References

[1] H. L. Abbott, Lower bounds for some Ramsey numbers. Discrete Math. 2 (1972), 289-293.
[2] K. Appel and W. Haken, Every planar graph is four colorable. Bull. Amer. Math. Soc. 82 (1976), 711-712.
[3] K. Appel and W. Haken, Every planar graph is four colorable. Contemporary Math. 98, Amer. Mathematical Society, 1989.
[4] R. Balakrishnan, and K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, 1999.
[5] L. W. Beineke and R. J. Wilson, On the edge-chromatic number of a graph. Discrete Math. 5 (1973), 15-20.
[6] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs. Allyn and Bacon, 1971.
[7] L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory. Academic Press, London, 1978.
[8] L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory 2. Academic Press, London, 1983.
[9] L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory 3. Academic Press, London, 1988.
[10] C. Berge, Graphs and Hypergraphs. North-Holland, 1973.
[11] N.L. Biggs, E.K. Lloyd and R.J. Wilson, Graph Theory, 1736-1936. Clarendon Press, Oxford, 1976.
[12] J. A. Bondy and V. Chvátal, A method in graph theory. Discrete Math. 15 (1976), 111-136.
[13] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London, 1976.
[14] R. L. Brooks, On colouring the nodes of a network. Proc. Camb. Phil. Soc. 37 (1941), 194-197.
[15] S. A. Burr, Generalized Ramsey theory for graphs - a survey. In Graphs and Combinatorics, Lecture Notes in Mathematics 405, Springer-Verlag, 1974, 52-75.
[16] S. A. Burr, Diagonal Ramsey numbers for small graphs. J. Graph Th 7 (1983), 57-69.
[17] L. Caccetta and S. Mardiyono, On maximal sets of one-factors. Austral. J. Combin. 1 (1990), 5-14.
[18] L. Caccetta and S. Mardiyono, On the existence of almost-regular graphs without one-factors. Austral. J. Combin. 9 (1994), 243-260.
[19] G. Chartrand, Graphs as Mathematical Models, Wadsworth, Belmont, CA, 1977.
[20] L. R. Foulds, Graph Theory Applications, Springer-Verlag, 1992.
[21] G. Chartrand and F. Harary, Graphs with prescribed connectivities. In Theory of Graphs, Akadémiai Kiadó, Budapest, 1968, 61-63.
[22] A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree are 1-factorizable. Proc. London Math. Soc. (3) 50 (1985), 193-206.
[23] A. G. Chetwynd and A. J. W. Hilton, 1-factorizing regular graphs of high degree - an improved bound. Discrete Math. 75 (1989), 103-112.
[24] F. R. K. Chung, On triangular and cyclic Ramsey numbers with k colors. In Graphs and Combinatorics, Lecture Notes in Mathematics 405, SpringerVerlag, 1974, 236-242.
[25] V. Chvátal, Tree-complete graph Ramsey numbers. J. Graph Theory 1 (1977), 93.
[26] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs. Bull. Amer. Math. Soc. 78 (1972), 423-426.
[27] S. A. Cook, The complexity of theorem-proving procedures. Proceedings of the Third Annual ACM Symposium on the Theory of Computing, ACM, 1971, 151-158.
[28] E. Cousins and W. D. Wallis, Maximal sets of one-factors. In Combinatorial Mathematics III, Lecture Notes in Mathematics 452, Springer-Verlag, 1975, 90-94.
[29] A. B. Cruse, A note on one-factors in certain regular multigraphs. Discrete Math. 18 (1977), 213-216.
[30] E. W. Dijkstra, A note on two problems in connexion with graphs. Nu merische Math. 1 (1959), 269-271.
[31] G. A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2 (1952), 69-81.
[33] G. A. Dirac, In abstracten Graphen verhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachrichten 22 (1960), 61-85.
[32] R. J. Douglas, Tournaments that admit exactly one Hamiltonian circuit. Proc. London Math. Soc. (3) 3 (1970), 716-730.
[34] L. Euler, Solutio Problematis ad geometriam situs pertinentis. Comm. Acad. Sci. Imp. Petropolitanae 8 (1736), 128-140.
[35] S. Fiorini and R. J. Wilson, Edge-Colourings of Graphs, Pitman, London, 1977.
[36] J. Folkman, Notes on the Ramsey Number $N(3,3,3,3)$, Manuscript, Rand Corporation, 1967.
[37] J. Folkman and J. R. Fulkerson, Edge colorings in bipartite graphs. In Combinatorial Mathematics and its Applications, University of North Carolina Press, 1969, 561-577.
[38] L. R. Ford and D. R. Fulkerson, Maximal flow through a network. Canad. J. Math. 8 (1956), 399-404.
[39] L. R. Ford and D. R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canad. J. Math. 9 (1957), 210-218.
[40] J.-C. Fournier, Colorations des arêtes d'un graphe. Cahiers du CERO 15 (1973), 311-314.
[41] J. E. Freund, Round robin mathematics. Amer. Math. Monthly 63 (1956), 112-114.
[42] D. R. Fulkerson, Studies in Graph Theory Part I, M.A.A., 1975.
[43] D. R. Fulkerson, Studies in Graph Theory Part 2, M.A.A., 1975.
[44] T. Gallai, Elementare relationen bezüglich der glieder und trennendenpunkte von graphen. Mag. Tud. Akad. Mat. Kutató Int. Közlmenyei 9 (1964), 235-236.
[45] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, New York, 1979.),
[46] A Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.
[47] I. J. Good, Normal recurring decimals. J. London Math. Soc. 21 (1946), 167-172.
[48] A. W. Goodman, On sets of acquaintances and strangers at any party. Amer. Math. Monthly 66 (1959), 778-783.
[49] R. P. Gupta, The chromatic index and the degree of a graph. Notices A Math. Soc. 13 (1966), 719 (Abstract 66T-429).
[50] F. Guthrie, Note on the colouring of maps. Proc. Roy. Soc. Edinburgh 10 (1880), 727-728.
[51] R. K. Guy, The decline and fall of Zarankiewicz's Theorem. In Prooof Techniques in Graph Theory, Academic Press, 1969, 63-69.
[52] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph. SIAM J. Appl. Math. 10 (1962), 496-506.
[53] W.R. Hamilton, The Icosian Game (leaflet, Jacques and Son, 1859). Reprinted in [11], 33-35.
[54] F. Harary, An elementary theorem on graphs. Amer. Math. Monthly 66 (1959), 405-407.
[55] F. Harary, A characterization of block-graphs. Canad. Math. Bull. 6 (1963), 1-6.
[56] F. Harary, Recent results on generalized Ramsey theory for graphs. In Graph Theory and Applications, Lecture Notes in Mathematics 303, Springer-Verlag, 1972, 125-138.
[57] F. Harary, Graph Theory, Addison-Wesley, 1972.
[58] G. H. Hardy and E. M. Wright, The Theory of Numbers, Oxford University Press, New York, 1938.
[59] V. Havel, A remark on the existence of finite graphs (in Czech). Česk. Akad. Věd. Časop. Pěst. Mat. 80 (1955), 477-480.
[60] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[61] P. J. Heawood, Map-colour theorem. Quart. J. Pure Appl. Math. 24 (1890), 332-338.
[62] F. K. Hwang, How to design round robin schedules. In Combinatorics, Computing and Complexity (Tianjing and Beijing, 1988), Kluwer, Dordrecht, 1989, 142-160.
[63] C. Jordan, Sur les assemblages de lignes. J. Reine ang. Math. 70 (1869), 185-190.
[64] A. B. Kempe, On the geographical problem of the four colours. Amer. J. Math. 2 (1879), 193-200.
[65] T. P. Kirkman, On the representation of polyedra. Phil. Trans. Roy. Soc. London 146 (1856), 413-418.
[66] D. J. Kleitman, The crossing number of $K_{5 . n}$. J. Combinatorial Theory 9 (1970), 315-323.
[67] A. Kotzíg and A Rosa, Nearly Kirkman systems. Congressus Num. 10 (1974), 371-393.
[68] J. B. Kruskal Jnr., On the shortest spanning subtree and the traveling salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50.
[69] K. Kuratowski, Sur le probléme des courbes gauches en topologie. Fund. Math. 15 (1930), 271-283.
[70] L. Lovász, Three short proofs in graph theory. J. Combinatorial Theory 19B (1975), 269-271.
[71] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[72] S. Mardiyono, Factors in Regular and Almost-Regular Graphs. PhD Thesis, Curtin University of Technology, Australia, 1995.
[73] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
[74] O. Ore, Note on Hamilton circuits. Amer. Math. Monthly 67 (1960), 55.
[75] E. T. Parker, Edge-coloring numbers of some regular graphs. Proc. Amer. Math. Soc. 37 (1973), 423-424.
[76] T. D. Parsons, Ramsey graph theory. In Selected Topics in Graph Theory, Academic Press, 1977, 361-384.
[77] M. D. Plummer, On minimal blocks. Trans. Amer. Math. Soc. 134 (1968), 85-94.
[78] J. Petersen, Die Theorie der regulären Graphs. Acta Math. 15 (1891), 193220.
[79] J. Pila, Connected regular graphs without one-factors. Ars Combinatoria 18 (1983), 161-172.
[80] R. C. Prim, Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 (1957), 1389-1401.
[81] L. Pósa, A theorem concerning Hamilton lines. Mag. Tud. Akad. Mat. Kutató Int. Közleményei 7 (1962), 225-226.
[82] R. Read, An introduction to chromatic polynomials. J. Combinatorial Th. ory 4 (1968), 52-71.
[83] L. Rédei, Ein Kombinatorischer Satz. Acta Litt. Sci. Univ. Hung. Franci Josephinae, Sect. Sci. Math. 7 (1934), 39-43.
[84] F. S. Roberts, Graph Theory and its Applications to Problems of Society (CBMS-NSF Monograph 29), SIAM, Philadelphia, 1978.
[85] A. Rosa and W. D. Wallis, Premature sets of 1-factors, or, how not to schedule round-robin tournaments. Discrete Appl. Math. 4 (1982), 291-297.
[86] B. Roy, Nombre chromatique et plus longs chemins d'une graphe. Revue Franç. d'Inf. Rech. Op. 1 (1967), 127-132.
[87] K. G. Russell, Balancing carry-over effects in round robin tournaments. Biometrika 67 (198), 127-131.
[88] T. L. Saaty and P. L. Kainen, The Four Colour Problem (2nd Ed), Dover, 1986.
[89] S. S. Sane and W. D. Wallis, Monochromatic triangles in three colours. J. Austral. Math. Soc. 37B (1988), 197-212.
[90] T. Schönberger, Ein Beweis des Petersenschen Graphensatzes. Acta Univ. Szeged. Acta Sci. Math. 7 (1934), 51-57.
[91] A. J. Schwenk, Acquaintance graph party problem. Amer. Math. Monthly 79 (1972), 1113-1117.
[92] D. P. Sumner, Graphs with 1-factors. Proc. Amer. Math. Soc. 42 (1974), 8-12.
[93] D. P. Sumner, On Tutte's factorization theorem. In Graphs and Combinatorics, Lecture Notes in Mathematics 405, Springer-Verlag, 1974, 350355.
[94] G. Szekeres and H. S. Wilf, An inequality for the chromatic number of a graph. J. Combinatorial Theory 4 (1968), 1-3.
[95] W. T. Tutte, The factorizations of linear graphs. J. London Math. Soc. 22 (1947), 459-474.
[96] W. T. Tutte, A theory of 3-connected graphs. Indag. Math. 23 (1961), 441455.
[97] W. T. Tutte, Connectivity in graphs, University of Toronto Mathematical Expositions 15, Oxford University Press, London, 1966.
[98] V. G. Vizing, On an estimate of the chromatic class of a p-graph [Russian]. Discret. Anal. 3 (1964), 25-30.
[99] W. D. Wallis, The number of monochromatic triangles in edge-colourings of a complete graph. J. Comb. Inf. Syst. Sci. 1 (1976), 17-20.
[100] W. D. Wallis, The smallest regular graphs without one-factors. Ars Combinatoria 11 (1981), 295-300.
[101] W. D. Wallis, One-factorizations of graphs: Tournament applications. College Math. J. 18 (1987), 116-123.
[102] W. D. Wallis, Combinatorial Designs, Marcel Dekker, New York, 1988.
[103] W. D. Wallis, One-factorizations of complete graphs. In Contemporary Design Theory, Wiley, New York, 1992, 593-631.
[104] W. D. Wallis, One-Factorizations, Kluwer Academic Publishers, Dordrecht, 1997.
[105] D. de Werra, Scheduling in sports. In Studies on Graphs and Discrete Programming, North-Holland, Amsterdam, 1981, 381-395.
[106] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, 1996.
[107] E. G. Whitehead Jr., Algebraic structure of chromatic graphs associated with the Ramsey number $N(3,3,3 ; 2)$. Discrete Math. 1 (1971), 113-114.
[108] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932), 150-168.
[109] H. P. Yap, Some Topics in Graph Theory, Cambridge University Press, Cambridge, 1986.

