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Hints 

1.3.1 Show that any two inadjacent vertices have a common neighbor. 

2.1.10 The idea of diameter, from the preceding exercise, is useful. Say G has 
diameter d. Choose a and t of distance d. Say a, ... , s, t is a path of length 
d. Show that if G - {s, t} is disconnected, then G - {x, y} is connected for 
some other pair of vertices. 

2.4.6 Consider a complete bipartite graph with its two parts equal or nearly equal. 

2.4.8 (i) From Theorem 2.5, it suffices to show that there do not exist nonadjacent 
vertices x and y with d(x) + d(y) < v. 

3.1.7 Use Exercise 1.2.4. 

3.2.3 Suppose G contains r cutpoints. Use induction on r. Consider blocks con
taining exactly one cutpoint. 

4.1. 7 Write c for the vertex of degree 4 and x, y, z, t for the four of degree 1. 
There are unique paths cx, cy, cz, ct. Show that every vertex other than c 
lies on exactly one of those paths. If any of those vertices has degree > 2, 
prove there is another vertex of degree 1. 

4.1.8 consider a vertex of degree 1, and its unique neighbour. Now work by in
duction on v. 

4.1.11 (ii) Use induction on the number ofvertices. Given a tree T, look at the tree 
derived by deleting vertices of degree 1 from T. 
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4.3.4 Consider a tree in which the weights are the negative of those given. 

6.1.8 Select a vertex x of degree 1. If y z is any edge of the tree, define the distance 
from x to yz to be the smaller of D(x, y) and D(x, z). Prove that every 
one-factor ofT must contain preciselt the edges of even distance from x. If 
theseform a one-factor, T has one; otherwise it has none. (There are other 
proofs.) 

6.1.9 Proceed by induction on the number of vertices. Use Exercise 2.1.8. 

6.3.3 Assuming G has 1 or 2 bridges, it is useful to notice that the proof of Theo
rem 6.10 works just as weil if there were 2 edges joining the vertices x and 
y instead of just one. Proceed by induction on the number of vertices of G. 

6.4.4 Generalize Exercise 6.4.3. 

7.3.4 Use Theorem 7. 7. 

7.4.6 Suppose Gis a graph with km edges, k ::: x '(G). Write C for the set • 
edge-colorings of Gin k colors. If 1r e C, define n(1r) = E le; -ml, where 
e; is the number of edges receiving color c; under,1r, and the sum is over all 
colors. Then define no = min{n(1r) : 1r e C}. Assurne no > 0 and derive a 
contradiction. Then a colaring achieving no has the required property. 

7.5.1 Verify this exhaustively. But: (i) to prove that whenever an edge is deleted 
the result can be 3-edge-colored, notice that there are only 3 different sorts 
of edge (chord, outside edge with both endpoints degree 3, outside edge 
with one of degree 2) (in fact, the first two are equivalent, but proving this 
is just as hard as checking one more case ); to prove the graph requires 4 
colors, notice that there are only three different ways to 3-color the top 
5-cycle, and none can be completed. 

8.2.2 Use Theorems 8.5 and 8.6. 

9.1.9 Form a graph whose vertices are the rows M1, M2, ... , Ms of M lf i < j, 
then allocate a color to the edge M; Mi corresponding to the ordered pair 
(mij, m j;). 

10.1.3 Follow the proof of Theorem 2.1. 

12.4.4 The maximum flow cannot exceed 14 because of the cut [s, abcdt]. 

13.1.7 Use a function f that oscillates finitely. 



Answers and Salutions 

Exercises 1.1 

1.1.1 (i) S; (ii) RS; (iii) A; (iv) RST. 

1.1.3 Answer (iii) is a digraph, because the relation is not symmetric; the others 
are graphs. (i) K 7- edge 23; (ii) K 7; (iii) directed path (3 r+ 2 r+ 1 1-+ 
0 r+ -1~--+ -2 r+ -3)· (iv) -J 3 -2 2 -t t u ' o---a:::> o---a:::> o---a:::> Cl:). 

1.1.5 (i) S; (ii) R; (iii) S; (iv) AS. 

Exercises 1.2 

1 0 0 1 0 
1.2.1 G :/ = 1 1 A= 1 0 1 

0 1 0 1 0 

1 0 0 0 0 1 0 0 

H:l= 
1 1 1 0 

A= 
1 0 1 1 

0 1 0 1 0 1 0 1 
0 0 1 1 0 1 1 0 

1.2.4 Say Vt, V2 are non-empty disjoint sets of vertices of G such that there is 
no edge joining any vertex of Vt to any vertex of V2. Concider vertices x, y 
of G. If one is in V1 and the other is in V2, then they are adjacent in G. If 
both are in the same set, say Vt. then select any vertex z in V2; xz and zy 
are edges in G. 
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1.2.7 Say the two parts of G contain p and q vertices respectively. Then G has 
at most pq edges (it will have fewer unless Gis complete bipartite). More-
over, p + q = v. Say p = ~ + 1r, q = ~ - 1r. Then pq = ( ~ + 1r )( ~ - 1r) 

2 2 2 =!!,r-rr <~. 

0 1 1 1 1 1 
1 0 1 0 0 1 

1.2.10 2n; A = 1 1 0 1 0 0 
1 0 1 0 1 0 
1 0 0 1 0 1 
1 1 0 0 1 0 

1 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 1 

I= 
0 1 0 0 0 1 1 0 0 0 
0 0 1 0 0 0 1 1 0 0 
0 0 0 1 0 0 0 1 1 0 
0 0 0 0 1 0 0 0 1 1 

Exercises 1.3 

1.3.1 Suppose x and y are not adjacent. Then each of them is adjacent to at least 
~ of the remaining v - 2 vertices. So they have a common neighbor, say 
z, and xzy is a walk in G. 

1.3.3 {3, 2, 2, 2, 1} is valid iff {1, 1, 1, 1} is valid. The latter corresponds to two 
disjoint edges, so it is valid. 1\vo examples: ~ 0'" 

1.3.6 (i) no (you get {2, 2, 0, 0}); (ii) yes; (iii) no (sum is odd); (iv) yes. If d and v 
arenatural numbers, not both odd, with v > d, then there there is a regular 
graph of degree d with exactly v vertices. 

1.3.10 Consider a graph with vertices Xt. x2, ... , x 11 , where the subscripts are in
tegers modulo v. If d is even, say d = 2n, the edges are 
XjX j : 1 ::5 i ::5 V, i + 1 ::5 j ::5 i + n. 
This will yield the required graph provided 2n < v. If d is odd, d = 2n + 1, 
then v must be even. Use the same construction and add an edge x;x2+i for 
each i. 

1.3.11 (i) yes; yes. (ii) Hereis one construction. Assign a vertex to each member 
of the sequence. Arbitrarily pair up the vertices corresponding to odd inte
gers and join the pairs. Then, to a vertex corresponding to integer d, assign 
Ld/2J loops. 

Exerclses 2.1 

2.1.1 (i) sacbt, sacbdt, sact, sbct, sbdt, sbt, scbt, scbdt, sct; 2. 
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2.1.2 (i) sa : 1, sb : 1, sc : 1, sd : 2, st : 2, ab : 2, ac : 1, ad : 3, at : 2, bc : 1, 

bd : 1, bt : 1, cd : 2, ct : 1, dt : 1. 

