Appendix

Appendix 1: Navigating R

1.1. Installing and Loading Packages

You will find that installing packages can be a pain. This section will try to make it as painless as possible. You can check what packages are loaded, as well as load packages, using the Packages tab. We suggest that you load packages using code so when you run the code in the future, the package loads automatically.

The first thing you want to do is install the desired package using the install.packages() function, and it can then be loaded with the library() function, which we suggest to use over the require() function. This can be done as follows:

```
install.packages("PackageName") # Install package
library(PackageName) # Load package
```

Was the package successfully loaded? If yes, GREAT! And you can stop reading this section. If it failed :-(keep reading and try a few trouble shooting steps.

Package not found:

Make sure that you typed the code correctly. Perhaps you forgot the period between install and packages or the S at the end of the word packages. Also, check to make sure that there are quotation marks around the package name when you install the package, but no quotation marks when you load the package. Remember as well that R is case sensitive.

Package XXX not available:

1. Sometimes R can be buggy and not allow you to set repositories. If step 1 fails, We have found the most success with the code below. Make sure to use the library () function afterward if the installation was successful.
```
install.packages("PackageName",
    repos='https://cloud.r-project.org')
```

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
A. Wooditch et al., A Beginner's Guide to Statistics for Criminology and

Criminal Justice Using R, https://doi.org/10.1007/978-3-030-50625-4
2. If the prior step fails, make sure that the device you are using is connected to the Internet and rerun the function.
3. R may not be checking in the right place to find the package. You can try to fix this by typing setRepositories(). You then want to enter the values 1 (for CRAN). Run setRepositories() again, and then enter 5 (for CRAN extras).
4. Still no work? Throw the laptop against the wall. No, just kidding. First, recheck that you have completed all prior steps correctly. Second, if that does not work, I would search the specific error that you are receiving online. There are many online forums that are very helpful in solving this issue.

1.2. Specifying Packages

In some circumstances, different functions will have the same name in different packages, or a package will contain a function with the same name as a function available in base R. Just because functions have the same name, it does not mean that they do the same thing or behave in the same way. For example, base R has a function called range() which simply calculates the range of values in a vector. However, the package called mosaic used in Chapter 6 also includes a function called range(), which behaves a little differently, containing additional options. You might have noticed that when you load packages, R will give you warnings about the function names which are conflicting. By default, R will use the function from the package which you loaded last. To avoid any confusion, you can actually specify which package you want to use by using : : before the function name, either with the package name or simply base for base R.

```
base::range(numeric_vector) # Uses the range() function
    ## from base R
mosaic::range(numeric_vector) # Uses the range() function
    ## from mosaic
```


1.3. Projects and Working Directories

Working with here () As noted in Chapter 2, we recommend that you use R projects. Wherever your R project is saved will be the default working directory. This is very helpful when it comes to loading or saving data, because you don't have to specify the whole working directory each time. However, doing this yourself might bring up problems, largely because working directories can differ between operating systems (e.g., Windows and Mac). Your code might work for you, but not for other people (or somebody else's code won't work for you!). A useful way to address this is to use the here() function from the here package, in tandem with an R project. Instead of specifying the working directory manually, you can input each section of the directory within here() and stick them altogether for you in a way that works consistently.

```
# Not recommended: specify whole working directory outside
## of a project
df <- read_csv(file = "C:/Users/your_name/Documents/my_
    project_folder/Datasets/my_file.csv")
# Improvement: work from your project
# But, this might not work for other people!
df <- read_csv(file = "Datasets/my_file.csv")
# Ideal situation: work from your R project and use here()
df <- read_csv(here("Datasets", "my_file.csv"))
```


1.4. Setting Working Directory

Although we recommend that you use R projects, and use working directories via the here() function, it is possible to set the working directory manually from within R using the function setwd (). How you do this varies between Windows and Mac, as demonstrated below.

Windows

Note that in Windows, you cannot simply copy and paste your desired working directory. You need to set the directory using two backward slashes or, alternatively, one forward slash.

```
# Either use two backward slashes
setwd("C:\\Users\\your_name\\Documents\\my_project_folder")
# Or change backward slashes to forward slashes
setwd("C:/Users/your_name/Documents/my_project_folder")
```


Mac

To set your working directory on a Mac:

```
setwd("/Users/your_name/Documents/my_project")
```


1.5. Get Working Directory

You can check to see if your working directory was successfully defined, or simply check what it is, by using getwd () on its own.

```
getwd()
```


1.6. Opening Data Files and Exporting Data

R is capable of reading and exporting data in numerous different formats, many of which are used in other software. Here, we make use of functions from the packages haven, readr, and readxl, contained within the tidyverse, as well as functions from the openxlsx and foreign packages.

1.6.1. \quad D Data Files

R data files have the file extension . R (or .RDA if the file was created in an older version of R). Note that if you don't assign the dataset to an object, R specifies a dataset name for you.