Hints

1.3.1 Show that any two inadjacent vertices have a common neighbor.
2.1.10 The idea of diameter, from the preceding exercise, is useful. Say G has diameter d. Choose a and t of distance d. Say a, \ldots, s, t is a path of length d. Show that if $G-\{s, t\}$ is disconnected, then $G-\{x, y\}$ is connected for some other pair of vertices.
2.4.6 Consider a complete bipartite graph with its two parts equal or nearly equal.
2.4.8 (i) From Theorem 2.5, it suffices to show that there do not exist nonadjacent vertices x and y with $d(x)+d(y)<v$.

3.1.7 Use Exercise 1.2.4.

3.2.3 Suppose G contains r cutpoints. Use induction on r. Consider blocks containing exactly one cutpoint.
4.1.7 Write c for the vertex of degree 4 and x, y, z, t for the four of degree 1 . There are unique paths $c x, c y, c z, c t$. Show that every vertex other than c lies on exactly one of those paths. If any of those vertices has degree >2, prove there is another vertex of degree 1 .
4.1.8 consider a vertex of degree 1 , and its unique neighbour. Now work by induction on v.
4.1.11 (ii) Use induction on the number of vertices. Given a tree T, look at the tree derived by deleting vertices of degree 1 from T.
4.3.4 Consider a tree in which the weights are the negative of those given.
6.1.8 Select a vertex x of degree 1 . If $y z$ is any edge of the tree, define the distance from x to $y z$ to be the smaller of $D(x, y)$ and $D(x, z)$. Prove that every one-factor of T must contain preciselt the edges of even distance from x. If these form a one-factor, T has one; otherwise it has none. (There are other proofs.)
6.1.9 Proceed by induction on the number of vertices. Use Exercise 2.1.8.
6.3.3 Assuming G has 1 or 2 bridges, it is useful to notice that the proof of Theorem 6.10 works just as well if there were 2 edges joining the vertices x and y instead of just one. Proceed by induction on the number of vertices of G.

6.4.4 Generalize Exercise 6.4.3.

7.3.4 Use Theorem 7.7.

7.4.6 Suppose G is a graph with $k m$ edges, $k \geq \chi^{\prime}(G)$. Write \mathcal{C} for the set । edge-colorings of G in k colors. If $\pi \in \mathcal{C}$, define $n(\pi)=\sum\left|e_{i}-m\right|$, where e_{i} is the number of edges receiving color c_{i} under, π, and the sum is over all colors. Then define $n_{0}=\min \{n(\pi): \pi \in \mathcal{C}\}$. Assume $n_{0}>0$ and derive a contradiction. Then a coloring achieving n_{0} has the required property.
7.5.1 Verify this exhaustively. But: (i) to prove that whenever an edge is deleted the result can be 3-edge-colored, notice that there are only 3 different sorts of edge (chord, outside edge with both endpoints degree 3, outside edge with one of degree 2) (in fact, the first two are equivalent, but proving this is just as hard as checking one more case); to prove the graph requires 4 colors, notice that there are only three different ways to 3 -color the top 5 -cycle, and none can be completed.
8.2.2 Use Theorems 8.5 and 8.6.
9.1.9 Form a graph whose vertices are the rows $M_{1}, M_{2}, \ldots, M_{s}$ of M If $i<j$, then allocate a color to the edge $M_{i} M_{j}$ corresponding to the ordered pair ($m_{i j}, m_{j i}$).
10.1.3 Follow the proof of Theorem 2.1.
12.4.4 The maximum flow cannot exceed 14 because of the cut $[s, a b c d t]$.
13.1.7 Use a function f that oscillates finitely.

Answers and Solutions

Exercises 1.1

1.1.1 (i) S; (ii) RS; (iii) A; (iv) RST.

1.1.3 Answer (iii) is a digraph, because the relation is not symmetric; the others are graphs. (i) $K_{7}-$ edge 23 ; (ii) K_{7}; (iii) directed path ($3 \mapsto 2 \mapsto 1 \mapsto$

1.1.5 (i) S; (ii) R; (iii) S; (iv) AS.

Exercises 1.2

1.2.1 $G: I=\begin{array}{cc}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array} ; A=\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}$.

$$
H: I=\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array} ; A=\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array} .
$$

1.2.4 Say V_{1}, V_{2} are non-empty disjoint sets of vertices of G such that there is no edge joining any vertex of V_{1} to any vertex of V_{2}. Concider vertices x, y of G. If one is in V_{1} and the other is in V_{2}, then they are adjacent in \bar{G}. If both are in the same set, say V_{1}, then select any vertex z in $V_{2} ; x z$ and $z y$ are edges in \bar{G}.
1.2.7 Say the two parts of G contain p and q vertices respectively. Then G has at most $p q$ edges (it will have fewer unless G is complete bipartite). Moreover, $p+q=v$. Say $p=\frac{v}{2}+\pi, q=\frac{v}{2}-\pi$. Then $p q=\left(\frac{v}{2}+\pi\right)\left(\frac{v}{2}-\pi\right)$ $=\frac{v^{2}}{4}-\pi^{2} \leq \frac{v^{2}}{4}$.

1.2.10 $2 n ; A=$| 0 | 1 | 1 | 1 | 1 | 1 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 0 | 1 | | | |
| 1 | 1 | 0 | 1 | 0 | 0 | | | |
| 1 | 0 | 1 | 0 | 1 | 0 | | | |
| 1 | 0 | 0 | 1 | 0 | 1 | | | |
| | 1 | 1 | 0 | 0 | 1 | 0 | | |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | | | | | | | |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |.