2.1.4 (i) Suppose i is the smallest integer such that u; = v j for some j. Then 
x, Ut, ..• , u;, Vj-l· ... , Vt, x is a cycle unless i = j = 1. (ii) Consider 
Ut = Vt = y. 

2.1.9 Clearly D(G) = the maximum distance between any two vertices in G. Say 
x and y attain this maximum distance - D (x, y) = D ( G) - and say z is a 
vertexthat attains the eccentricity- e(z) = R(G). Clearly R is a distance 
between two vertices, so R :5 D. But by definition D(z, t) :5 e(z) = R(G) 
for every vertex t, so D = D(x, y) :5 D(x, z) + D(z, y) :5 2R. 

2.1.1 0 The result is clearly true if G is complete. Suppose not. If G has diameter D 
(D > 1 ), choose two vertices a and t whose distance is D. Let a, ... , r, s, t 
be a path of length D from a to t in G. a = r is possible. r 'f t. 
Suppose G* = G- {s, t} is not connected; say Ais the component of G* 
that contains a. Every vertex in G * -A must be adjacent in G tos. (lf 
not, suppose z were a vertex in G * -A whose distance from s is at least 
2. Then the shortest path from a to z must be of length at least D + 1, 
which is impossible.) If G * -A contains any edge, say bc, then s is still 
connected to every vertex of G * -A - {b, c}; moreover s is adjacent tot 
and connected to every vertex in A (since Ais connected and s is connected 
to a). SoG- {b, c} is connected and we could take {x, yJ = {b, c}. 
We need only consider the case where G * -A consists of isolated vertices, 
all adjacent to s. If A has two elements, they together with r and s form an 
induced Ku. So lAI = 1. Say A = {w}.lf w "'t take {x, y} = {w, t}, and 
if b 'f t then r, s, t, w form an induced Ku. 

Exercises 2.2 

2.2.2 (i) seft (length 9); (ii) sebt (length 11). 

Exercises 2.3 

2.3.1 (i) No Euler walk, as there are 4 odd vertices; 2 edges are needed. (ii) There 
is a closed Euler walk. (iii) There are two odd vertices, so there is an Euler 
walk, but not a closed one. Two edges are needed. 

Exercises 2.4 

2.4.2 
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2.4.8 (i) From Theorem 2.5, it suffices to show that there do not exist nonad
jacent vertices x and y with d(x) + d(y) < v. So, of the 2v - 3 pairs 
xz and yz, with z e V(G), at most v - 1 are edges. SoG has at most 

m- (v- 2) = v2 -~v+4 edges. 
(ii) If Gis formed from Kv-1 by adding one vertex and one edge connect

ing it to one of the original vertices, then G has v2 -~v+4 edges and is not 
Hamiltonian. 

2.4.10 (i) One solution is to seat the people in the following sequences, where the 
Iabels are treated as integers mod 11: (i) 1, 2, 3, ... ; (ii) 1, 3, 5, ... ; (iii) 1, 
4, 7, ... ; (iv) 1, 5, 9, ... ; (v) 1, 6, 11, .... In other words, on day i, the Iabels 
increase by i (mod 11 ). Over 5 days, x sits next to x ± 1, x ± 2, x ± 3, x ± 4 
and x ± 5, giving every possible neighbor once. 

Exercises 2.5 

2.5.1 (v- 1)!/2. 

2.5.4 (i) SE: abcdea, cost 115. NN: acdeba, cost 118. 
(ii) SE: abcdea, cost 286. NN: abcdea, cost 286. 

2.5.5 (i) acdeba, bcdeab, cdeabc, dcbaed, ecdabe, costs 118, 115, 115, 115, 
121 respectively. 
(ii) abcdea, bcdeab, cdeabc, dabced, eabcde, costs 286, 286, 286, 319, 
286 respectively. 

2.5.7 A directed graph model must be used. Replace each edge xy by two arcs 
xy and yx, with the cost of travel shownon each. In the nearest neighbor 
algorithm, one considers all arcs with tail x when choosing the continuation 
from vertex x. 

Exercises 3.1 

3.1.2 If it did, deleting the bridge would yield components with exactly one odd 
vertex. 

3.1.3 (i) [a, bcde] = {ac, ad} [ae, bcd] = {ac, ad, be, de} 
[ab, cde] = {ac, ad, be} [abe, cd] = {ac, ad, de} 
[ac, bde] = {ad, cd} [ace, bd] = {ad, be, cd, de} 
[abc, de) = {ad, be, cd} [abce, d) = {ad, cd, de} 
[ad, bce] = {ac, de} [ade, bc] = {ac, be, cd} 
(abd, ce] = {ac, be, cd, de} [abde, c] = {ac, cd} 
[acd, be] = {de} [acde, bJ = {be} 
[abcd, e] = {be, de} 

(ii) [a, bcd] = {ab} [ad, bc] = {ab, bd, cd} 
[ab, cd] = {bc, bd} (abd, c] = {bc,cd} 
[ac, bd] = {ab, bc, cd} [acd, b) = {ab, bc, bd} 
[abc, dJ = {bd, cd} 
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Exercises 3.2 

3.2.1 Suppose Gis a connected graph with at least two edges. 
(i) G is connected and is not K2, so each edge is adjacent to some other 
edge. So "any two adjacent edges lie on a cycle" implies that each edge lies 
on a cycle. So each point lies on a cycle, and there are no cutpoints. 
(ii) Suppose xy and yz are adjacent edges that do not lie on any common 
cycle. There can be no path from x to z that does not contain y (if there 
were, that path plus xy and yz would be a cycle containing the two edges). 
So y is a cutpoint. 

3.2.3 Suppose G contains r cutpoints. We proceed by induction on r. The case 
r = 0 is trivially true; the equation becomes -1 = -1. Assurne the result 
is true for graphs with r or fewer cutpoints, r ::: 0, and suppose G has r + 1 
cutpoints. We define an endblock in G to be a block containing exactly 
one cutpoint y. Clearly G contains an endblock. Select an endblockE of 
G, and form a graph H by deleting from G all vertices and edges of E 
except for the unique cutpoint. Then b(H) = b(G) - 1 blocks. Foreach 
vertex x of H, bH(x) = bo(x), except bH(Y) = bo(y) -1. The IV(E)I-
1 deleted vertices each belonged to 1 block of G. By induction, b(H) -

1 = LxeV(H)[bH(X) - 1] = LxeV(H).X#y[bH(X) - 1] + bH(Y) - 1 = 
LxeV(H),x;Cy[bo(x)- 1] + bo(y). So b(G)- 1 = LxeV(H)[b(x)- 1] = 
LxeV<G>[b(x)- 1] (the vertices of G not in Hall contribute 0 to the sum, 
because they were all in one block of G). 