- Read: load(file) loads your .rda file into the R environment.
- Write: save(x, path) saves your data frame x into an R data file (.rda) specified in path.

```
# .rda Example
load("Dataset Name.rda") # Imports your .rda file
# Exports your data as an .rda file
write(ncvs, file = "New Dataset Name.rda")
```


1.6.2. General Delimited

- Read: read_delim(file, delim, ...) from the readr package reads in delimited files, where users can specify the delimiter in the delim argument. If you are importing a comma- or tab-delimited file, see below.
- Write: write_delim(x, path, delim = " ", na = "NA", append $=$ FALSE, col_names $=$ TRUE, ...) from the readr package writes R data objects \mathbf{x} to a delimited file specified in path. The delimiter being used should be entered into the delim argument. The default arguments for this function include that the string that should be used for missing values is NA; the new file should replace the old and not be appended to the bottom (set append = TRUE for the opposite) and that the column names will be included at the top of the file.

```
# General Delimited Example
ncvs <- read_delim("Dataset Name.txt",
    delim = "\t", col_names = TRUE) # Importing a
                                    ## tab-delimited
                                    ## text file
write_delim(ncvs, "New Dataset Name.txt", delim = "\t",
na = "NA", append = FALSE, col_names = TRUE) # Exporting the
                                ## tab-delimited
                                ## text file
```


1.6.3. Comma Separated

- Read: read_csv(file, . . .) from the readr package imports comma-separated files. You can specify whether or not you want the first row of your data to be considered the variable names. read csv2(file, ...) can also be used for the ; separator.
- Write: write_csv(x, path, na = "NA", append = FALSE, col_names $=$ TRUE,...) writes your data frame x to a comma-separated file specified in path. The default arguments for this function include that the string that should be used for missing values is NA; the new file should replace the old and not be appended to the bottom (set append = TRUE for the opposite); and the column names will be included at the top of the file. write_csv2() may be used for the ; separator.

```
# .csv Example
# Importing CSV file with the header
ncvs <- read_csv("Dataset Name.csv", col_names = TRUE)
# Importing CSV file without header
ncvs <- read_csv("Dataset Name.csv", col_names = FALSE)
# Exporting as a new CSV file with headers
write_csv(ncvs, file = "NewName.csv", na = "NA",
append = FALSE, col_names = TRUE)
# Exporting as a new CSV file without headers
write_csv(ncvs, file = " NewName.csv", na = "NA",
append = FALSE, col_names = FALSE)
```


1.6.4. Tab Separated

- Read: read_tsv(file, ...) from the readr package imports a tab-delimited file.
- Write: write_tsv(x, path, na = "NA", append = FALSE, col_names $=$ TRUE, ...) from the readr package can be used to write a data frame or matrix x to a tab-delimited file. col_names must be either True or False and specifies whether the column names should be written to the top of the file.

```
# .tsv Example
# Import the tab-delimited text file
ncvs <- read_tsv("Dataset Name.tsv", col_names = TRUE)
# Export as a tab-delimited text file
write_tsv(ncvs, file = "NewName.tsv", na = "NA",
    append = FALSE, col_names = TRUE)
```


1.6.5. Excel

- Read: read_excel(file, ...) imports both .xls and .xlsx files into R through the readxl package. read_excel(file, sheet = "name") and read_excel(file, sheet $=2$) both import a specific sheet from the Excel file that you want to use, either by name or index.
- Write: write.xlsx(x, path, ...) from the openxlsx package enables you to write your data frame \mathbf{x} as an Excel file specified in path.

```
# Excel Example
# Import excel file as the object ncvs
ncvs <- read_excel("Dataset Name.xlsx")
# Export as dataset "New Dataset Name.xLsx"
write.xlsx(ncvs, file = "New Dataset Name.xlsx")
```


1.6.6. dBASE

- Read: read.dbf(file, ...) from the package foreign may be used to read DBF files.
- Write: write. $\operatorname{dbf}(x$, path, ...) can write the R data frame x in DBF format.

```
# dBASE Example
# Import dbf dataset as the object ncvs
ncvs <- read.dbf("Dataset Name.dbf")
# Export as dataset named New Dataset Name.dbf
write.dbf(ncvs, file = "New Dataset Name.dbf")
```


1.6.7. Stata

- Read: read_dta(file, ...) reads .dta files using the package haven.
- Write: write_dta(x, path, version = 14, ...) writes your data to a Stata .dta file. This currently works with Stata versions 8-15.

```
# Stata Example
# Import Stata dataset as the object ncvs
ncvs <- read_dta("Dataset Name.dta")
# Export as Stata dataset named New Dataset Name.dta
write_dta(ncvs, file = "New Dataset Name.dta")
```


1.6.8. SPSS

- Read: read_sav(file, ...) from the package haven reads .sav files, and read_por() can be used for older SPSS files.
- Write: write_sav(x, path, ...).

```
# SPSS Example
# Import SPSS dataset as the object named ncvs
ncvs <- read_sav("Dataset Name.sav")
# Export as SPSS dataset named New Dataset Name.sav
write_sav(ncvs, file = "New Dataset Name.sav")
```


1.6.9. SAS

- Read: read_sas(file, . . .) from the haven package reads .sas 7bdat files, and read_xpt() can be used to open SAS transport files (versions 5 and 8)
- Write: write_sas(x, path, ...) writes your data to a SAS format file specified in path, though this functionality is currently experimental. Make sure to keep apprised of package updates to get the most out of these functions.

```
# SAS Example
# Import SAS dataset
ncvs <- read_sas("Dataset Name.sas7bdat")
# Write to a SAS data file named New Dataset Name.sasb7dat
write_sas(ncvs, file = "New Dataset Name.sasb7dat")
```