Exercises 1.3

1.3.1 Suppose x and y are not adjacent. Then each of them is adjacent to at least $\frac{v-1}{2}$ of the remaining $v-2$ vertices. So they have a common neighbor, say z, and $x z y$ is a walk in G.
1.3.3 $\{3,2,2,2,1\}$ is valid iff $\{1,1,1,1\}$ is valid. The latter corresponds to two disjoint edges, so it is valid. Two examples: $\mathbb{\square}$
1.3.6 (i) no (you get $\{2,2,0,0\}$); (ii) yes; (iii) no (sum is odd); (iv) yes. If d and v are natural numbers, not both odd, with $v>d$, then there there is a regular graph of degree d with exactly v vertices.
1.3.10 Consider a graph with vertices $x_{1}, x_{2}, \ldots, x_{v}$, where the subscripts are integers modulo v. If d is even, say $d=2 n$, the edges are $x_{i} x_{j}: 1 \leq i \leq v, i+1 \leq j \leq i+n$.
This will yield the required graph provided $2 n<v$. If d is odd, $d=2 n+1$, then v must be even. Use the same construction and add an edge $x_{i} x_{\frac{\eta}{2}+i}$ for each i.
1.3.11 (i) yes; yes. (ii) Here is one construction. Assign a vertex to each member of the sequence. Arbitrarily pair up the vertices corresponding to odd integers and join the pairs. Then, to a vertex corresponding to integer d, assign〔d/2〕 loops.

Exercises 2.1

2.1.1 (i) sacbt, sacbdt, sact, sbct, sbdt, sbt, scbt, scbdt, sct; 2 .
2.1 .2 (i) $s a: 1, s b: 1, s c: 1, s d: 2, s t: 2, a b: 2, a c: 1, a d: 3, a t: 2, b c: 1$, $b d: 1, b t: 1, c d: 2, c t: 1, d t: 1$.
2.1.4 (i) Suppose i is the smallest integer such that $u_{i}=v_{j}$ for some j. Then $x, u_{1}, \ldots, u_{i}, v_{j-1}, \ldots, v_{1}, x$ is a cycle unless $i=j=1$. (ii) Consider $u_{1}=v_{1}=y$.
2.1.9 Clearly $D(G)=$ the maximum distance between any two vertices in G. Say x and y attain this maximum distance - $D(x, y)=D(G)$ - and say z is a vertex that attains the eccentricity $-\varepsilon(z)=R(G)$. Clearly R is a distance between two vertices, so $R \leq D$. But by definition $D(z, t) \leq \varepsilon(z)=R(G)$ for every vertex t, so $D=D(x, y) \leq D(x, z)+D(z, y) \leq 2 R$.
2.1.10 The result is clearly true if G is complete. Suppose not. If G has diameter D ($D>1$), choose two vertices a and t whose distance is D. Let a, \ldots, r, s, t be a path of length D from a to t in $G . a=r$ is possible. $r \nsim t$. Suppose $G *=G-\{s, t\}$ is not connected; say A is the component of $G *$ that contains a. Every vertex in $G *-A$ must be adjacent in G to s. (If not, suppose z were a vertex in $G *-A$ whose distance from s is at least 2. Then the shortest path from a to z must be of length at least $D+1$, which is impossible.) If $G *-A$ contains any edge, say $b c$, then s is still connected to every vertex of $G *-A-\{b, c\}$; moreover s is adjacent to t and connected to every vertex in A (since A is connected and s is connected to a). So $G-\{b, c\}$ is connected and we could take $\{x, y\}=\{b, c\}$.
We need only consider the case where $G *-A$ consists of isolated vertices, all adjacent to s. If A has two elements, they together with r and s form an induced $K_{1,3}$. So $|A|=1$. Say $A=\{w\}$. If $w \sim t$ take $\{x, y\}=\{w, t\}$, and if $b \nsucc t$ then r, s, t, w form an induced $K_{1,3}$.

Exercises 2.2

2.2.2 (i) seft (length 9); (ii) sebt (length 11).

Exercises 2.3

2.3.1 (i) No Euler walk, as there are 4 odd vertices; 2 edges are needed. (ii) There is a closed Euler walk. (iii) There are two odd vertices, so there is an Euler walk, but not a closed one. Two edges are needed.

Exercises 2.4

2.4.2

(iv)

2.4 .8 (i) From Theorem 2.5, it suffices to show that there do not exist nonadjacent vertices x and y with $d(x)+d(y)<v$. So, of the $2 v-3$ pairs $x z$ and $y z$, with $z \in V(G)$, at most $v-1$ are edges. So G has at most $\binom{v}{2}-(v-2)=\frac{v^{2}-3 v+4}{2}$ edges.
(ii) If G is formed from K_{v-1} by adding one vertex and one edge connecting it to one of the original vertices, then G has $\frac{v^{2}-3 v+4}{2}$ edges and is not Hamiltonian.
2.4.10 (i) One solution is to seat the people in the following sequences, where the labels are treated as integers $\bmod 11:$ (i) $1,2,3, \ldots$; (ii) $1,3,5, \ldots$; (iii) 1 , $4,7, \ldots$; (iv) $1,5,9, \ldots$; (v) $1,6,11, \ldots$.. In other words, on day i, the labels increase by $i(\bmod 11)$. Over 5 days, x sits next to $x \pm 1, x \pm 2, x \pm 3, x \pm 4$ and $x \pm 5$, giving every possible neighbor once.

Exercises 2.5

2.5.1 ($v-1)$!/2.
2.5.4 (i) SE: abcdea, cost 115. NN: acdeba, cost 118.
(ii) SE: abcdea, cost 286. NN: abcdea, cost 286.
2.5 .5 (i) acdeba, bcdeab, cdeabc, dcbaed, ecdabe, costs 118, 115, 115, 115, 121 respectively.
(ii) abcdea, bcdeab, cdeabc, dabced, eabcde, costs 286, 286, 286, 319, 286 respectively.
2.5.7 A directed graph model must be used. Replace each edge $x y$ by two arcs $x y$ and $y x$, with the cost of travel shown on each. In the nearest neighbor algorithm, one considers all arcs with tail x when choosing the continuation from vertex x.

Exercises 3.1

3.1.2 If it did, deleting the bridge would yield components with exactly one odd vertex.
3.1.3
(i) $[a, b c d e]=\{a c, a d\}$
$[a b, c d e]=\{a c, a d, b e\}$
$[a c, b d e]=\{a d, c d\}$
$[a b c, d e]=\{a d, b e, c d\}$
$[a d, b c e]=\{a c, d e\}$
$[a b d, c e]=\{a c, b e, c d, d e\}$
$[a c d, b e]=\{d e\}$
$[a b c d, e]=\{b e, d e\}$
(ii) $[a, b c d]=\{a b\}$
$[a b, c d]=\{b c, b d\}$
$[a c, b d]=\{a b, b c, c d\}$
$[a b c, d]=\{b d, c d\}$
$[a e, b c d]=\{a c, a d, b e, d e\}$
$[a b e, c d]=\{a c, a d, d e\}$
$[a c e, b d]=\{a d, b e, c d, d e\}$
$[a b c e, d]=\{a d, c d, d e\}$
$[a d e, b c]=\{a c, b e, c d\}$
$[a b d e, c]=\{a c, c d\}$
$[a c d e, b]=\{b e\}$

$$
\begin{aligned}
{[a d, b c] } & =\{a b, b d, c d\} \\
{[a b d, c] } & =\{b c, c d\} \\
{[a c d, b] } & =\{a b, b c, b d\}
\end{aligned}
$$

Exercises 3.2

3.2.1 Suppose G is a connected graph with at least two edges.
(i) G is connected and is not K_{2}, so each edge is adjacent to some other edge. So "any two adjacent edges lie on a cycle" implies that each edge lies on a cycle. So each point lies on a cycle, and there are no cutpoints.
(ii) Suppose $x y$ and $y z$ are adjacent edges that do not lie on any common cycle. There can be no path from x to z that does not contain y (if there were, that path plus $x y$ and $y z$ would be a cycle containing the two edges). So y is a cutpoint.
3.2.3 Suppose G contains r cutpoints. We proceed by induction on r. The case $r=0$ is trivially true; the equation becomes $-1=-1$. Assume the result is true for graphs with r or fewer cutpoints, $r \geq 0$, and suppose G has $r+1$ cutpoints. We define an endblock in G to be a block containing exactly one cutpoint y. Clearly G contains an endblock. Select an endblock E of G, and form a graph H by deleting from G all vertices and edges of E except for the unique cutpoint. Then $b(H)=b(G)-1$ blocks. For each vertex x of $H, b_{H}(x)=b_{G}(x)$, except $b_{H}(y)=b_{G}(y)-1$. The $|V(E)|-$ 1 deleted vertices each belonged to 1 block of G. By induction, $b(H)-$ $1=\sum_{x \in V(H)}\left[b_{H}(x)-1\right]=\sum_{x \in V(H) \cdot x \neq y}\left[b_{H}(x)-1\right]+b_{H}(y)-1=$ $\sum_{x \in V(H), x \neq y}\left[b_{G}(x)-1\right]+b_{G}(y)$. So $b(G)-1=\sum_{x \in V(H)}[b(x)-1]=$ $\sum_{x \in V(G)}[b(x)-1]$ (the vertices of G not in H all contribute 0 to the sum, because they were all in one block of G).