Exercises 3.3 

3.3.1 K, K 1 , 0 = (i) 1,1,1 (ii) 1,2,2 (iii) 1,1,2: ~ >-< ><. 
3.3.2 Each graph contains a spanning cycle, so each has K :;:: 2. The third has 

8 = 2, so by Theorem 3.5 K 1 = 2. In the first, removing of any vertex 
leaves a Hamiltonian graph, so at least two more must be deleted to dis
connect, and K = 3, whence K 1 = 3. For the second graph, the preceding 
argument shows that the only candidates for two vertices whose removal 
would disconnect it are the top two in the diagram, but they do not work, so 
K = K 1 = 3. The answers are (i) 3,3, (ii) 3,3, (iii) 2,2. 

3.3.5 Suppose G has 8(G)::: !v(G) but K 1(G) < 8(G). Select a set S of K 1(G) 
edges whose removal disconnects G; say G - S consists of disjoint parts 
with vertex-sets X and Y. Every vertex of X has degree at least 8, and 
there are fewer than 8 edges of G with exactly one endpoint in X (only 
the members of S fit this description), so there is at least one vertex in X 
with all its neighbors in X. So lXI > 8; similarly IYI > 8; so v(G) = 
lXI + IYI > 2·8, a contradiction. 
An example with v = 6, 8 = 2, K 1 = 1 consists of two disjoint triangles 
plus an edge joining a vertex of one to a vertex of the other. 
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Exercises 4.1 

4.1.3 Suppose G is a finite acyclic graph with v vertices. If G is connected it is a 
tree, so it has v - 1 edges by Theorem treesize. Now assume G has v - 1 
edges. Suppose G consists of c components Gt. Gz, ... , Ge, where G; has 
v; vertices; I: v; = v. Each G; is a tree, so it has v; - 1 edges, and G has 
I: (v;- 1) = v- c. So c = 1 and Gis connected. 

4.1.5 If G contains edges xy and yz then G2 contains triangle xyz. so G2 a tree 
=> G consists of disjoint Kt 's and Kz's => G2 consists of disjoint Kt 's and 
Kz's. The only trees are Kt and Kz. 

4.1.6 One example: vertices are integers, x ""' x + 1. 

4.1.9 Suppose x has degree k. The Iongest path in T contains at most two edges 
incident with x, so there are k - 2 edges known not to be on the pat 
most (v- 1)- (k- 2) edges are available. 

4.1.12 (ii) Suppose G is a connected seif-eentered graph with a cutpoint x. 5.. ·--· 
a vertex y suchthat D(x, y) = s(x). Let P be a shortest xy-path. Then P 
lies completely within some component of G - x. Select z, a vertex in some 
other component of G- x. Clearly s(z) ~ D(z,y) > D(x,y) = s(x), 
contradicting the centrality of x. 

Exercises 4.2 

4.2.3 The "only if" is obvious. When v ~ 4 there are many constructions. One ex
ample: take the vertices as 1, 2, ... , v (mod v). One tree is the path 1, 2, ... , 
v. If v is even, take as the second tree the path 1, 3, ... , v, 2, ... , v - 1. lf 
v is odd, take the path 1, 3, ... , v -1, 2, 4, ... , v. Another example: select 
four different vertices x, y, z, w. One tree consists of all edges from x to 
another vertex other than xy, plus zy. The other consists of all edges from 
y to another vertex other than yz, plus wz. 

4.2.4 Use V = ~ + ~ = 2 + 3 = 5 

(i) 0 =~+~=L1+5=3+5=8 
(ii) IbO = Q::::D + ~ = 8 + 12 = 20 

cm> JgJ = ~ + A = < ~ + A ) + < A + ~ 

=~+~ +2<A.+)>+8 

= -4 + -<+ ~ + 2() + )+~)+8 

= 3 + 2 + 4 + 2 ( 5 + 3 + 4) + 8 = 41 
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4.2. 7 If G is ~] I~ one solution is ~ ~ rL f1 J'\1 
4.2.9 16; 125. 

4.2.12 1t is clearly necessary that H have no cycles, and if H = G the result 
is immediate. So suppose H is acyclic and H < G. Say H has disjoint 
components Ht. H2, ... , Hn. Since G is connected, there is in each H; 
some vertex x; that is adjacent to some vertex, y; say, that is in G but not in 
H. Write S = V(G)\ V(H), and select a spanning tree Tin (S). Then 

TUHU{x;y;: 1 ~i ~n} 

is a spanning tree in G. 

rcises 4.3 

1 There are several solutions, but the minimum weight is (i) 54, (ii) 38, (iii) 
33. 

Exercises 5.1 

+ II 0 1 2 X II 0 1 2 

5.1.1 (i) 0 0 1 2 0 0 0 0 
1 1 0 2 1 0 1 2 
2 2 0 1 2 0 2 1 

5.1.3 There is exactly one of dimension 0 (0), one of dimension 4 (V), and none 
of dimension 5. For dimension 1, the subspaces are 0, x where x -::/; 0, so 
there are I V I - 1 = 15 of them. For dimension 2, any ordered pair x, y of 
distinct nonzero elements determine the subspace 0, x, y, x + y. Each of 
these ordered bases arises 6 times if all ordered pairs are listed, so there are 
15 ·14/6 = 35. For dimension 3, there are 15 ·14 ·12 ordered bases. Each 
subspace has 8 elements, so by (5.1) it has 764 ordered bases. So the number 
ofsubspaces is 15·14·12/(7·64) = 15. (Those who know a little morelinear 
algebra will see from perpendicularity that the number of 3-dimensional 
subspaces must equal the number of I-dimensional subspaces.) 

Exercises 5.2 

5.2.2 They form a basis if and only if n is even. Write S = {xt, x2, ... , Xn }, and 
S; = S\ {x; }. ES; = (n - l)S, where n is reduced mod 2. If n is odd, the 
sum is zero, and the S; are not independent. If n is even, L: S; = S, and 
Li#j S; = Sj + Sj + Li#j S; = Sj + S = {x i }, so ({S;}) contains all the 
singletons, so it contains all of S. Since there are n elements, {S;} is a basis. 
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Exercises 5.3 

5.3.1 The cycles of K4 are 123, 145, 256, 364, 1264, 
1563, 2345. The union of any two of these is an
other of them. So the cycle space has 8 = 23 ele
ments (don't forget 0), so it has dimension 3. 

Exercises 5.4 

5.4.1 The cycle of length 4 belongs to both. A necessary (not sufficient!) property 
is that the graph must have a cycle of even length. 

5.4.2 (i) (a) Cycle subspace {0, 123, 456, 123456}, 
cutset subspace {0, 13, 23, 12, 4, 134, 234, 124, 
56,1356,2356,1256,456,13456,13456,23456, 
12456,57,1357,2357,1257,457,13457,23457, 
12457,67,1367,2367,1267,467,13467,23467, 
12467}. 
(b) Tree, so cycle subspace = 0. Cutset subspace contains all 25 subsets of 
the edges. 
(ii) (a) Cycle subspace has 4 = 22 elements, dimension 2. Cutset subspace 
has 32 = 25 elements, dimension 5. 2 + 5 = 7. (b) Cycle subspace has 
1 = 2° elements, dimension 0. Cutset subspace has 32 = 25 elements, 
dimension 5. 0 + 5 = 5. 