1.6.10. From Web URL

You can load data directly from the web as long as you have the URL. To do so, you will want to create an object with the permanent url address. Then, we use a function to read the data into R. The data that can be saved using an api is in tab-separated format; therefore, we use the read. table() function from base R. We pass two arguments to the function. The sep= ' $\backslash t$ ' is telling R this file is tab separated. The header $=T$ function is telling R that is TRUE (T) that this file has a first row that acts as a header (this row has the name of the variables). See example below where we load the data into an object named sharkey:

```
# URL Example
data_url <- "https://dataverse.harvard.edu/api/access/
    datafile/:persistentId?persistentId=doi:
    10.7910/DVN/46WIH0/ARS2VS"
sharkey <- read.table(url(data_url), sep = '\t',header = T)
```


1.6.11. Systat

- Read: read.systat(file, . . .) reads .sys or .syd files using the foreign package.
- Write: The foreign package does not currently support writing data in R as a Systat file. Make sure to keep apprised of package updates to get the most out of these functions.

```
# Systat Example
ncvs <- read.systat("Dataset Name.syd") # Import Systat file
```


1.6.12. Minitab

- Read: read.mtp(file, ...) reads .mtp files using the foreign package.
- Write: The foreign package does not currently support writing data in R as an.$m t p$ file. Make sure to keep apprised of package updates to get the most out of these functions.

```
# Minitab Example
ncvs <- read.mtp("Dataset Name.mtp") # Import .mtp dataset
```


1.6.13. Matlab

- Read: read.mat(file, ...) reads .mat files using the rmatio package.
- Write: write.mat (x, path, . . .) to save R objects as a MAT file.

```
# Matlab Example
ncvs <- read.mat("Dataset Name.mat") # Import MAT file
# Write object ncvs to a MAT file
write.mat(ncvs, file = "New Dataset Name.mat")
```


1.6.14. JSON

- Read: read_json(file, ...) reads JSON files using the jsonlite package.
- Write: write_json(x, path, . .) to save R objects in JSON format.

```
# JSON Example
ncvs <- read_json("Dataset Name.json") # Import JSON file
# Write object ncvs to a JSON file
write_json(ncvs, file = "New Dataset Name.json")
```


1.7. Viewing Data Frame

It is good practice to do this to ensure R has read the data correctly and there's nothing terribly wrong with your dataset. It can also give you a first impression for what the data look like. If you are used to spreadsheet-like views of data, you can use the View() function, which should open this view in R Studio. This can also be used to view R objects.

```
# Example with a dataset named burglary_df
View(burglary_df)
```


1.8. Using attach() and detach()

The attach function attaches the dataset name to the R file path so you can access variables of a dataset without calling the dataset name. You can turn off the attach function using detach().

```
# Without *Attach*:
df_name$my_variable
# With *Attach*:
attach(df_name)
my_variable
```

```
# Turn off *Attach*
```


Turn off *Attach*

detach("df_name")

```
detach("df_name")
```


1.9. Interrupting R

Sometimes R can take a long time to execute a task if you have asked it to perform a particularly complex or computationally demanding operation. In cases such as these, a small red stop sign will appear in the top right corner of your console in RStudio. Click on this stop sign to interrupt the process. You can also use the Esc key in Windows or Mac. If for some reason this still does not halt the process, you may need to wait out the operation or navigate
to your operating system's task manager and quit RStudio altogether. Take caution, however, that exiting the program will cause any unsaved work to be lost. It is best practice to save your work, and save it often!

1.10. Keyboard Shortcuts

Though it is possible to use your cursor to navigate and execute tasks within the RStudio IDE, RStudio has a large number of keyboard shortcuts you can leverage without having to use your mouse. To check on the available shortcuts for RStudio, simply navigate to the Tools menu in the task bar, and select Keyboard shortcuts help from the dropdown. Users even have the option of customizing their keyboard shortcuts. Table A1 lists just a few common shortcuts that may come in handy for most users (adapted from this article: https://support.rstudio.com/hc/en-us/articles/ 200711853-Keyboard-Shortcuts).

Table A1 R Keyboard Shortcuts

TASK	SHORTCUT (WINDOWS/LINUX)	SHORTCUT (MAC)
Clear console	Ctrl + L	Ctrl + L
Navigate function history	Up/Down	Up/Down
Interrupt executing function	Esc	Esc
New document (except Chrome/Windows)	Ctrl Shift + N	Cmd + Shift + N
New document (Chrome only)	Ctrl + Alt + Shift + N	Cmd + Shift + Alt + N
Open document	Ctrl +0	Cmd + 0
Save document	Ctrl + S	Cmd + S
Run current line/section	Ctrl + Enter	Cmd + Return
Run current document	Ctrl + Alt + R	Cmd + Option + R
Insert assignment operator	Alt +	Option +-
Insert pipe operator	Ctrl + Shift +M	Cmd + Shift + M
Search R Help	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{F} 1$	Ctrl + Option + F1
Quit session	$\mathrm{Ctrl}+0$	Cmd +0

Again, be sure to check the Keyboard shortcuts help menu in your version of RStudio to see the available shortcuts.

Appendix 2: Data Transformation

Data transformation is often a necessary task in the data analysis process. Of course, R has multiple ways of accomplishing the various transformations you may need to do. For most of the tasks in this section, we focus on base R and tidyverse methods.

2.1. Recoding or Creating a New Variable

There are many different ways one can achieve generating or recoding a variable. For instance, we can use the mutate() and case_when() functions from dplyr to create transformed variables based on some criteria.