Exercises 3.3

3.3.1 $\kappa, \kappa^{\prime}, \delta=$ (i) $1,1,1$
(ii) $1,2,2$
(iii) $1,1,2: \sim><$
3.3.2 Each graph contains a spanning cycle, so each has $\kappa \geq 2$. The third has $\delta=2$, so by Theorem $3.5 \kappa^{\prime}=2$. In the first, removing of any vertex leaves a Hamiltonian graph, so at least two more must be deleted to disconnect, and $\kappa=3$, whence $\kappa^{\prime}=3$. For the second graph, the preceding argument shows that the only candidates for two vertices whose removal would disconnect it are the top two in the diagram, but they do not work, so $\kappa=\kappa^{\prime}=3$. The answers are (i) 3,3 , (ii) 3,3 , (iii) 2,2 .
3.3.5 Suppose G has $\delta(G) \geq \frac{1}{2} v(G)$ but $\kappa^{\prime}(G)<\delta(G)$. Select a set S of $\kappa^{\prime}(G)$ edges whose removal disconnects G; say $G-S$ consists of disjoint parts with vertex-sets X and Y. Every vertex of X has degree at least δ, and there are fewer than δ edges of G with exactly one endpoint in X (only the members of S fit this description), so there is at least one vertex in X with all its neighbors in X. So $|X|>\delta$; similarly $|Y|>\delta$; so $v(G)=$ $|X|+|Y|>2 \cdot \delta$, a contradiction.
An example with $v=6, \delta=2, \kappa^{\prime}=1$ consists of two disjoint triangles plus an edge joining a vertex of one to a vertex of the other.

Exercises 4.1

4.1.3 Suppose G is a finite acyclic graph with v vertices. If G is connected it is a tree, so it has $v-1$ edges by Theorem treesize. Now assume G has $v-1$ edges. Suppose G consists of c components $G_{1}, G_{2}, \ldots, G_{c}$, where G_{i} has v_{i} vertices; $\sum v_{i}=v$. Each G_{i} is a tree, so it has $v_{i}-1$ edges, and G has $\sum\left(v_{i}-1\right)=v-c$. So $c=1$ and G is connected.
4.1.5 If G contains edges $x y$ and $y z$ then G^{2} contains triangle $x y z$. so G^{2} a tree $\Rightarrow G$ consists of disjoint K_{1} 's and K_{2} 's $\Rightarrow G^{2}$ consists of disjoint K_{1} 's and K_{2} 's. The only trees are K_{1} and K_{2}.
4.1.6 One example: vertices are integers, $x \sim x+1$.
4.1.9 Suppose x has degree k. The longest path in T contains at most two edges incident with x, so there are $k-2$ edges known not to be on the pat most $(v-1)-(k-2)$ edges are available.
4.1.12 (ii) Suppose G is a connected self-centered graph with a cutpoint x. S...... a vertex y such that $D(x, y)=\varepsilon(x)$. Let P be a shortest $x y$-path. Then P lies completely within some component of $G-x$. Select z, a vertex in some other component of $G-x$. Clearly $\varepsilon(z) \geq D(z, y)>D(x, y)=\varepsilon(x)$, contradicting the centrality of x.

Exercises 4.2

4.2.3 The "only if" is obvious. When $v \geq 4$ there are many constructions. One example: take the vertices as $1,2, \ldots, v(\bmod v)$. One tree is the path $1,2, \ldots$, v. If v is even, take as the second tree the path $1,3, \ldots, v, 2, \ldots, v-1$. If v is odd, take the path $1,3, \ldots, v-1,2,4, \ldots, v$. Another example: select four different vertices x, y, z, w. One tree consists of all edges from x to another vertex other than $x y$, plus $z y$. The other consists of all edges from y to another vertex other than $y z$, plus $w z$.
4.2.4 Use $\nabla=\nabla+\square=2+3=5$

$$
\begin{equation*}
\Delta=\Delta+\Delta=\Delta+5=3+5=8 \tag{i}
\end{equation*}
$$

(ii) $\square=\square+\Delta=8+12=20$
(iii) $\Delta=\Delta+\Delta=(X+A)+(A+\Delta \Delta$

$$
=X+X+2(X+X)+8
$$

$$
=\gamma+2+\infty+2(\gamma+\gamma+()+8
$$

$$
=3+2+4+2(5+3+4)+8=41
$$

4.2.9 16; 125.
4.2.12 It is clearly necessary that H have no cycles, and if $H=G$ the result is immediate. So suppose H is acyclic and $H<G$. Say H has disjoint components $H_{1}, H_{2}, \ldots, H_{n}$. Since G is connected, there is in each H_{i} some vertex x_{i} that is adjacent to some vertex, y_{i} say, that is in G but not in H. Write $S=V(G) \backslash V(H)$, and select a spanning tree T in $\langle S\rangle$. Then

$$
T \cup H \cup\left\{x_{i} y_{i}: 1 \leq i \leq n\right\}
$$

is a spanning tree in G.

rcises 4.3

1 There are several solutions, but the minimum weight is (i) 54 , (ii) 38 , (iii) 33.

Exercises 5.1

5.1.1 (i)

+	0	1	2
0	0	1	2
1	1	0	2
2	2	0	1

\times	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

5.1.3 There is exactly one of dimension $0(0)$, one of dimension $4(V)$, and none of dimension 5 . For dimension 1 , the subspaces are $0, x$ where $x \neq 0$, so there are $|V|-1=15$ of them. For dimension 2, any ordered pair x, y of distinct nonzero elements determine the subspace $0, x, y, x+y$. Each of these ordered bases arises 6 times if all ordered pairs are listed, so there are $15 \cdot 14 / 6=35$. For dimension 3, there are $15 \cdot 14 \cdot 12$ ordered bases. Each subspace has 8 elements, so by (5.1) it has 764 ordered bases. So the number of subspaces is $15 \cdot 14 \cdot 12 /(7 \cdot 6 \cdot 4)=15$. (Those who know a little more linear algebra will see from perpendicularity that the number of 3-dimensional subspaces must equal the number of 1 -dimensional subspaces.)

Exercises 5.2

5.2.2 They form a basis if and only if n is even. Write $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and $S_{i}=S \backslash\left\{x_{i}\right\} . \sum S_{i}=(n-1) S$, where n is reduced $\bmod 2$. If n is odd, the sum is zero, and the S_{i} are not independent. If n is even, $\sum S_{i}=S$, and $\sum_{i \neq j} S_{i}=S_{j}+S_{j}+\sum_{i \neq j} S_{i}=S_{j}+S=\left\{x_{j}\right\}$, so $\left\langle\left\{S_{i}\right\}\right\rangle$ contains all the singletons, so it contains all of S. Since there are n elements, $\left\{S_{i}\right\}$ is a basis.

Exercises 5.3

5.3.1 The cycles of K_{4} are $123,145,256,364,1264$, 1563,2345 . The union of any two of these is another of them. So the cycle space has $8=2^{3}$ elements (don't forget \emptyset), so it has dimension 3.

Exercises 5.4

5.4.1 The cycle of length 4 belongs to both. A necessary (not sufficient!) property is that the graph must have a cycle of even length.
5.4 .2 (i) (a) Cycle subspace $\{\emptyset, 123,456,123456\}$, cutset subspace $\{\emptyset, 13,23,12,4,134,234,124$, 56, 1356, 2356, 1256, 456, 13456, 13456, 23456, 12456, 57, 1357, 2357, 1257, 457, 13457, 23457, 12457, 67, 1367, 2367, 1267, 467, 13467, 23467,
 12467].
(b) Tree, so cycle subspace $=\emptyset$. Cutset subspace contains all 2^{5} subsets of the edges.
(ii) (a) Cycle subspace has $4=2^{2}$ elements, dimension 2. Cutset subspace has $32=2^{5}$ elements, dimension $5.2+5=7$. (b) Cycle subspace has $1=2^{0}$ elements, dimension 0 . Cutset subspace has $32=2^{5}$ elements, dimension $5.0+5=5$.

Exercises 5.5

5.5.1 Choose i such that $2 \leq i \leq k$ and let L_{i} be the fundamental cycle corresponding to the edge a_{i}. Now a_{1} is the only edge of T in C and a_{i} is the only edge of \bar{T} in L_{i}. So $\left\{a_{i}\right\} \subseteq C \cap L_{i} \subseteq\left\{a_{1}, a_{i}\right\}$. By Lemma 5.3, $\left|L \cap C_{i}\right|$ is even, so $L \cap C_{i}=\left\{a_{1}, a_{i}\right\}$ whence $a_{1} \in L_{i}$. Now let $a_{k+j}, j \geq 1$, be an edge of \bar{T}, and L_{k+j} the corresponding cycle. Since L_{k+j} contains no other edge of $\bar{T}, \emptyset \subseteq C \cap L_{k+j} \subseteq\left\{a_{1}\right\}$. Again by Lemma $5.3,\left|L \cap C_{k+j}\right|$ is even, so $L \cap C_{k+j}=\emptyset$, so $a+1 \notin C_{k+j}$.
5.5 .4 (i) $1,2,3,4,5,6,7,8,9, T$.
(ii) (12345), (2347TA), (2379B), (1268C), (348T D), (12369E)
(iii) $(15 C E),(25 A B C E),(35 A B D E),(45 A D)$, ($6 C E$), ($7 A B$), ($8 C D$), ($9 B E$), (TAD)
(iv) Cycles of length 8 .