Exercises 5.5 

5.5.1 Choose i suchthat 2 :::;: i :::;: k and Iet L; be the fundamental cycle corre
sponding to the edge a;. Now a1 is the only edge of T in C and a; is the 
only edge off inL;. So {a;} s;; C nL; s;; {a1o a;}. By Lemma5.3, IL nC;I 
is even, so Ln C; = {at, a;} whence at E L;. Now Iet ak+j• j 2:: 1, be 
an edge of f, and L k+ j the corresponding cycle. Since L k+ j contains no 
other edge ofT, 0 s;; C n Lk+j s;; {at}. Again by Lemma 5.3, IL n Ck+jl 
is even, so L nck+j = 0, so a + 1 ffi Ck+j· 

5.5.4 (i) 1, 2, 3, 4, 5, 6, 7, 8, 9, T. 
(ii) (12345), (2347T A), (2379B), (1268C), 
(348T D), (12369E) 
(iii) (15CE), (25ABCE), (35ABDE), (45AD), 
(6CE), (1AB), (8CD), (9BE), (T AD) 
(iv) Cycles of length 8. 

Exercises 6.1 

6.1.2 Suppose N has a one-factor. One edge from the center vertex must be cho
sen; say it is the vertical one. Then the remaining edges of the factor must 
form a one-factor in the following graph, which has odd components: 
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6.1.5 (i) ab ed ef gh ; ae be dh fg. 
(ii) ae be dh fg; ae bg dh Je; af be eh dg. 

6.1.9 Suppose G has 2n vertices. We proceed by induction on n. The result is true 
for n = 2 (see Exercise 6.1.1). Say it is true for n ~ N. Suppose v(G) = 
2N + 2. By Exercise 2.1.10, G has an edge xy suchthat G- {x,y} is 
connected. Now G- {x, y} contains no induced Ku, and has 2N vertices. 
So by the induction hypothesis it has a one-factor. Append xy tothat factor 
to construct a one-factor in G. 

Exercises 6.2 

Use a one-factorization of Kn.n· An example for n = 4 is 
1a 2b 3e 4d, 1b 2a 3d 4e, 1e 2d 3a 4b, 1d 2e 3b 4a. 

6.2.2 (i) It is required to find edge-disjoint factors of K v. each of which consists 
of v /3 triangles. 

Exercises 6.3 

6.3.1 No. For example, consider 3K3 U 3Ks. 

6.3.3 If G has no bridge, Theorem 6.10 gives the result. for the cases where G has 
1 or 2 bridges, it is useful to notice that the proof of Theorem 6.10 works 
just as well if there were 2 edges joining the vertices x and y instead of just 
one. We proceed by induction on the nurober of vertices of G. The result is 
trivial for 4 vertices. 

If G has 1 bridge, xy, write Gx and Gy for the components of G - xy, 
with x e Gx. Say the vertices adjacent to x in G - x are Xt and x2. The 
(multi)graph defined by adding edge XtX2 to Gx- x is cubic has no bridge, 
so it has a 1-factor not containing the new edge. (Simply insist that it con
tains one of the other edges incident with Xt.) So does the graph similarly 
derived from Gy. Add xy to the union of these factors. 

If G has 2 bridges, they cannot have a common endpoint (if they did, then 
the third edge through that vertex would also be a bridge.) Say the bridges 
are xy and zt, and say the three components of G- xy- zt are Gx (con
taining x), Gy (containing y and z), and G, (containing t). Then Gy has 
an even nurober of vertices, while the others are odd. We can construct a 
one-factor containing yz in the bridgeless (multi)graph Gy+ yz, and a one
factor including the bridge xt in Gx U G, + xt. Their union is the required 
factor. 
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Exercises 6.4 

6.4.2 There is no example for s = 1. For s = 2, K3 U P2 os a 1 - (1, 1, 2) graph. 

6.4.3 The degrees are clearly correct. But the new vertex is a cutpoint, so G is 
not Hamiltonian. 

Exercises 7.1 

7.1.1 3. (X > 2, because there is an odd cycle. 3 is easily realized.) 

7.1.3 Write X for x(G), ß for ß(G). 
(i) Select a x -coloring of G. Write V; for the color classes. Each V; is an 
endependent set, so !V;I :::: ß, so v = L IV; I :::: X· ß. 
(ii)Select a maximal independent set S; ISI = ß. G can be colored in x lG
S) + 1 colors Gust color all points of S in a new color). G - S has L 

vertices,soobviously x(G-S):::: v-ß.sox:::: x(G-S)+l:::: v-t 

7 .1.8 Select one edge in the cycle, say x y. By Theorem 7 .1, x ( G - xy) = 2. 
Select a 2-coloring of G - xy and apply a third color to xy. 

7.1.10 Color G - v in n colors. There must be a color not on any vertex adjacent 
to x in G. Apply that color to x. 

Exercises 7.3 

7.3.2 (i) Only one has a vertex of degree 2. 
(ii) Neither graph has any coloring in 0, 1, 2 or 3 colors (each contains a 
K4), so each has polynomial divisible by x(x - l)(x - 2)(x - 3). For 4 
colors there are 48 colorings: if colors 1, 2, 3, 4 are applied to the upper 
triangle, then the other colors are determined as shown. In the first graph, t 
can be 2 or 3, andin the second graph, (y, z) can be (2, 3) or (3, 2). This 
gives 2 colorings each, and {1, 2, 3, 4} can be permuted in 24 ways. So each 
has a polynomial ofthe form p(x) = x6-llx5 + ... = x(x-l)(x-2)(x-
3)(x2 + ax + b) = x6 + (a- 6)x5 + .... Comparing coefficients of x5, 

a- 6 = -11, a = -5. Then p(4) = 48 reduces to (42 + 4·5 + b) = 2, 
or b = 6. So the polynomial is x(x- l)(x- 2)(x- 3)(x2 - 5x + 6) = 
x(x- 1)(x- 2)2(x- 3)2, the same for both graphs. 

7.3.4 From Theorem 7.7, such a graph would have 4 vertices, 4 edges and 2 
components. There is no such graph. 
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Exercises 7.4 

7.4.2 Any 8-edge graph on 5 vertices has Ii = 4 (sum of degrees = 16). There 
are two such graphs, the complements of 2K2 and P3. For the former, take 
a one-factorization of K6, delete the edges of one factor and then delete 
one vertex; the remaining (partial) factors are the color classes in a 4-edge
coloring. In the latter, consider the Ks on vertices 1, 2, 3, 4, 5 with edges 
15 and 25 deleted. Suitable color classes are {12, 34}, {13, 24}, {14, 35}, 
{23, 45}. So the graphs both have edge-chromatic number 4, and both are 
dass 1. 

7.4.3 First, observe that any 7-edge graph on 5 vertices can be edge-colored in 4 
colors, because it can be embedded in an 8-edge graph on 5 vertices (and 
use the preceding exercise). Now if a 7-edge graph can be edge-colored in 
3 colors, one color would appear on 3 edges. But you can't have 3 disjoint 
edges on only 5 vertices. 

7.4.6 Suppose Gis a graph with km edges, k:::: x 1(G). Write C for the set of all 
edge-colorings of Gin k colors. If JT E C, define n(JT) = L le; -m 1. where 
e; is the number of edges receiving color c; under,JT, and the sum isover all 
colors. Then define no = min{n(JT) : JT E C}. We prove that no = 0. Then 
a coloring achieving no has the required property. 