We can also create new variables, based on some computation or combination of other variables. In our data frame, df , we want to recode a variable called shot, which is a character variable of whether someone was injured via gunshot or another method.

```
# Recode the variable injury_type into variable called "shot"
    df <- df %>%
    mutate(shot = case_when
        (injury_type %in% "gun" ~ "Gun shot",
        injury_type %in% "stab" ~ "Not Gun Shot"))
```

You can also create new variables based on some calculation. For instance, if you wanted to create a variable that was a ratio of two variables, you could simply divide one variable by the other within the mutate() function.

```
# Create a new variable that is a calculation
# In this case, a ratio of var1 to var2
df <- df %>%
    group_by(sex) %>%
    mutate(ratio = var1/var2)
```

Or you could create a new variable that was equal to the sum of four variables divided by four.

```
# Create a new variable that is equal to the sum of four
## vars divided by four
df <- df %>%
    group_by(sex) %>%
    mutate(someindexscore = (var1 + var2 + var3 + var4)/4)
```

You also may want to add a totally new column to your data frame. You can use the add_column() function for this. The following example uses this function to create an ID variable for our data frame, df :

```
# Create a new column that is a row ID
add_column(df, newid = 1:nrow(df))
```

These are just several key ways to recode variables using dplyr. There are many functions that can perform various tasks that might be useful to you as you are cleaning your data. Which functions you choose simply depends on what you need to do with your data.

2.2. Binning Variables

Binning variables is useful, for example, when you need to create categories of a continuous variable, or when you simply want to collapse a certain number of categories into a fewer number of categories. Using functions from dplyr and forcats, like mutate() and case_when(), or fct_collapse(), you can define how you want your variable to be binned. For instance, below, we create the variable injury location that collapses six different places people could have been injured into three categories: home, school, and other.

```
# Create a new collapsed character variable injury_location
## from numeric values
df <- df %>%
    mutate(injury_location = case_when(location %in% 0 ~ "Home",
                                    location %in% 1 ~ "School",
                                    location %in% 2:5 ~ "Other"))
# Create collapsed version of variable if it's a factor using
## fct_collapse()
# Manually decide your factor Levels
df$injury_location <- fct_collapse(df$location,
    other = c("Work", "Park", "Mall", "Other"),
    school = "School",
    home = "Home")
```

If you have a continuous variable like age or number of arrests, you may want to be able to bin them into broader categories under certain circumstances. In the example below, we are converting a continuous variable of the number of full-time sworn officers in each law enforcement agency (Q 8) into an ordinal measure of agency size (agcysize).

```
# Create bins of agency size from the variable Q_8
bwcs <- bwcs %>%
    mutate(agcysize=case_when(
    Q_8 %in% 0:10 ~ "0-10 FTS",
    Q_8 %in% 11:50 ~ "11-50 FTS",
    Q_8 %in% 51:100 ~ "51-100 FTS",
    Q_8 %in% 101:500 ~ "101-500 FTS",
    Q_8 %in% 501:1000 ~ "501-1000 FTS",
    Q_8 >= 1001 ~ ">1000 FTS"))
```


2.3. Dealing with Missing Data

Missing data are a common occurrence in criminological research. It might arise due to a variety of reasons. In police-recorded crime data, it might be due to recording issues, or perhaps the information was simply not available or unknown (e.g., an offender's home address). In survey data, respondents might have refused to answer a question, or the respondent might have simply dropped out of participating. How to deal with missing values is a field of research in itself and should be considered carefully. One important reason for this is because missing data might be missing for an underlying systematic reason which impacts on your research. For instance, many people don't like answering questions about their income, but perhaps certain demographic groups (or people on certain incomes) are especially unlikely to answer this question. It would be unwise to simply remove all these people from your data, because you would end up with a biased sample only containing people who were willing to discuss their income. So, consider these issues carefully when dealing with your missing data! With that in mind, the following functions might be of use.

First, let's create an example data frame containing information about the number of prior offenses committed by a sample of ten offenders. The column crime count contains missing values, because some of our offenders did not want to discuss their offending history. Note that R actually treats missings as missings using NA. This might seem obvious, but many software assign a specific value like 9999 to define a missing value. Note that NA is not the same as stating NA, which would be treated as a character, and therefore not missing!

```
df <- data.frame(
    id = 1:10,
    crime_count = c(1,4,0,NA, 6,0,23,NA,54,NA))
```

To remove observations with missing values (which as stated above, is not always appropriate), we can use drop_na() from the tidyr package. Make sure you have this package installed and loaded before trying the following code. Because the data frame is so small, we will just print the output to the Console without assigning it to anything.

```
drop_na(data = df, crime_count)
```

Note that if you do not specify a variable, drop_na() will just remove any observations with missings in any column.

We can also replace missing values with another value using replace_ na() , which is also from tidyr. Let's say we wanted to just replace missings with zeros. Again, in reality this might not be a good idea! We can do this for any particular column, but in this example, we only have one, so we only need to specify crime count.

```
replace_na(data \(=d f\), list(crime_count \(=0)\) )
```

The replacement does not have to be a number. Here, we just assign refused to answer to these values.

```
replace_na(data = df, list(crime_count = "refused to answer"))
```

If we were to do things the other way round, we can also replace observed (non-missing) values with missings using na_if() in the dplyr package. This function is designed to be used within mutate() (see Chapter 2) to create a new variable. Here, we just replace crime count values of zero with missings.

```
df %>%
    mutate(na_example = na_if(x = crime_count, y = 0))
```


2.4. Selecting Specific Rows, Columns, or Cells

Oftentimes in criminological research and data analysis in general, we only need to work with a subset of a dataset. The dplyr package offers ways of selecting various subsets of your data. For instance, one can make selections based on rows, certain columns, or even cells. Making a selection based on rows is equivalent to keeping certain observations in your dataset, while making a selection based on columns is equivalent to keeping certain variables in your dataset. The following code provides some examples of how to use the slice(), filter(), and select() functions from dplyr to keep what we need of our data and nothing more. We demonstrate how to use these functions on our data frame, df.