Exercises 6.1

6.1.2 Suppose N has a one-factor. One edge from the center vertex must be chosen; say it is the vertical one. Then the remaining edges of the factor must form a one-factor in the following graph, which has odd components:

6.1 .5 (i) $a b c d$ ef $g h ; a e b c d h f g$.
(ii) ae bc dh fg; ae bg dh fc; af be ch dg.
6.1.9 Suppose G has $2 n$ vertices. We proceed by induction on n. The result is true for $n=2$ (see Exercise 6.1.1). Say it is true for $n \leq N$. Suppose $v(G)=$ $2 N+2$. By Exercise 2.1.10, G has an edge $x y$ such that $G-\{x, y\}$ is connected. Now $G-\{x, y\}$ contains no induced $K_{1,3}$, and has $2 N$ vertices. So by the induction hypothesis it has a one-factor. Append $x y$ to that factor to construct a one-factor in G.

Exercises 6.2

Use a one-factorization of $K_{n, n}$. An example for $n=4$ is $1 a 2 b 3 c 4 d, 1 b 2 a 3 d 4 c$, 1c 2d $3 a 4 b, 1 d 2 c 3 b 4 a$.
6.2.2 (i) It is required to find edge-disjoint factors of K_{v}, each of which consists of $v / 3$ triangles.

Exercises 6.3

6.3.1 No. For example, consider $3 K_{3} \cup 3 K_{5}$.
6.3.3 If G has no bridge, Theorem 6.10 gives the result. for the cases where G has 1 or 2 bridges, it is useful to notice that the proof of Theorem 6.10 works just as well if there were 2 edges joining the vertices x and y instead of just one. We proceed by induction on the number of vertices of G. The result is trivial for 4 vertices.
If G has 1 bridge, $x y$, write G_{x} and G_{y} for the components of $G-x y$, with $x \in G_{x}$. Say the vertices adjacent to x in $G-x$ are x_{1} and x_{2}. The (multi)graph defined by adding edge $x_{1} x_{2}$ to $G_{x}-x$ is cubic has no bridge, so it has a 1 -factor not containing the new edge. (Simply insist that it contains one of the other edges incident with x_{1}.) So does the graph similarly derived from G_{y}. Add $x y$ to the union of these factors.
If G has 2 bridges, they cannot have a common endpoint (if they did, then the third edge through that vertex would also be a bridge.) Say the bridges are $x y$ and $z t$, and say the three components of $G-x y-z t$ are G_{x} (containing x), G_{y} (containing y and z), and G_{t} (containing t). Then G_{y} has an even number of vertices, while the others are odd. We can construct a one-factor containing $y z$ in the bridgeless (multi)graph $G_{y}+y z$, and a onefactor including the bridge $x t$ in $G_{x} \cup G_{t}+x t$. Their union is the required factor.

Exercises 6.4

6.4.2 There is no example for $s=1$. For $s=2, K_{3} \cup P_{2}$ os a $1-(1,1,2)$ graph.
6.4.3 The degrees are clearly correct. But the new vertex is a cutpoint, so G is not Hamiltonian.

Exercises 7.1

7.1.1 3. ($x>2$, because there is an odd cycle. 3 is easily realized.)
7.1.3 Write χ for $\chi(G), \beta$ for $\beta(G)$.
(i) Select a χ-coloring of G. Write V_{i} for the color classes. Each V_{i} is an endependent set, so $\left|V_{i}\right| \leq \beta$, so $v=\sum\left|V_{i}\right| \leq \chi \cdot \beta$.
(ii)Select a maximal independent set S; $|S|=\beta$. G can be colored in $\chi(G-$ S) +1 colors (just color all points of S in a new color). $G-S$ has τ vertices, so obviously $\chi(G-S) \leq v-\beta$. so $\chi \leq \chi(G-S)+1 \leq v-\ell$
7.1.6 $x_{1}, x_{6}, x_{2}, x_{3}, x_{4}, x_{5}$ works.
7.1.8 Select one edge in the cycle, say $x y$. By Theorem 7.1, $\chi(G-x y)=2$. Select a 2 -coloring of $G-x y$ and apply a third color to $x y$.
7.1.10 Color $G-v$ in n colors. There must be a color not on any vertex adjacent to \boldsymbol{x} in G. Apply that color to \boldsymbol{x}.

Exercises 7.3

7.3.2 (i) Only one has a vertex of degree 2.
(ii) Neither graph has any coloring in $0,1,2$ or 3 colors (each contains a K_{4}), so each has polynomial divisible by $x(x-1)(x-2)(x-3)$. For 4 colors there are 48 colorings: if colors $1,2,3,4$ are applied to the upper triangle, then the other colors are determined as shown. In the first graph, t can be 2 or 3 , and in the second graph, (y, z) can be $(2,3)$ or $(3,2)$. This gives 2 colorings each, and $\{1,2,3,4\}$ can be permuted in 24 ways. So each has a polynomial of the form $p(x)=x^{6}-11 x^{5}+\ldots=x(x-1)(x-2)(x-$ 3) $\left(x^{2}+a x+b\right)=x^{6}+(a-6) x^{5}+\ldots$ Comparing coefficients of x^{5}, $a-6=-11, a=-5$. Then $p(4)=48$ reduces to $\left(4^{2}+4 \cdot 5+b\right)=2$, or $b=6$. So the polynomial is $x(x-1)(x-2)(x-3)\left(x^{2}-5 x+6\right)=$ $x(x-1)(x-2)^{2}(x-3)^{2}$, the same for both graphs.

7.3.4 From Theorem 7.7, such a graph would have 4 vertices, 4 edges and 2 components. There is no such graph.

Exercises 7.4

7.4.2 Any 8 -edge graph on 5 vertices has $\Delta=4$ (sum of degrees $=16$). There are two such graphs, the complements of $2 K_{2}$ and P_{3}. For the former, take a one-factorization of K_{6}, delete the edges of one factor and then delete one vertex; the remaining (partial) factors are the color classes in a 4 -edgecoloring. In the latter, consider the K_{5} on vertices $1,2,3,4,5$ with edges 15 and 25 deleted. Suitable color classes are \{12, 34\}, \{13, 24\}, \{14, 35\}, $\{23,45\}$. So the graphs both have edge-chromatic number 4 , and both are class 1.
7.4.3 First, observe that any 7 -edge graph on 5 vertices can be edge-colored in 4 colors, because it can be embedded in an 8 -edge graph on 5 vertices (and use the preceding exercise). Now if a 7 -edge graph can be edge-colored in 3 colors, one color would appear on 3 edges. But you can't have 3 disjoint edges on only 5 vertices.
7.4.6 Suppose G is a graph with $k m$ edges, $k \geq \chi^{\prime}(G)$. Write \mathcal{C} for the set of all edge-colorings of G in k colors. If $\pi \in \mathcal{C}$, define $n(\pi)=\sum\left|e_{i}-m\right|$, where e_{i} is the number of edges receiving color c_{i} under, π, and the sum is over all colors. Then define $n_{0}=\min \{n(\pi): \pi \in \mathcal{C}\}$. We prove that $n_{0}=0$. Then a coloring achieving n_{0} has the required property.
Suppose $n_{0}>0$. Let π_{0} be a coloring with $n\left(\pi_{0}\right)=n_{0}>0$. Since G has $k m$ edges, there exist color classes M_{1} and M_{2} under π such that $e_{1}=$ $\left|M_{1}\right|<m$ and $e_{2}=\left|M_{2}\right|>m$. Say the other color classes have sizes c_{3}, c_{4}, \ldots, c_{k}. Now $M_{1} \cup M_{2}$ is a union of paths and cycles. $e_{2}>e_{1} \Rightarrow$ the union includes at least one path P with its first and last edges from M_{2}. Exchange the colors of edges in P. The resulting edge-coloring π^{\prime} has one more edge in color C_{1} and one fewer in color c_{2}, so its color classes are of sizes $c_{1}-1, c_{2}-1, c_{3}, \ldots, c_{k}$, and $n\left(\pi^{\prime}\right)<n(\pi)$, a contradiction.
7.4.9 (i) By Exercise 6.1.4, $\chi^{\prime}(P)>3$, so by Theorem $7.11 \chi^{\prime}(P)=4$.
(ii) The Figure shows a 3 -edge-coloring of P - edge, so $\chi^{\prime}=3$.
(iii) delete the two broken lines from the Figure. $\chi^{\prime}=3$.

Exercises 7.5

7.5.3 Suppose G has cutpoint x and is edge critical with edge-chromatic number n. Say $G-x$ consists of two subgraphs G_{1} and G_{2} with common vertex x. Select vertices y in G_{1} and z in G_{2} adjacent to x. Choose edge-colorings π_{1} of $G-x y$ and π_{2} of $G-x z$ in the $n-1$ colors $c_{1}, c_{2}, \ldots, c_{n-1}$ (possible by
criticality). Permute the names of the colors in π_{2} so that the π_{2}-colors of edges joining x to vertices of G_{2} are different from the π_{1}-colors of edges joining x to vertices of G_{1} (this must be possible: G is class 2 , so the degree of x is less than n). Color the edges of G_{1} using π_{1} and the edges of G_{2} using π_{2}. This is an ($n-1$)-edge-coloring - contradiction.