Suppose no > 0. Let JTo be a coloring with n(JTo) = no > 0. Since G 
has km edges, there exist color classes Mt and M2 under JT suchthat et = 
IMtl < m and e2 = IM2I > m. Say the other color classes have sizes c3, 
q, ... , q. Now Mt U M2 is a union of paths and cycles. e2 > et => the 
union includes at least one path P with its first and last edges from M2. 
Exchange the colors of edges in P. The resulting edge-coloring JT 1 has one 
more edge in color Ct and one fewer in color c2, so its color classes are of 
sizes Ct - 1, c2 - 1, c3, ... , Ck. and n(JT 1) < n(JT), a contradiction. 

7.4.9 (i) By Exercise 6.1.4, x 1 (P) > 3, so by 
Theorem 7.11 x 1(P) = 4. 
(ii) The Figure shows a 3-edge-coloring of 
P - edge, so x 1 = 3. 
(iii) delete the two broken lines from the 
Figure. x 1 = 3. 

Exercises 7.5 

7.5.3 Suppose G has cutpoint x and is edge critical with edge-chromatic number 
n. Say G - x consists of two subgraphs G 1 and G2 with common vertex x. 
Select vertices y in G t and z in G 2 adjacent to x. Choose edge-colorings 7rt 
of G -xy and 7r2 of G -xz in the n -1 colors CJ, c2, ... , Cn-1 (possible by 
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criticality). Permute the names of the colors in rrz so that the rr2-colors of 
edges joining x to vertices of G 2 are different from the rr1-colors of edges 
joining x to vertices of G 1 (this must be possible: G is dass 2, so the degree 
of x is less than n). Color the edges of G 1 using rr1 and the edges of G2 

using 7rz. This is an (n - 1)-edge-coloring- contradiction. 

Exercises 8.1 

8.1.3 First, convince yourself that the drawing shown of 
Kz.3 is quite general. Now K3.3 can be constructed 
from Kz.3 by adding one vertex adjacent to the black 
edges. Whichever face it is placed inside, one crossing 
can be achieved and is unavoidable. 

8.1.5 To see that P is not planar, delete the two"horizontal" edges from the 
resentation in figure 2.3. When the vertices of degree 2 in this subg 
are elided, the result is K3,3· The crossing number is 2 (this can be sh 
exhaustively, starting from a representation of K3.3 with 1 crossing). 

Exercises 8.2 

8.2.4 From Theorem 1.1, 2e = L v ~ 6v, so e ~ 3v. By Theorem 8.6, Gis not 
planar. The result follows. 

Exercises 8.3 

8.3.2 Suppose there are connected planar graphs that cannot be colored in six 
colors, and Iet G one with the minimum number of vertices. Let x be a 
vertex of G of degree less than 6. G - x is 6-colorable; choose a 6-coloring 
~ of G - x. There will be some color, say c, that is not represented among 
the vertices adjacent to x in G. Define 1J (x) = c, and 1J (y) = ~ (y) if 
y e V (G - x). Then 1J is a 5-coloring of G- contradiction. 

Exercises 9.1 

9.1.1 (i) Clearly R{P3, K3) ~ R(KJ, K3) = 6. 
(ii) G contains no P3 <:> G contains no vertex of degree 2. So the compo
nents of Garedisjoint vertices (degree 0) and edges (degree 1). 
(iii) If G contains an isolated vertex and 4 or more components then it has 
3 or more components, so G has a triangle. 
(iii) suppose Ks is colored so as to contain no red P3 and no blue K3. Let 
G be the subgraph of red edges. By (ii), (iii) G contains a K3 unless v ~ 4. 
So R(P3, K3) ~ 5. But The K4 with edges ab and cd red and the others 
blue is suitable. So R(P3, K3) = 5. 
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9.1.5 Say Kv contains no red or blue K4. Select a vertex x. Rx (Bx) is the set of 
vertices joined to x by red (blue) edges. Then (R - x) can contain no red 

K3 orblue K4 and IRxl < R(3,4) = 9. Similarly IBxl < 9. So IV(x)l ~ 
1 + (9- 1) + (9- 1) = 17, &nd R(4, 4) ~ 18. 

9.1.7 Suppose the edges of Km+n are colored in red and blue. Any vertex x has 
degree m + n- 1, so if there are less than m red edges incident with x, there 
must be at least n blue edges. So R(K1,m• Kl.n) ~ m + n. 
If m or n is odd, then there exists a regular graph G of degree m - 1 on 
m + n - 1 vertices (see Exercise 1.3.10. Its complement G is regular of 
degree n - 1. Color the edges of G red and those of G blue. This painting 

avoids any red K1.m and any blue K1.n· So m or n odd ~ R(KI.m• K1.n) = 
m +n. In any painting of Km+n-1 that avoids both red (Kl.m and blue K1, 11 , 

no vertex can have more than m - 1 red and n - 1 blue incident edges, so 
each vertex has exactly m - 1 red and n - 1 blue, so the red chromatic 
subgraph is regular of degree m - 1. This is impossible if m and n are both 
even (degree and order can't both be odd- Corollary 1.1.1). So m and n 
even ~ R(Kt,m• Kl.n) < m + n. But a painting of Km+n-2 is easy to find 
- n - 1 is odd, so we can do it with no red Km - 1 or blue Kn-1, Iet alone 
K 11 • So m and n even ~ R(Kt,m• Kt,n) = m + n- 1. 

Exercises 9.2 

9.2.2 (i) Suppose n is odd. Suppose the edges of K2n are colored red and blue, 
and vertex x is incident with r red and b blue edges. If r =:::: n, x will be the 
center of at least one red (K l.n, and if r < n then b =:::: n, and x is the center 
of at least one blue (K l.n. So each vertex is the center of a monochromatic 
star, and N2.2n (K l.n) ~ 2n - 1. But if we select a regular graph of degree n 
on 2n vertices (possible by Exercise 1.3.10), and color all its edges red and 
insert blue edges between all inadjacent pairs, the result has exactly 2n - 1 
monochromatic (red) n-stars. 
(ii) Suppose n is even. Take a Kn with vertices XI, x2, ... , Xn and a K111 

with vertices Y1, Y2· ... , Yn-1 disjoint from it. Color the following edges 
red: all the edges of the Kn except XtX2 X3X4, •.. , Xn-1X 11 , all the edges of 
the Kn 1 and the edges X1Y1 X2Y2· ... , Xn-1Yn-1· The other edges of K2n-1r 
are colored blue. Every vertex of this graph has red and blue degree n - 1 
except for x11 , which has n red and n- 2 blue edges. So there is exaclty one 

monochromatic Kt, n, namely Xn -Xn-1Y1Y2 ... Yn-1· 

Exercises 9.4 

9.4.1 If a graph is to contain no red K2, it has no red edges, so it is a blue Kv. 
There is no blue Kq iff v < q. So R(2, q) = q. Similarly R(p, 2) = p. 