2.4.1. Selecting Rows (or Cases/Observations)

```
# Subset the first 100 rows of data using the
## slice() function
first100 <- df %>%
    slice(1:100)
# AlternativeLy...
first100 <- df[c(1:100),]
```


2.4.2. Selecting Columns (or Variables)

```
# Subset the first 30 variables (or columns) in your data
## frame using the select() function
first30 <- df %>%
    select(1:30)
# Alternatively...
first30 <- df[,c(1:30)]
# Same as above, but using the variable names
first30 <- df %>%
    select(Var1:Var30)
```

You can also use select() in conjunction with special functions like starts_with(), ends_with(), contains(), matches(), num_range(), one_of(), and everything() to more easily filter out the variables you want to select.

```
# Select only variables beginning with "crime"
crime <- df %>%
    select(starts_with("crime"))
# Select only variables ending with "year2"
crime2 <- df %>%
    select(ends_with("year2"))
```


2.4.3. Selecting Cells

Selecting certain cells in R is easy. Note that you can also use this way of specifying cells for recoding.

Here, we are selecting/recoding a cell that falls on the 109th row and in the 4th column.

```
df[109, 4] # Row 109, column 4
df[109, 4]<-NA # Code cell as missing
df[109, 4]<-99 # Change cell value to 99
```


2.5. Selecting Cases Based on Criteria

We have covered how to go about selecting your subset by rows and columns, but you may also want to subset your data by some other criteria. For instance, you want to examine only males, or only youth, but your samples contain females and senior citizens. If you need to select cases from your data frame that meet certain conditions, you can use the
filter() function from dplyr. Assume in the following example that we want to perform an analysis on a sample of recidivists. We can filter on the dummy variable recidivist such that only cases where recidivist is equal to 1 are kept. We also want only adults in our sample, so we can filter on age as well.

```
# Subset rows based on some condition(s) using filter()
adult_recidivist_sample <- df %>%
    filter(recidivist == 1 & age > 17)
```


2.6. Add Columns to a Data Frame

Unless you are lucky, you will sometimes need to merge multiple data sources together for your analyses. The dplyr package allows users to merge multiple data frames together through different join functions. Each type of join merges your data a slightly different way.

2.6.1. Inner Join

The inner_join() function keeps only cases that exist in both datasets you are merging. This means that if you have an ID for someone in your first dataset, but not in your second, that case will be dropped in the merged version.

```
# Inner join
df3 <- inner_join(df1, df2, by = "ID")
```


2.6.2. Left Join

The left_join() function does not drop ALL unmatched cases, but keeps unmatched cases from the first data frame, and simply assigning it an NA for columns from the second data frame. If the second data frame also had an unmatched case, this would be dropped.

```
# Left join
df3 <- left_join(df1, df2, by = "ID")
```


2.6.3. Right Join

The right_join() function is the same as the left_join() function, except that any unmatched cases from the second dataset are kept this time, and the unmatched cases from the first dataset are dropped.

```
# Right join
df3 <- right_join(df1, df2, by = "ID")
```


2.6.4. Full Join

The full_join() function returns all of the columns from both datasets and returns a NA when there are no matching values.

```
# Full join
df3 <- full_join(df1, df2, by = "ID")
```


2.7. Add Rows to a Data Frame

You may want to add more cases to your data frame rather than adding columns. This can be done by using the rbind() function from base R where you specify the names of the objects you want to add together (can be vector, matrix, or data frame). To use this function with a data frame, make sure that the variable names in data frames being combined match.

```
# Add rows with rbind()
New_df<-rbind(df1, df2)
```


2.8. Applying Functions to Every Column

If you want to apply a function to all columns in your data frame, you can use one of the apply() family of functions from base R. Some key functions from this family include apply(), lapply(), sapply(), and tapply().

2.8.1. Using apply()

The apply() function does exactly what it sounds like-it applies a function to an array or matrix. You can choose whether to apply the function to rows, columns, or both. Note that to pass the function to rows, you will use the number 1, and to pass the function to columns, the number 2 . This function then returns either a vector, or an array, or list of values.

```
# apply()
# Applies the function mean to all COLUMNS in df
apply(df, 2, mean)
# Applies the function mean to all ROWS in df
apply(df, 1, mean)
```


2.8.2. Using LappLy()

Using the lapply() function applies a function to all elements of a list and returns a list of results.

```
# Lapply()
# Applies the function mean to the list "mylist"
lapply(mylist, mean)
```


2.8.3. Using sapply()

The sapply() function is similar to lapply(), except that instead of returning a list, it returns a vector or matrix.

```
# sapply()
# Applies the function mean to the list "mylist"
sapply(mylist, mean)
```


2.8.4. Using tapply()

The tapply() function is useful in that it allows users to apply a function to parts of a vector rather than the whole thing. For instance, if you wanted to apply a function to groups within a vector, you can simply specify the vector that you want to apply the function to, the grouping vector, and finally, the function itself. For instance, if you want to calculate the mean number of officers by law enforcement agency type, you could do the following:

```
# tapply()
# Calculates the mean number of officers per agency type
tapply(df$num_officers, df$agencytype, mean)
```


2.9. Calculating Variable Transformations

Sometimes we need to transform our variables before we include them in a statistical model. You can use the mathematical operations discussed in Chapter 1 on most variables in R (if your variable is numeric!). The following are merely a few examples of key transformations you may want to make.

