prime} . \mathrm{C}^{\prime}\right)$

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{A} \cdot \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{C}^{\prime} \\
& \mathrm{Z}=\left(\mathrm{A} \cdot \mathrm{~B}^{\prime}\right) \Delta \mathrm{C}
\end{aligned}
$$

4.20/1 $\mathrm{E}=1, \mathrm{~A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{F}=0$
$5.27 / 1 \quad 2^{13}-1=8,191$

A BOOLEAN ALGEBRA
6.12/1 $\{\langle x, y\rangle \mid 3 / 2<x, y<5 / 2,7 / 2<x+y<9 / 2\}$ $\{\langle x, y\rangle \mid 3 / 2<x, y<5 / 2\}$
probability $=3 / 4$

INDEX

Absorption Law, 2.9
adder, $5.14-15$
and (\cap), 3.5, 3.5/3
Aristotle, 7.1
Associative Law, 1.8-1.15, 1.30
Barnard, D. P. St., 3.17, 4.12, 4.22
binary operations, 1.2, 1.10, 2.2

- scale, 5.9

Boole, G., 7.2
Cantor, 3.26, 7.3
Carroll, Lewis, 3.16, 3.21/1

- diagram, 3.21
closed (sets), 1.3, 1.3/1
Cummutative Law, 1.4-1.7, 1.30
complementary element, 1.24, 3.4
Dedekind, 3.26, 7.3
DeMorgan, 2.16, 7.3
denumerable set, 3.29-3.31
Desargue, 1.22
Diophantine equations, 4.1
disjoint sets, 3.22-3.24
Distributive Law, 1.16
duality, 1.16-1.21
Element, 1.1, 2.2
empty (set), 3.3, 3.9 (ii)
equality, 1.27-1.28
- (of sets), 3.1
equivalent (sets), 3.2
Euler, 3.18
Frege, 7.2
Half-adder, 5.13
- -subtractor, 5.20

Huntington, E. V., 7.3
Identity element, 1.23
implication, 4.14
intersection, 3.13/14
Lattice, 3.13/7, 8, 9

Mathematical model, 3.32
member (of a set), 3.1 mononominal, 2.26

Normal form (disjunctive), 2.30
——— complete, 4.7
—— conjunctive, 2.33
Observer, 3.17, 4.12, 4.22
operation, 1.1
or $(=\cup), 3.5,3.5 / 1,2$
Parallel (electricity), 5.2
Plato, 7.1
polynomial, 2.28
postulate, 1.1, 1.4, 1.27
postulates, list of, 2.3
Reflexive law, 1.27
Russell, B., 7.2
Series (electricity), 5.2
Sheffer strokes, 4.17
subset, 3.8-3.10
subtractor, 5.20
switch, 5.1
syllogism, 3.9 (v)
symmetric law, 1.27

- difference, 2.42-2.43
'Tautology, law, 2.10
theorems, list of, 2.6
transitive law, 1.27
truth values, 4.3
— tables, 4.4
Unary operation, 1.2
union element, 5.13
universal set, 3.4, 3.9 (iii)
Venn diagram, 3.18-3.23
Whitehead, A. N., 7.2