9.4.3 Use Theorem 9.10 with s = t = 3. This gives 
R2(S) ::::: (R2(3)- 1)(R2(3) - 1) + 1 = 26. 
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Exercises 10.1 

10.1.1 (a) (i) sa, st, as, at, bs, bt, tb. (ii) A(s) = {a, t}, B(s) = {a, b}, A(a) = 
{s, t}, B(a) = {s}, A(b) = {s, t}, B(b) = {t}, A(t) = {b}, B(t) = 
{a, b, s}. (iii) sat, st. (iv) satb. (v) {st, at, bt }. 
(b) (i) sb, as, bc, ca, ce, dc, et, rd. (ii) A(s) = {b}, B(s) = {a}, A(a) = 
{s}, B(a) = {c}, A(b) = {c}, B(b) = {t}, A(c) = {a, e}, B(c) = {b, d}, 
A(d) = {c}, B(d) = {t}, A(e) = {t}, B(e) = {c}, A(t) = {d}, B(t) = {e}. 
(iii) sbcet. (iv) sbca (not unique). (v) {bc}. 
(c) (i) sa, sc, se, ab, ac, bd, ce, dc, dt, et. (ii) A(s) = {a, c, e}, B(s) = 0, 
A(a) = {b, c}, B(a) = {s}, A(b) = {d}, B(b) = {a}, A(c) = {e}, 

B(c) = {s, a, d}, A(d) = {c, t}, B(d) = {b}, A(e) = {t}, B(e) = {s, c}, 

A(t) = 0, B(t) = {d, e}. (iii) szbdt, sacet, scet, set. (iv) No cycles. (v) 
{sc, se, ac, bd}. 

10.1.5 (a) (i) DK4, (ii) one component. 
(b) (i) DK1, (ii) one component. 
(c) (i) DP1 sabdcet, (ii) each vertex a different component. 

10.1.8 No, it has loops. 

Exercises 10.2 

10.2.1 (i) Suppose the vertices are Xt, x2, ... , Xv· Use the orientations Xt --+- x2, 
X2 --+- XJ, ••• , Xv-1 --+- Xv, Xv --+- Xt. The other edges may be oriented in 
anyway. 

10.2.5 (i) 12223, (ii) 11233. 

10.2.9 (i) (xcb), (xcda), (xcbda). (ii) (xdb), (xcdb), (xcdba). 

10.2.11 (i) vs = sum of the scores = sum of outdegrees. On the other band, the sum 
ofthe outdegrees is (~).So vs = v(v- 1)/2 and v = 2s + 1. 
(ii) One example: decompose K2s+I into s (see Theorem 6.3), andin each 
cycle orient each edge in the same way around the cycle. 

Exercises 10.3 

10.3.2 Select an Euler walk in G. Orient each edge in the direction of the walk. 



Exercises 11.1 

11.1.2 

FYPrcises 11.2 

z (ii) 21; 

11.2.6 

Exercises 11.3 
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All arcs are directed 
from left to right. 

All arcs are directed 
from left to right. 

All arcs are directed from left to 
right. t is an added finish node. 
Critical path abdehit, duration 
46. 

11.3.3 Say the duration of a task in Exercise 11.2.6 was t. Then the expected time 
in this problern is 4t /3 and its variance is (t /6) 2. The critical path is un
changed, abdehklt, and the expected duration is 4 · 46/3 = 61.33 days. 
The variance is 336/62, so the probability of completion within 65 days is 
P(N(61.33, 3.055) ~ 65 = P(N(O, 1) ~ ].~575 P(N(O, 1) ~ 1.20 = .88. 

11.3.5 Expected times: a : 16, b: 13.5, 
c : 18, d : 8, e : 16, f : 27, g : 
8.5, h : 10, i : 17, j : 9.5. Critical 
path sbfjt, length 50. Variances 
b: (~)2 , f: 32, j: (~)2 , overall 
11.9444 = 3.382. 

P(N(SO, 3.38) ~52 
= P(N(O, 1) ~ rls 
= P(N(O, 1) ~ .59 = .72. 

All arcs are directed from left to 
right. 
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Exercises 12.1 

12.1.1 (i) sadt. (ii) sbdt. 
(iii) (a) {af, df}, (b) 0, (c) 11, {d) 8, (e) 5, (t) 14. 

12.1.4 (i) No: imbalance at b, g. {ii) Yes. 

Exercises 12.2 

12.2.3 (ii) 6. (iii) sabt. (iv) Change to f(sa) = 7, f(ab) = 5, f(bt) = 5, other 
flows unchanged. This has value 10. (v) Augment along suxyzt- f(us) = 
0, f(xu) = 0, f(xy) = 4, f(yz) = 4, f(zt) = 3. Value is 11. (vi) 11 is 
maximal because [saux, bvwyzt] is a cut of capacity 11. 

12.2.5 (i) c[s, abt] = 5, c[sa, bt] = 14, ·r-:~~r c[sb, at] = 22, c[sab, t] = 12. 
Minimum = 12. A ftow of value 12 bu8~t is shown. 

(ii) c[s, abct] = 7, c[sa, bct] = 8, 'f.)(f\ c[sb, act] = 8, c[sab, ct] = 7, 
c[sc, abt] = 8, c[sac, bt] = 8, 
c[sbc, at] = 13, c[sabc, t] = 8. JL3L3 b 1 c 4~r Minimum= 7. A ftow of value 7 is 
shown. 

12.2.7 Replace x by two vertices, Xt and x2. Every arc into x becomes an arc into 
x1; every arc out of x becomes an arc out of x2; and there is an arcx1x2 of 
capacity d. 

Exercises 12.3 

12.3.2 First, observe that both are separating cuts: 
TnY=SnT=SUT; TUY=SUT=SnT, 
s e S, X =? s e S U X, S n X; t e T, Y =? t e T n Y, T n Y. 
lt is easiest to draw a diagram and use single letters to represent the capac
ities of edges between different sets of nodes. Write: 
c[SnX, T nx] = e, c[SnY, T nY] = f, 
c(SnX,SnY]=g, c[TnX,TnY]=h. 
Then c[S, T] = e+ f, c(X, Y] = g+h, X Y 
so by minimality e + f = g + h = m, 
where m is the minimal cut size. So 
e+g+f+h=2m.Nowc(SUX,Tn S 
Y] = f + h !:: m, by minimality, and 
also c[S n X, T u Y] = e + g !:: m. 
The only possibility is that both capaci- T 
ties equal m. 



Exercises 12.4 

12.4.1 There is a cut, [sabde, cft], of capacity 8. 

12.4.2 8 ([s, abcdeft] is a cut of capacity 8). 
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12.4.5 Max flow values are 9 and 16. Exarnples of flows realizing these: 

m·r~· (ii)~~-~1> 
b~J, d 8~+~~ 

Exercises 12.5 

1 ? " '2 Since there is no restriction on production or sales, add vertices s and t and 
put infinite capacity on all arcs sFi and Mit. Then carry out the algorithrn. 
The rnaxirnurn flow 
is 115; an exarnple 
is shown ( directions 
assurned to be as in the 
original). To see that 
this is rnaxirnurn, ob
serve the cut of capacity 
115 shown by the heavy 
line. 