2.9.1. Logarithmic Transformation

Use the $\log 10$ () function from base R to calculate the base 10 logarithm of a vector.

```
# Create a vector a
a <- c(50, 100, 40, 62, 922, 4000)
a
# transform a using log
b <- log(a)
b
```


2.9.2. Natural Log

To perform a natural log transformation on a vector, you can use the $\log ()$ function, also available through base R.

```
# Create a vector named "a"
a <-c(50, 100, 40, 62, 922, 4000)
a
# Transform "a" using log()
b <- log(a)
b
```


2.9.3. Exponentiation

Exponentiating a value or set of values in R is very straightforward. You can perform calculations of values directly in R like a calculator.

```
# 10 squared
10^2
# 5 cubed
5^3
```

You can also perform calculations on vectors of values.

```
# create a vector named "c"
c <- c(10, 33, 52, 900, 2246)
# Square "c"
c^2
# Raise "c" to the 4th power
c^4
```

These are just several data transformations you may want to make. Luckily, with the use of R objects and vectorized operations, it is relatively easy to transform your data to fit your specific needs.

2.10. Summarize a Data Frame by Groups

With the dplyr package, you can summarize variable(s) within groups. For instance, in this example, imagine we want to calculate the mean and standard deviation of inmates' age (AGE) by their gender (GENDER), and the variables are stored in a data frame named df.

```
df %>%
group_by(GENDER) %>%
    summarize(mean_age = mean(AGE, na.rm = TRUE),
    sd_age = sd(AGE, na.rm = TRUE))
```

You can choose to store this as a data frame (named new_df).

```
new_df <- (df %>%
    group_by(GENDER) %>%
    summarize(mean_age = mean(AGE, na.rm = TRUE),
    sd_age = sd(AGE, na.rm = TRUE)))
```


2.11. Reshaping Data Frames

Reshaping data is a task many analysts must perform at one time or another. How else are you supposed to format your time series data to examine changes in delinquency over time? Though the task itself seems like it may be long and arduous, R, and more specifically tidyr, can make this process much smoother than what you might first expect.

2.11.1. Into Wide Format

Load the library for tidyr, and use the spread () function to convert your data into wide format. You just need to specify the data frame you want to reshape (df , in this case), as well as the variable that you will convert to multiple variables or column names (intervention period).

```
# Convert data frame into wide format
wide_df <- df %>% spread(key = intervention_period,
    value = num_crimes)
```

You can also use the newer approach to reshaping data in tidyr, pivot_wider(). This function works in a similar fashion, though it is still being updated, unlike the spread() function. Rather than specify the key and value column names, the pivot_wider() function allows you to specify the columns that uniquely identify each observation (though the default is that all columns in your data frame will be selected), as well as the columns from which to get the new column names (names from) and values from (values from). The following example will create a new data frame with multiple columns beginning with intervention period and will include the number of crimes in each cell in the appropriate intervention period column.

```
# Convert data frame into Wide format
wide_df <- pivot_wider(id_cols = id,
    names_from = intervention_period,
    values_from = num_crimes)
```


2.11.2. Into Long Format

If on the flip side we want to take our 20 different variables indicating each intervention period and collapse it into a single column, use the gather () function to reshape wide format to long. Remember to specify both the key and the value columns, or what variables you want to gather on, and their values.

```
# Convert data frame into long format using "gather"
long_df <- df %>% gather(key = intervention_period,
    value = num_crimes)
```

Again, you can also use the newer approach offered by tidyr: the pivot_longer() function. In the following example, we first need to specify the columns we want to pivot on or make longer (in this case, variables marking the intervention period), then the new column name for the pivoted column names, and then finally the new column name for the values associated with these columns.

```
# Convert data frame into long format using "pivot_longer()"
long_df <- df %>% pivot_longer(cols = starts_with("period"),
names_to = "intervention_period", values_to = "num_crimes")
```


Appendix 3: Formatting

3.1. Changing Classes

3.1.1. To Numeric Class

After importing data into R , you will often need to change the class of some of your variables. In the example below, the variable age was stored as a character class, i.e., the numbers are stored as strings rather than numbers. To change the class of the age variable, you can use the base R as.numeric() function.

```
# Change the "age" variable in the ncvs data frame
## to numeric class
ncvs$age <- as.numeric(ncvs$age)
# Dplyr method to change multiple variables to numeric
# Changes variables }x,y\mathrm{ , and z to numeric class
ncvs <- ncvs %>%
    mutate_at(vars(x, y, z), list(as.numeric))
```


3.1.2. To Character Class

Sometimes, you may want to change a variable to a character class or string. For example, if you import a dataset (df) that contains a column of zip codes (zip), R may treat this column as a numeric class initially. However, you may want zip code to be treated as a string variable. To change the class of Zip, you can use the base R as. character() function.

```
# Change the "zip" variable in the data frame to a character
## class variable
df$zip <- as.character(df$zip)
# Dplyr method to change multiple variables to character
# Changes variables x, y, and z to character class
df <- df %>%
    mutate_at(vars(x, y, z), list(as.character))
```


3.1.3. To Factor Class

You may also need to convert variables to a factor class. This can be accomplished with the base R as.factor(), or the as_factor() function from the forcats package. There is a difference between the two functions in how levels are defined. Be sure to review the documentation for whichever function you choose. Let's convert the variable sex, a character variable, to a factor.

```
# Change the "sex" variable in the data frame to a factor
## class variable
df$sex2 <- as.factor(df$sex)
# Forcats method to change variable to a factor
df$sex2 <- df %>% as_factor(sex)
```


3.2. Formatting Dates

As noted in Chapter 3, research in criminology and criminal justice is increasingly making use of longitudinal and time-stamped data. For that reason, it is useful to know how to work with dates in R. There is a specific package in R used for working with dates called lubridate. Ensure that you have this package installed and load it using library() as you learned in the earlier chapters of this book.