Exercises 8.1

8.1.3 First, convince yourself that the drawing shown of $K_{2,3}$ is quite general. Now $K_{3.3}$ can be constructed from $K_{2.3}$ by adding one vertex adjacent to the black edges. Whichever face it is placed inside, one crossing can be achieved and is unavoidable.

8.1.5 To see that P is not planar, delete the two"horizontal" edges from the resentation in figure 2.3. When the vertices of degree 2 in this subg are elided, the result is $K_{3,3}$. The crossing number is 2 (this can be sh exhaustively, starting from a representation of $K_{3.3}$ with 1 crossing).

Exercises 8.2

8.2.4 From Theorem $1.1,2 e=\sum v \geq 6 v$, so $e \geq 3 v$. By Theorem $8.6, G$ is not planar. The result follows.

Exercises 8.3

8.3.2 Suppose there are connected planar graphs that cannot be colored in six colors, and let G one with the minimum number of vertices. Let x be a vertex of G of degree less than $6 . G-x$ is 6 -colorable; choose a 6 -coloring $\boldsymbol{\xi}$ of $G-x$. There will be some color, say c, that is not represented among the vertices adjacent to x in G. Define $\eta(x)=c$, and $\eta(y)=\xi(y)$ if $y \in V(G-x)$. Then η is a 5 -coloring of G - contradiction.

Exercises 9.1

9.1.1 (i) Clearly $R\left(P_{3}, K_{3}\right) \leq R\left(K_{3}, K_{3}\right)=6$.
(ii) G contains no $P_{3} \Leftrightarrow G$ contains no vertex of degree 2 . So the components of G are disjoint vertices (degree 0) and edges (degree 1).
(iii) If G contains an isolated vertex and 4 or more components then it has 3 or more components, so \bar{G} has a triangle.
(iii) suppose K_{5} is colored so as to contain no red P_{3} and no blue K_{3}. Let G be the subgraph of red edges. By (ii), (iii) \bar{G} contains a K_{3} unless $v \leq 4$. So $R\left(P_{3}, K_{3}\right) \leq 5$. But The K_{4} with edges $a b$ and $c d$ red and the others blue is suitable. So $R\left(P_{3}, K_{3}\right)=5$.
9.1.5 Say K_{v} contains no red or blue K_{4}. Select a vertex $x . R_{x}\left(B_{x}\right)$ is the set of vertices joined to x by red (blue) edges. Then $\langle R-x\rangle$ can contain no red K_{3} or blue K_{4} and $\left|R_{x}\right|<R(3,4)=9$. Similarly $\left|B_{x}\right|<9$. So $|V(x)| \leq$ $1+(9-1)+(9-1)=17$, and $R(4,4) \leq 18$.
9.1.7 Suppose the edges of K_{m+n} are colored in red and blue. Any vertex x has degree $m+n-1$, so if there are less than m red edges incident with x, there must be at least n blue edges. So $R\left(K_{1, m}, K_{1, n}\right) \leq m+n$.
If m or n is odd, then there exists a regular graph G of degree $m-1$ on $m+n-1$ vertices (see Exercise 1.3.10. Its complement \bar{G} is regular of degree $n-1$. Color the edges of G red and those of \bar{G} blue. This painting avoids any red $K_{1, m}$ and any blue $K_{1, n}$. So m or n odd $\rightarrow R\left(K_{1, m}, K_{1, n}\right)=$ $m+n$. In any painting of K_{m+n-1} that avoids both red ($K_{1, m}$ and blue $K_{1, n}$, no vertex can have more than $m-1$ red and $n-1$ blue incident edges, so each vertex has exactly $m-1$ red and $n-1$ blue, so the red chromatic subgraph is regular of degree $m-1$. This is impossible if m and n are both even (degree and order can't both be odd - Corollary 1.1.1). So m and n even $\rightarrow R\left(K_{1, m}, K_{1 . n}\right)<m+n$. But a painting of K_{m+n-2} is easy to find $-n-1$ is odd, so we can do it with no red $K_{m}-1$ or blue K_{n-1}, let alone K_{n}. So m and n even $\rightarrow R\left(K_{1, m}, K_{1, n}\right)=m+n-1$.

Exercises 9.2

9.2 .2 (i) Suppose n is odd. Suppose the edges of $K_{2 n}$ are colored red and blue, and vertex x is incident with r red and b blue edges. If $r \geq n, x$ will be the center of at least one red ($K_{1 . n}$, and if $r<n$ then $b \geq n$, and x is the center of at least one blue ($K_{1 . n}$. So each vertex is the center of a monochromatic star, and $N_{2.2 n}\left(K_{1, n}\right) \geq 2 n-1$. But if we select a regular graph of degree n on $2 n$ vertices (possible by Exercise 1.3.10), and color all its edges red and insert blue edges between all inadjacent pairs, the result has exactly $2 n-1$ monochromatic (red) n-stars.
(ii) Suppose n is even. Take a K_{n} with vertices $x_{1}, x_{2}, \ldots, x_{n}$ and a $K_{n_{1}}$ with vertices $y_{1}, y_{2}, \ldots, y_{n-1}$ disjoint from it. Color the following edges red: all the edges of the K_{n} except $x_{1} x_{2} x_{3} x_{4}, \ldots, x_{n-1} x_{n}$, all the edges of the $K_{n_{1}}$ and the edges $x_{1} y_{1} x_{2} y_{2}, \ldots, x_{n-1} y_{n-1}$. The other edges of $K_{2 n-1} \mathrm{r}$ are colored blue. Every vertex of this graph has red and blue degree $n-1$ except for x_{n}, which has n red and $n-2$ blue edges. So there is exaclty one monochromatic K_{1}, n, namely $x_{n}-x_{n-1} y_{1} y_{2} \ldots y_{n-1}$.

Exercises 9.4

9.4.1 If a graph is to contain no red K_{2}, it has no red edges, so it is a blue K_{v}. There is no blue K_{q} iff $v<q$. So $R(2, q)=q$. Similarly $R(p, 2)=p$.
9.4.3 Use Theorem 9.10 with $s=t=3$. This gives

$$
R_{2}(5) \geq\left(R_{2}(3)-1\right)\left(R_{2}(3)-1\right)+1=26
$$

Exercises 10.1

10.1.1 (a) (i) $s a, s t, a s, a t, b s, b t, t b$. (ii) $A(s)=\{a, t\}, B(s)=\{a, b\}, A(a)=$ $\{s, t\}, B(a)=\{s\}, A(b)=\{s, t\}, B(b)=\{t\}, A(t)=\{b\}, B(t)=$ $\{a, b, s\}$. (iii) sat, st. (iv) satb. (v) $\{s t, a t, b t\}$.
(b) (i) $s b, a s, b c, c a, c e, d c, e t, r d$. (ii) $A(s)=\{b\}, B(s)=\{a\}, A(a)=$ $\{s\}, B(a)=\{c\}, A(b)=\{c\}, B(b)=\{t\}, A(c)=\{a, e\}, B(c)=\{b, d\}$, $A(d)=\{c\}, B(d)=\{t\}, A(e)=\{t\}, B(e)=\{c\}, A(t)=\{d\}, B(t)=\{e\}$. (iii) $s b c e t$. (iv) $s b c a$ (not unique). (v) $\{b c\}$.
(c) (i) $s a, s c, s e, a b, a c, b d, c e, d c, d t, e t$. (ii) $A(s)=\{a, c, e\}, B(s)=\emptyset$, $A(a)=\{b, c\}, B(a)=\{s\}, A(b)=\{d\}, B(b)=\{a\}, A(c)=\{e\}$, $B(c)=\{s, a, d\}, A(d)=\{c, t\}, B(d)=\{b\}, A(e)=\{t\}, B(e)=\{s, c\}$, $A(t)=\emptyset, B(t)=\{d, e\}$. (iii) szbdt, sacet, scet, set. (iv) No cycles. (v) $\{s c, s e, a c, b d\}$.
10.1.5 (a) (i) $D K_{4}$, (ii) one component.
(b) (i) $D K_{7}$, (ii) one component.
(c) (i) $D P_{7}$ sabdcet, (ii) each vertex a different component.
10.1.8 No, it has loops.

Exercises 10.2

10.2.1 (i) Suppose the vertices are $x_{1}, x_{2}, \ldots, x_{v}$. Use the orientations $x_{1} \rightarrow x_{2}$, $x_{2} \rightarrow x_{3}, \ldots, x_{v-1} \rightarrow x_{v}, x_{v} \rightarrow x_{1}$. The other edges may be oriented in any way.
10.2 .5 (i) 12223, (ii) 11233.
10.2 .9 (i) $(x c b),(x c d a),(x c b d a)$. (ii) $(x d b),(x c d b),(x c d b a)$.
10.2.11 (i) $v s=$ sum of the scores $=$ sum of outdegrees. On the other hand, the sum of the outdegrees is $\binom{v}{2}$. So $v s=v(v-1) / 2$ and $v=2 s+1$.
(ii) One example: decompose $K_{2 s+1}$ into s (see Theorem 6.3), and in each cycle orient each edge in the same way around the cycle.

Exercises 10.3

10.3.2 Select an Euler walk in G. Orient each edge in the direction of the walk.

Exercises 11.1

11.1.2

All arcs are directed from left to right.