12.5.3 Yes. A suitable flow is shown 
in the Figure. (Again, direc
tions are assurned to be as in 
the original.) 

Exercises 13.1 

13.1.1 If f = O(g) and g = O(h) then there exist a values not and noz and 
positive constants Kt and Kz suchthat f(n) ::: Ktg(n) whenever n :::: not 
and g(n) ::: Kzh(n) whenever n :::: noz. So, if n :::: rnax{not. noz}, f(n) ::: 
Ktg(n) ::: g(n) ::: KtKzh(n). So f = O(h) (using no = rnax{not. noz}, 
K = KtKz). 

13.1.8 In testing whether n is prirne, one is answering the decision problern: is n 
in the set Pn, where 

Pn = {x : x ::: n, x is prirne}. 

Since Pn is asyrnptotically equal to ../ii, the input size of the problern is 
logn, not n. If we write t = logn then ../ii = e112, so the problern is 
actually exponential in the input size. 
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Exercises 13.3 

13.3.2 (i) It is easy to see that Wk;ij is the length of the shortest path from x; to 
x i among all paths that contain at most k edges, as required (this can be 
written formally as an induction). As no path can contain more than v - 1 
edges, W11 is the matrix of shortest paths. 
(ii) In the algorithm, replace line 4. by: 
4. for k = 1 to v - 1 do 
and replace line 7. by: 
7. for h = 1 to v do 
8. Wk;ij +- min{Wk-l;ij• minh{Wk-I;ih + Whj}}. 
(iii) Complexity is v4• 

13 .. 3.5 xo is the arbitrarily chosen starting vertex. At any stage, S is the set of 
vertices and T is the set of edges already selected for the tree. For 
vertex y e V\S, W(y) is the minimum weight of edges joining y toS 

1. T +-0 

2. S +- {xo} 
3. forally e V\SdoW(y) +-minxesw(x,y) 

4. ey +- an edge xy suchthat W(y) = w(x, y) 

5. while S '# V do 
6. begin 

7. select YO E V\S) 

8. for all y e V\S do 
9. if W(y < W(yo) then yo +- y 

10. S +- S u {yo} 
11. T +- TU {ey0 } 

12. for all y e V\S do W(y) +- min{W(y), w(y, yo) 

13. end 

This is order v2: the main part, beginning with step 6, is of complexity v 
(steps 8 and 12 are both of order v, and 6 is carried out v- 1 times. 
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adjacency, 6, 8 

directed, 131 
adjacency Iist, 189 
adjacency matrix, 6, 10, 11, 18, 189, 

193 
edge-face, 110 
weighted, 189 

algorithm, 20, 86, 185-196 
exponential, 188 
hard, 188 
intractable, 194 
linear, 188 
non-deterministic, 195 
polynomial, 188 
polynomial time verifiable, 195 
sublinear, 188 

algorithm for 
x(G)::: !::.G + 1, 194 
allshortest paths, 190-191 
critical path, 148 
depth-first search, 192-193 
max flow min cut, 174-179, 194 

minimal spanning tree, 51, 194 
nearest neighbor, 32, 194 
shortest path, 20, 190-191 
sorted edges, 32, 194 
strong orientation, 136 
Traveling Salesman problem, 32 

arc, 6, 131 
empty, 168 
full, 168 
multiple, 131, 144 

augmenting path, 168, 174 
automorphism, 5 

back-edge, 192 
basis, 55, 56, 63 
binary relation, 1-4, 10 

antireflexive, 2, 10 
graph of, 2 
reflexive, 2 
symmetric, 2, 10 
transitive, 4 

bipartite, 8, 10, 72 
bipartite graph, 16, 86, 97, 111 
block, 37-40, 80 

critical, 40 
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block graph, 39 
blocking set, 173 
breadth-first search, 191, 194 
breakthrough, 174 
bridge, 35-37,39,43,44, 50, 71, 108 
bridges of Königsberg, 23 

cartesian product, 1 
of graphs, 9, 89 

center, 45 
chord, 26, 40 
chromatic index, 96-104 
chromatic number, 85-96, 133 
chromatic polynomial, 91-96 
circuit, 15 
class 1 graph, 98-104 
class 2 graph, 98-104 
classical Ramsey theory, 118 
clique, 7, 196 

maximal, 7 
clique graph, 7 
clique number, 7 
clique problem, 196 
closed walk, 15 
color dass, 85, 96, 99 
coloring, 85-104 

greedy, 86, 88 
proper, 85 

complement, 7, 63 
in a graph, 7 

complete bipartite graph, 8, 72, 108, 
111, 119, 120 

complete graph, 5, 72 
oriented, 136 

complexity, 185 
order of, 186 

component, 8, 14, 35, 77, 79, 94 
computation, 185-196 
connected, 8, 10, 16, 19, 35, 40, 43, 

49, 133 
graph, 16 
strongly, 133 
vertices, 16 

connectedness, 35-42 
connectivity, 40-42, 103 

core, 103 
critical 

edge-, 100, 103 
vertex-, 87, 91 

critical block, 40 
critical path, 148 
critical path analysis, 143-157 
crossing, 110, 112 
crossing number, 106-114 

of complete bipartite graph, 107 
of complete graph, 106 
oftree, 106 

cube, 74 
cubic graph, 11, 49, 71, 80 
cut, 165 

minimal, 166-179 
separating, 166, 171 

cut-edge, 35-37 
cutpoint, 35-37, 40 
cutset, 35, 36, 50, 60, 62, 63, 65 
cutset subspace, 58-68 
cycle, 15-35, 38, 41, 46, 50, 59, 63, 

65, 86, 93, 115, 118, 119, 
124, 136 

directed, 132, 136 
Hamilton, 26-31, 33 
length, 15 
weight, 19 

cycle subspace, 58-68 

degree, 11-14,18,44,110,111 
indegree, 131 
maximum, 86, 89,97-104 
minimum, 40, 44, 87 
outdegree, 131 

demand, 179 
depth-first search, 191-193 
diameter, 19 
digon, 132 
digraph, 2, 6, 131-184 

acyclic, 145 
Dijkstra's algorithm, see algorithm 

for shortest path 
dimension, 55, 56 

of finite vector space, 55 



directed cycle, 137 
directed edge, 131 
disconnected, 8, 134 
distance, 16-19 

is metric, 19 
weighted, 19 

dominating set, 195 
domination problem, 195-196 

earliest finish time, 14 7 
earliest start time, 14 7 
eccentricity, 19, 45 
edge,2,5, 109 

capacity, 159 
directed, 131 
endpoint, 5 
independence, 7 
pendant, 11 
weight, 19 

edge-coloring, 96-104 
edge-connectivity, 40-42 
edge-critical, 100, 103 
edge-face adjacency matrix, 110 
edge-weight, 189 
empty arc, 167 
endpoint, 5 
Euler walk, 23-26 

directed, 139-142 
Euler's formula, 108-111 
Euler's Theorem, 24-26 
Eulerian graph, 97 
Eulerization, 25 
even vertex, 24 
exponential algorithm, 188 

face, 108-111 
exterior, 108 

factor, 69-84 
factorization, 69-84 
fan, 101 
finish, 131, 132, 144 

ofarc, 6 
five color Theorem, 112-113 
flow, 159-184 

maximal, 164-179 
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forest, 17 
four color Theorem, 112-114 
full arc, 167 
fundamental cutset, 65, 66 
fundamental cycle, 65, 66 
fundamental system 

of cutsets, 65--68 
of cycles, 65--68 

generalized Ramsey theory, 118, 120 
Goodman's Theorem, 120--122 
graph, 2, 4 

acyclic, 17 
as model, 3, 10, 19, 75, 105, 

136,140,143,159 
bipartite, 8, 16, 86, 97, 111 
center, 45 
complete, 5, 72 
complete bipartite, 8, 72, 108, 