First, let's create a simple example dataset to work with. You will find that a great deal of data, such as police-recorded crime records, come with dates in this kind of format. Here, we will use the popular format of DD-MM-YYYY to denote some specific days of the year in the variable day fac, with a separate variable count denoting the number of events (e.g., crime counts) on that day.

Remember, we are using $D D-M M-Y Y Y Y$ format, so the first date is 15 February 2012, and so on.

```
df <- data.frame(
    day_fac = c("15-02-2012","21-01-2012","01-03-2012",
            "01-04-2012","15-04-2012 ", "01-12-2012"),
    count = c(54,102,32,57,301,1612)
    )
```

Notice that when we check the class of day fac, it is a factor. Sometimes when you load in data like this (e.g., using read_csv()) it will be treated as a character. Either way, the fact is that R does not know that this variable is a date.

```
class(df$day_fac)
```

One implication of this is that when want to do things like arrange rows by date, R does it inappropriately. For example, it thinks that 01-12-2012 (1 December 2012) comes before 15-02-2012 (15 February 2012).

```
# This will just print the arranged df to your Console
arrange(df, day_fac)
```

Using the lubridate package, we can ensure that R treats dates correctly, either by reclassifying an existing variable or creating a new one. Here, the appropriate function from lubridate is dmy() because we know that the date format is $D D-M M-Y Y Y Y$. To retain the original for comparison, we will just create a new variable called day dmy.

```
df <- df %>%
    mutate(day_dmy = dmy(day_fac))
```

Now when we check the class, it confirms that the new day dmy variable is a date.

```
class(df$day_dmy)
```

This time, when we arrange by the new date, it gets it right.

```
# This will just print the arranged df to your Console
arrange(df, day_dmy)
```


3.3. Extract Parts of Dates from a String

Perhaps you have a date variable stored as a string, but you really need a column with just one part of the date, such as the year. See the example below for how you can extract a part of a date using a substr() function
from base R, the separate() function from tidyr, or by using functions from the lubridate package.

```
# Extract parts of the date you need when the date
## is stored as a string
df <- data.frame(
    date = c("01-01-2015", "01-02-2015" , "01-01-2016",
        "01-02-2016"), count = c(100, 200, 300, 400))
# The first value is position in the string you want
## to start your subset
df$year <- substr(df$date, 7, 10)
# The second value is what position in the string you want
## to end your subset
df$month <- substr(df$date, 4, 5)
df$day <- substr(df$date, 1, 2)
# You can also use the tidyr function separate()
df <- df %>% separate(date, c("Month", "Day", "Year"),
    sep = "-")
# Alternatively, you can transform the string variable to
## date format
# Use the year() function from Lubridate
# Transforms string to the month, day, year date format
df <- df %>%
    mutate(date2 = mdy(date))
# Extracts the year from the MDY formatted variable
df <- df %>%
    mutate(year2 = year(date2))
```

The lubridate package has many other options depending on the format of your dates. It also has advanced functionality with timings such as hours, seconds (even milliseconds, nanoseconds, and so on), as well as time zones. However, hopefully the above demonstration showcases how important it is to treat dates appropriately in R and how useful the lubridate package is!

Appendix 4: Pimp My ggplot

4.1. Shape Options

In Chapter 3, we covered data visualization using ggplot2. This included the use of geometries such as geom_line() and geom_point(). We also mapped variables to different aesthetics including shape and linetype. In doing so, we saw some of the common shapes (e.g., circles and squares) and line types (e.g., dotted and dashed) used to display data. By adapting some code from the ggplot2 documentation, we can visualize the 25 different shapes available. Note that the position of each shape on the y-axis corresponds to its unique number. So, if you wanted all your data points to be shaped with the + symbol, you would specify shape $=3$.

```
points_df <- data.frame(x = 1:5 , y = 1:25, option = 1:25)
ggplot(data = points_df) +
    geom_point(mapping = aes(x = x, y = y, shape = option),
                        size = 5) +
    scale_shape_identity()
```


It is worth being aware that shapes might respond differently to additional aesthetics such as fill and color. This demonstrates important distinctions between shapes that might otherwise appear identical (e.g., 1 and 21).

```
ggplot(data = points_df) +
    geom_point(mapping = aes(x = x, y = y, shape = option),
                        size = 5, fill = "salmon",
                        color = "dodgerblue") +
    scale_shape_identity()
```


4.2. Line Types

For line types, we can view the names of the options available in the help documentation ?linetype. There are six options by default (excluding a blank one). Like the shapes, these options can be referred to by number (0-6). To take a look at some of these options, we can create a basic data frame containing the line type names and visualize it.

```
lines_df <- data.frame(options = c("blank", "solid",
    "dashed", "dotted",
    "dotdash", "longdash"))
ggplot(data = lines_df) +
    geom_segment(mapping = aes(x = 0, xend = 1, y = options,
                    yend = options,
            linetype = options)) +
    scale_linetype_identity()
```