Frercises 11.2

2 (ii) 21;

All arcs are directed from left to right.
11.2.6

All arcs are directed from left to right. t is an added finish node. Critical path abdehit, duration 46.

Exercises 11.3

11.3.3 Say the duration of a task in Exercise 11.2 .6 was t. Then the expected time in this problem is $4 t / 3$ and its variance is $(t / 6)^{2}$. The critical path is unchanged, abdehklt, and the expected duration is $4 \cdot 46 / 3=61.33$ days. The variance is $336 / 6^{2}$, so the probability of completion within 65 days is $P\left(N(61.33,3.055) \leq 65=P\left(N(0,1) \leq \frac{3.67}{3.055} P(N(0,1) \leq 1.20=.88\right.\right.$.
11.3.5 Expected times: $a: 16, b: 13.5$, $c: 18, d: 8, e: 16, f: 27, g:$ 8.5, $h: 10, i: 17, j: 9.5$. Critical path sbfjt, length 50 . Variances $b:\left(\frac{5}{6}\right)^{2}, f: 3^{2}, j:\left(\frac{3}{2}\right)^{2}$, overall $11.9444=3.38^{2}$. $P(N(50,3.38) \leq 52$
$=P\left(N(0,1) \leq \frac{2}{3.38}\right.$
$=P(N(0,1) \leq .59=.72$.

All arcs are directed from left to right.

Exercises 12.1

12.1.1 (i) sadt. (ii) sbdt.
(iii) (a) $\{a f, d f\}$, (b) \emptyset, (c) 11 , (d) 8 , (e) 5 , (f) 14.
12.1.4 (i) No: imbalance at b, g. (ii) Yes.

Exercises 12.2

12.2.3 (ii) 6. (iii) sabt. (iv) Change to $f(s a)=7, f(a b)=5, f(b t)=5$, other flows unchanged. This has value 10. (v) Augment along suxyzt-f(us) $=$ $0, f(x u)=0, f(x y)=4, f(y z)=4, f(z t)=3$. Value is 11 . (vi) 11 is maximal because [saux, bvwyzt] is a cut of capacity 11.
12.2.5 (i) $c[s, a b t]=5, c[s a, b t]=14$,
$c[s b, a t]=22, c[s a b, t]=12$.
Minimum $=12$. A flow of value 12 is shown.
(ii) $c[s, a b c t]=7, c[s a, b c t]=8$,
$c[s b, a c t]=8, c[s a b, c t]=7$,
$c[s c, a b t]=8, c[s a c, b t]=8$,
$c[s b c, a t]=13, c[s a b c, t]=8$.
Minimum $=7$. A flow of value 7 is

shown.
12.2.7 Replace x by two vertices, x_{1} and x_{2}. Every arc into x becomes an arc into x_{1}; every arc out of x becomes an arc out of x_{2}; and there is an $\operatorname{arc} x_{1} x_{2}$ of capacity d.

Exercises 12.3

12.3.2 First, observe that both are separating cuts:
$T \cap Y=\bar{S} \cap \bar{T}=\overline{S \cup T} ; \quad T \cup Y=\bar{S} \cup \bar{T}=\overline{S \cap T}$, $s \in S, X \Rightarrow s \in S \cup X, S \cap X ; t \in T, Y \Rightarrow t \in T \cap Y, T \cap Y$.
It is easiest to draw a diagram and use single letters to represent the capacities of edges between different sets of nodes. Write:
$c[S \cap X, T \cap X]=e, c[S \cap Y, T \cap Y]=f$, $c[S \cap X, S \cap Y]=g, c[T \cap X, T \cap Y]=h$. Then $c[S, T]=e+f, c[X, Y]=g+h$, so by minimality $e+f=g+h=m$, where m is the minimal cut size. So $e+g+f+h=2 m$. Now $c[S \cup X, T \cap$ Y] $=f+h \leq m$, by minimality, and also $c[S \cap X, T \cup Y]=e+g \leq m$. The only possibility is that both capacities equal m.

Exercises 12.4

12.4.1 There is a cut, [sabde, cft], of capacity 8 .
12.4.2 8 ($[s, a b c d e f t]$ is a cut of capacity 8).
12.4.5 Max flow values are 9 and 16. Examples of flows realizing these:
(i)

(ii)

Exercises 12.5

1752 Since there is no restriction on production or sales, add vertices s and t and put infinite capacity on all arcs sFi and Mit. Then carry out the algorithm. The maximum flow is 115 ; an example is shown (directions assumed to be as in the original). To see that this is maximum, observe the cut of capacity
 115 shown by the heavy line.
12.5.3 Yes. A suitable flow is shown in the Figure. (Again, directions are assumed to be as in the original.)

Exercises 13.1

13.1.1 If $f=O(g)$ and $g=O(h)$ then there exist a values n_{01} and n_{02} and positive constants K_{1} and K_{2} such that $f(n) \leq K_{1} g(n)$ whenever $n \geq n_{01}$ and $g(n) \leq K_{2} h(n)$ whenever $n \geq n_{02}$. So, if $n \geq \max \left\{n_{01}, n_{02}\right\}, f(n) \leq$ $K_{1} g(n) \leq g(n) \leq K_{1} K_{2} h(n)$. So $f=\mathrm{O}(h)$ (using $n_{0}=\max \left\{n_{01}, n_{02}\right\}$, $K=K_{1} K_{2}$).
13.1.8 In testing whether n is prime, one is answering the decision problem: is n in the set P_{n}, where

$$
P_{n}=\{x: x \leq n, x \text { is prime }\} .
$$

Since \mathcal{P}_{n} is asymptotically equal to \sqrt{n}, the input size of the problem is $\log n$, not n. If we write $t=\log n$ then $\sqrt{n}=e^{t / 2}$, so the problem is actually exponential in the input size.

Exercises 13.3

13.3.2 (i) It is easy to see that $w_{k ; i j}$ is the length of the shortest path from x_{i} to x_{j} among all paths that contain at most k edges, as required (this can be written formally as an induction). As no path can contain more than $v-1$ edges, W_{v} is the matrix of shortest paths.
(ii) In the algorithm, replace line 4. by:
4. for $k=1$ to $v-1$ do
and replace line 7 . by:
7.

$$
\text { for } h=1 \text { to } v \text { do }
$$

8. $\quad w_{k ; i j} \leftarrow \min \left\{w_{k-1 ; i j}, \min _{h}\left\{w_{k-1 ; i h}+w_{h j}\right\}\right\}$.
(iii) Complexity is v^{4}.
13.3.5 x_{0} is the arbitrarily chosen starting vertex. At any stage, S is the set of vertices and T is the set of edges already selected for the tree. For vertex $y \in V \backslash S, W(y)$ is the minimum weight of edges joining y to S
9. $T \leftarrow \emptyset$
10. $S \leftarrow\left\{x_{0}\right\}$
11. for all $y \in V \backslash S$ do $W(y) \leftarrow \min _{x \in S} w(x, y)$
12. $\quad e_{y} \leftarrow$ an edge $x y$ such that $W(y)=w(x, y)$
13. while $S \neq V$ do
14. begin
15. select $y_{0} \in V \backslash S$)
16. for all $y \in V \backslash S$ do
17. if $W\left(y<W\left(y_{0}\right)\right.$ then $y_{0} \leftarrow y$
18. $S \leftarrow S \cup\left\{y_{0}\right\}$
19. $\quad T \leftarrow T \cup\left\{e_{y_{0}}\right\}$
20. \quad for all $y \in V \backslash S$ do $W(y) \leftarrow \min \left\{W(y), w\left(y, y_{0}\right)\right.$
21. end

This is order v^{2} : the main part, beginning with step 6 , is of complexity v (steps 8 and 12 are both of order v, and 6 is carried out $v-1$ times.