111, 119, 120 
connected, 8, 16 
diameter, 19 
disconnected, 8 
Eulerian, 97 
infinite, 18, 44, 45 
nonseparable, 37 
order, 5 
radius, 19, 45 
regular, 11, 70, 71, 79 
self-complementary, 10 
size, 5 
weight, 19 

graph automorphism, 5 
graph isomorphism, 5 
Graph Isomorphism problem, 193, 195 
graphical sequence, 11, 14 
greedy coloring, 86, 88 

Hamilton cycle, 26-31, 33, 41, 73, 
74 

directed, 137 
Hamilton path, 26, 28, 29, 31 

directed, 137 
Hamiltonian, 26-31 
hard algorithm, 188 
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head of arc, 6 
homeomorphic, 107 

incidence matrix, 7, 10, 11, 189 
weighted, 189 

indegree, 131, 139 
independence number, 7, 88 
induced subgraph, 36 
instance of a problem, 185 
internal vertex, 37 
intersection of graphs, 9 
intractability, 185, 194-196 
isolated, 11 
isomorphism, 5, 10 

join of graphs, 9 

Kempe chain, 89-90 
Kempe chain argument, 89-90 
Kempe's proof, 112, 114 
Kuratowski's Theorem, 107 
Königsberg bridges, 23 

length 
of cycle, 15 
ofwalk, 15 

linear algorithm, 188 
loop, 131, 144 

major vertex, 101-103 
map, 111-114 
matching, 70 

perfect, see one-factor 
max ftow min cut Theorem, 171-179 
maximal ftow, 164-179 

characterization, 172 
maximum degree, 86, 89,97-104 
mean, 153 
metric, 19 
minimal cut, 166--179 

characterization, 172 
minimal spanning tree, 51-54 
minimum degree, 40, 87 
minor vertex, 101 
mode, 154 
monochromatic, 115 

monochromatic subgraph, 115-129 
multigraph, 5, 46, 47, 49, 77 

directed, 133, 139 
multigraphs, 81 

nearly Kirkman triple system, 77 
neighbor, 6 
neighborhood, 6 
network 

augmented, 160 
completed, 160 

nonseparable, 37 
NP, 194-196 
NPC, 195-196 
null graph, 7 

odd vertex, 24 
one-factor, 69-84 
one-factorization, 69-84 

ordered, 70 
oriented, 70, 76 
standard, 72 

order of complexity, 186 
order requirement digraph, 146--157 
orientation, 135 

strong, 135, 138 
oriented complete graph, 136 
oriented graph, 135-139 
origin of arc, 6 
outdegree, 131, 139 

p' 194-196 
painting, seealso edge-coloring, 96--

99, 115-129 
maximal, 97,98 
proper, 115-129 

path, 15-34, 43, 93, 119 
augmenting, 168, 174 
directed, 132 
Hamilton, 26, 28, 29,31 
proper, 17 
shortest, 19-22 
weight, 19 

pendant, 11 
perfect matching, see one-factor 



perfect square, 18, 45 
PERT, 153-157 
Petersen graph, 18, 68, 71, 74, 99, 

108 
Petersen's Theorem, 71, 80-81 
pigeonhole principle, 129 
planar graph, 105 
planar representation, 105 
planarity, 105-114 
plane representation, 109 
polynomial algorithm, 188 
poiynomial transformation, 195 
polynomial 

chromatic, 91-96 
~r set, 56--58 
ede, 143 
1 's algorithm, see algorithm for 

minimal spanning tree 
principal submatrices, 120 
proper coloring, 85 

queue, 194 

radius, 19, 45 
Ramsey multiplicity, 120-123 
Ramsey number, 116--120, 125 
Ramsey theory, 115-130 

classical, 118 
generalized, 118 

reachability, 133 
in activity digraph, 145 

reachability digraph, 135 
regular graph, 11, 14, 70, 71, 79 
representation of graph, 105 

planar, 105 
round, 75 

schedule, 75 
home-and-away, 75 

Schur function, 128 
score, 136 
self-centered, 45 
separating cut, 166, 171 
shortest path, 19-22 
sink, 160, 179 
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multiple, 162 
slack, 146, 148 
source, 159, 179 

multiple, 162 
spanning subgraph, 69 
spanning tree, 46--54, 63-68, 191 

depth-first, 191 
minimal, 51-54, 194 

spectrum, 96 
square 

of graph, 18, 39 
star, 8, 10, 36, 43, 75 
start, 131, 132, 144 

of arc, 6 
strong component, 134 
strong orientation, 138 
strongly connected, 133, 137 
subgraph, 7,40,44,58,59 

induced, 36, 75 
proper, 7 
spanning, 7, 46 
weight, 19 

sublinear algorithm, 188 
subspace,56 
sum 

of graphs, 9 
sum-free set, 125, 128, 129 
sum-free sets, 123 
supply, 179 
supply and demand, 179-184 
supply-demand network, 180 
symmetric difference, 56, 58 
symmetric sum-free partition, 124-

125, 128, 129 

tail of arc, 6 
task, 143 

duration, 146 
independent, 143 

terminus of arc, 6 
tournament, 3, 75-77, 133, 135-139 

competition, 75-77, 135, 136 
irreducible, 136, 138 
oriented graph, 133, 135-139 
reducible, 136 
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regular, 137 
round robin, 75, 136 
strongly connected, 137, 138 
transitive, 136, 138 

transportation network, 159-184 
Traveling Salesman problem, 31-33, 

34, 193-196 
nearest neighbor algorithm, 32 
sorted edges algorithm, 32 

tree, 17, 43-45, 54, 63-68, 75, 191, 
194 

proper, 17 
spanning, 46-54, 63-68 

tree graph, 50 
Tutte's Theorem, 77-83 

underlying graph of digraph, 6 
union of graphs, 9 

valency, 11-14 
value of flow, 161 
variance, 153 
vector space, 55-68 
Venn diagram, 61, 62 
verifiability, 195 
vertex, 2, 4, 109, 131 

adjacency, 7 
eccentricity, 19, 45 

even,24 
incidence, 7 
interior, 161 
intemal, 37 
isolated, 11 
major, 101-103 
minor, 101 
odd,24 
pendant, 11 
terminal, 161 
weight, 19 

vertex coloring, 85-96 
vertex-critical, 87, 91 
Vizing's Adjacency Lemma, 103 
Vizing's Theorem, 98 

walk, 8, 15-35, 45 
closed, 15 
directed, 132 
Euler, 23-26 
length, 15 
weight, 19 

weight, 19, 51 
vertex, 19 

wheel, 10 
Whitney's Theorem, 40 