Index

activity digraph, 143
activity network, 146
acyclic, 17, 43, 45, 49, 132
adjacency, 6, 8
directed, 131
adjacency list, 189
adjacency matrix, $6,10,11,18,189$, 193
edge-face, 110
weighted, 189
algorithm, 20, 86, 185-196
exponential, 188
hard, 188
intractable, 194
linear, 188
non-deterministic, 195
polynomial, 188
polynomial time verifiable, 195
sublinear, 188
algorithm for
$\chi(G) \leq \Delta G+1,194$
all shortest paths, 190-191
critical path, 148
depth-first search, 192-193
max flow min cut, 174-179, 194
minimal spanning tree, 51, 194
nearest neighbor, 32, 194
shortest path, 20, 190-191
sorted edges, 32, 194
strong orientation, 136
Traveling Salesman problem, 32
arc, 6, 131
empty, 168
full, 168
multiple, 131, 144
augmenting path, 168, 174
automorphism, 5
back-edge, 192
basis, 55, 56, 63
binary relation, 1-4, 10
antireflexive, 2, 10
graph of, 2
reflexive, 2
symmetric, 2,10
transitive, 4
bipartite, $8,10,72$
bipartite graph, 16, 86, 97, 111
block, 37-40, 80
critical, 40
block graph, 39
blocking set, 173
breadth-first search, 191, 194
breakthrough, 174
bridge, 35-37, 39, 43, 44, 50, 71, 108
bridges of Königsberg, 23
cartesian product, 1
of graphs, 9,89
center, 45
chord, 26,40
chromatic index, 96-104
chromatic number, 85-96, 133
chromatic polynomial, 91-96
circuit, 15
class 1 graph, 98-104
class 2 graph, 98-104
classical Ramsey theory, 118
clique, 7, 196
maximal, 7
clique graph, 7
clique number, 7
clique problem, 196
closed walk, 15
color class, $85,96,99$
coloring, 85-104
greedy, 86, 88
proper, 85
complement, 7, 63
in a graph, 7
complete bipartite graph, $8,72,108$, $111,119,120$
complete graph, 5, 72
oriented, 136
complexity, 185
order of, 186
component, $8,14,35,77,79,94$
computation, 185-196
connected, $8,10,16,19,35,40,43$, 49, 133
graph, 16
strongly, 133
vertices, 16
connectedness, 35-42
connectivity, 40-42, 103
core, 103
critical
edge-, 100, 103
vertex-, 87, 91
critical block, 40
critical path, 148
critical path analysis, 143-157
crossing, 110, 112
crossing number, 106-114
of complete bipartite graph, 107
of complete graph, 106
of tree, 106
cube, 74
cubic graph, $11,49,71,80$
cut, 165
minimal, 166-179
separating, 166,171
cut-edge, 35-37
cutpoint, 35-37, 40
cutset, $35,36,50,60,62,63,65$
cutset subspace, 58-68
cycle, $15-35,38,41,46,50,59,63$, $65,86,93,115,118,119$, 124, 136
directed, 132, 136
Hamilton, 26-31, 33
length, 15
weight, 19
cycle subspace, 58-68
degree, 11-14, 18, 44, 110, 111
indegree, 131
maximum, 86, 89, 97-104
minimum, 40, 44, 87
outdegree, 131
demand, 179
depth-first search, 191-193
diameter, 19
digon, 132
digraph, 2, 6, 131-184
acyclic, 145
Dijkstra's algorithm, see algorithm for shortest path
dimension, 55,56
of finite vector space, 55
directed cycle, 137
directed edge, 131
disconnected, 8, 134
distance, 16-19
is metric, 19
weighted, 19
dominating set, 195
domination problem, 195-196
earliest finish time, 147
earliest start time, 147
eccentricity, 19, 45
edge, 2, 5, 109
capacity, 159
directed, 131
endpoint, 5
independence, 7
pendant, 11
weight, 19
edge-coloring, 96-104
edge-connectivity, 40-42
edge-critical, 100, 103
edge-face adjacency matrix, 110
edge-weight, 189
empty arc, 167
endpoint, 5
Euler walk, 23-26
directed, 139-142
Euler's formula, 108-111
Euler's Theorem, 24-26
Eulerian graph, 97
Eulerization, 25
even vertex, 24
exponential algorithm, 188
face, 108-111
exterior, 108
factor, 69-84
factorization, 69-84
fan, 101
finish, 131, 132, 144
of arc, 6
five color Theorem, 112-113
flow, 159-184
maximal, 164-179
forest, 17
four color Theorem, 112-114
full arc, 167
fundamental cutset, 65, 66
fundamental cycle, 65,66
fundamental system
of cutsets, 65-68
of cycles, 65-68
generalized Ramsey theory, 118, 120
Goodman's Theorem, 120-122
graph, 2, 4
acyclic, 17
as model, $3,10,19,75,105$, 136, 140, 143, 159
bipartite, 8, 16, 86, 97, 111
center, 45
complete, 5, 72
complete bipartite, $8,72,108$, 111, 119, 120
connected, 8,16
diameter, 19
disconnected, 8
Eulerian, 97
infinite, 18, 44, 45
nonseparable, 37
order, 5
radius, 19, 45
regular, 11, 70, 71, 79
self-complementary, 10
size, 5
weight, 19
graph automorphism, 5
graph isomorphism, 5
Graph Isomorphism problem, 193, 195
graphical sequence, 11,14
greedy coloring, 86,88
Hamilton cycle, 26-31, 33, 41, 73, 74
directed, 137
Hamilton path, 26, 28, 29, 31
directed, 137
Hamiltonian, 26-31
hard algorithm, 188
head of arc, 6
homeomorphic, 107
incidence matrix, 7, 10, 11, 189
weighted, 189
indegree, 131, 139
independence number, 7,88
induced subgraph, 36
instance of a problem, 185
internal vertex, 37
intersection of graphs, 9
intractability, 185, 194-196
isolated, 11
isomorphism, 5, 10
join of graphs, 9
Kempe chain, 89-90
Kempe chain argument, 89-90
Kempe's proof, 112, 114
Kuratowski's Theorem, 107
Königsberg bridges, 23
length
of cycle, 15
of walk, 15
linear algorithm, 188
loop, 131, 144
major vertex, 101-103
map, 111-114
matching, 70
perfect, see one-factor
max flow min cut Theorem, 171-179
maximal flow, 164-179
characterization, 172
maximum degree, 86, 89, 97-104
mean, 153
metric, 19
minimal cut, 166-179
characterization, 172
minimal spanning tree, 51-54
minimum degree, 40, 87
minor vertex, 101
mode, 154
monochromatic, 115
monochromatic subgraph, 115-129
multigraph, 5, 46, 47, 49, 77
directed, 133, 139
multigraphs, 81
nearly Kirkman triple system, 77
neighbor, 6
neighborhood, 6
network
augmented, 160
completed, 160
nonseparable, 37
NP, 194-196
NPC, 195-196
null graph, 7
odd vertex, 24
one-factor, 69-84
one-factorization, 69-84
ordered, 70
oriented, 70, 76
standard, 72
order of complexity, 186
order requirement digraph, 146-157
orientation, 135
strong, 135, 138
oriented complete graph, 136
oriented graph, 135-139
origin of arc, 6
outdegree, 131, 139
P, 194-196
painting, see also edge-coloring, 9699, 115-129
maximal, 97, 98
proper, 115-129
path, 15-34, 43, 93, 119
augmenting, 168, 174
directed, 132
Hamilton, 26, 28, 29, 31
proper, 17
shortest, 19-22
weight, 19
pendant, 11
perfect matching, see one-factor
perfect square, 18,45
PERT, 153-157
Petersen graph, 18, 68, 71, 74, 99, 108
Petersen's Theorem, 71, 80-81
pigeonhole principle, 129
planar graph, 105
planar representation, 105
planarity, 105-114
plane representation, 109
polynomial algorithm, 188
poiynomial transformation, 195
polynomial
chromatic, 91-96
ar set, 56-58
ede, 143
is algorithm, see algorithm for minimal spanning tree
principal submatrices, 120
proper coloring, 85
queue, 194
radius, 19,45
Ramsey multiplicity, 120-123
Ramsey number, 116-120, 125
Ramsey theory, 115-130
classical, 118
generalized, 118
reachability, 133
in activity digraph, 145
reachability digraph, 135
regular graph, 11, 14, 70, 71, 79
representation of graph, 105
planar, 105
round, 75
schedule, 75
home-and-away, 75
Schur function, 128
score, 136
self-centered, 45
separating cut, 166, 171
shortest path, 19-22
sink, 160, 179
multiple, 162
slack, 146, 148
source, 159, 179
multiple, 162
spanning subgraph, 69
spanning tree, 46-54, 63-68, 191
depth-first, 191
minimal, 51-54, 194
spectrum, 96
square
of graph, 18,39
star, $8,10,36,43,75$
start, 131, 132, 144
of arc, 6
strong component, 134
strong orientation, 138
strongly connected, 133, 137
subgraph, 7, 40, 44, 58, 59
induced, 36, 75
proper, 7
spanning, 7, 46
weight, 19
sublinear algorithm, 188
subspace, 56
sum
of graphs, 9
sum-free set, 125, 128, 129
sum-free sets, 123
supply, 179
supply and demand, 179-184
supply-demand network, 180
symmetric difference, 56,58
symmetric sum-free partition, 124 $125,128,129$
tail of arc, 6
task, 143
duration, 146
independent, 143
terminus of arc, 6
tournament, 3, 75-77, 133, 135-139
competition, 75-77, 135, 136
irreducible, 136, 138
oriented graph, 133, 135-139
reducible, 136
regular, 137
round robin, 75,136
strongly connected, 137, 138
transitive, 136, 138
transportation network, 159-184
Traveling Salesman problem, 31-33, 34, 193-196
nearest neighbor algorithm, 32
sorted edges algorithm, 32
tree, 17, 43-45, 54, 63-68, 75, 191, 194
proper, 17
spanning, 46-54, 63-68
tree graph, 50
Tutte's Theorem, 77-83
underlying graph of digraph, 6
union of graphs, 9
valency, 11-14
value of flow, 161
variance, 153
vector space, 55-68
Venn diagram, 61, 62
verifiability, 195
vertex, $2,4,109,131$
adjacency, 7
eccentricity, 19, 45
even, 24
incidence, 7
interior, 161
internal, 37
isolated, 11
major, 101-103
minor, 101
odd, 24
pendant, 11
terminal, 161
weight, 19
vertex coloring, 85-96
vertex-critical, 87, 91
Vizing's Adjacency Lemma, 103
Vizing's Theorem, 98
walk, 8, 15-35, 45
closed, 15
directed, 132
Euler, 23-26
length, 15
weight, 19
weight, 19,51
vertex, 19
wheel, 10
Whitney's Theorem, 40