4.3. Font Types

The function element_blank() assigns nothing, and as such is often used to remove something (e.g., axis ticks). For instance, to remove the x -axis title, we would add the following to the theme() function:

```
theme(axis.title.x = element_blank())
```

The function element_text() is used to specify options to text (e.g., font style or size). For instance, to change the y-axis text to size 10 , at a 90 degree angle, in font style mono, and in bold type, we would add the following to theme():

```
theme(axis.text.y = element_text(size = 10,
    angle = 90,
    family = "mono",
    face = "bold"))
```

The function element_rect () is used to specify options relating to panel borders or backgrounds. To make the plot background pink, for example, we would use the following within theme():

```
theme(plot.background = element_rect(fill = "pink"))
```

The function element_line() is for lines, such as the grid lines (e.g., panel grid) of your graphic. So, to change the panel grid line color, we would add:

```
theme(panel.grid = element_line(color = "black"))
```

You may also want to check out the extrafont package if you would like more options to change the appearance of the text in R.

4.4. Color Options

Colors in R can be referenced just as they are in HTML/CSS, where red, green, and blue are represented using hexadecimal (hex) values (00 to FF) in a string that starts with a pound symbol, e.g., \#000099. R also has several pre-defined color options that you can use instead by just specifying the name of the color, e.g., "red", "darkred", "tomato", and "salmon". You can obtain a list of these colors simply by running the function colors(), which will print the list of color names to your console. The available hex color codes are provided in Fig. A4.1.

4.4.1. ggplot2 Color Options

You can also visualize the colors themselves using some of the skills picked up in Chapter 3, with some additional tweaks. Here, we just show a sample of colors, because there are far too many (over six hundred!) in total. Remember to ensure that the relevant libraries are loaded before you try this code, such as by using library (ggplot2). For this example, we use ggplot2, stringr, and dplyr.

```
# Pull all colors containing the words pink, violet or purple
colors_df <- data.frame(col_names = colors()) %>%
    filter(str_detect(col_names,
        "pink|violet|purple"))
# Visualize these colors in a tile plot
ggplot(data = colors_df) +
    theme_minimal() +
    geom_tile(aes(x = col_names, fill =
            as.factor(1:nrow(colors_df)), y = 1)) +
    scale_fill_manual(values = colors_df$col_names) +
    coord_flip() +
    theme(legend.position = "none",
        axis.title = element_blank(),
        axis.text.x = element_blank())
```


4.4.2. Color Palettes

Rather than refer to colors manually by name, we can use functions available within the scales package to extract the hex value names for the default ggplot2 palette, or any other palette available.

```
# Print hex value names (in this example, for six colors)
hue_pal()(6) # default for ggplot2
## [1] "#F8766D" "#B79F00" "#00BA38" "#00BFC4" "#619CFF"
    "#F564E3"
# Specific palette name, e.g., spectral
brewer_pal(palette = "Spectral")(6)
## [1] "#D53E4F" "#FC8D59" "#FEE08B" "#E6F598" "#99D594"
    "#3288BD"
```

If we are not sure what these colors look like, we can also visualize them, along with the respective hex values.

```
# Visualize hex values with names
show_col(hue_pal()(6)) # default for ggplot2
```



```
# Specific palette name e.g. spectral
show_col(brewer_pal(palette = "Spectral")(6))
```


Or simply visualize all the palettes available, along with their respective palette names, using the RColorBrewer package.

```
display.brewer.all()
```


Appendix 5: Saving Output

5.1. Exporting Plots

In Chapter 3, we covered how to explore your data using the visualization tools available in ggplot2. Once you've created a visual with the R environment, you will likely want to save it for use in a paper or presentation. The simplest way to do this is to use the Export tab from the Plots window in the RStudio environment. One of the downsides of this method is that it is not reproducible. Someone running your code (including your future self) might get the same graphic within R but then export it using different settings (e.g., format, dimensions). For that reason, we recommend using the function ggsave() within ggplot2. It allows you to export your graphics in a way that is reproducible. It is also flexible, with numerous different options around dimensions, formats, and resolution, which saves you a bunch of time when producing lots of different visuals.

To start with, you will want to generate your graphic and assign it to an object. If you want to run through this code, take a look at the first example using police-recorded crime data in Chapter 3.

```
my_plot <- ggplot(data = burglary_df, mapping = aes
    (x = incscore,
    y = burglary_count))+ geom_point()
```

You can then input this object into the ggsave() function, using the arguments available within the function to specify our preferences. A brief explanation of each is given using comments in the below code chunk, but you can view the help documentation using ?ggsave to get the full details. Note that we don't specify where to save the file, so by default it will be saved to whatever the current working directory is. Remember that you can check this using getwd(). If you want to specify a working directory, you can either include it before the file name or use the path option within the function.

```
ggsave(plot = my_plot,
    filename = "my_plot_file.png",
    device = "png", # device i.e. file format
    units = "cm", # units of dimensions
    width = 10, # width dimension
    height = 8, # height dimension
    dpi = 300) # pixel density,
    ## i.e., resolution
```

It's worth noting that ggsave() will guess the device (i.e., file format) based on the extension used within the filename argument. However, in the above example, we have been explicit and stated this using device = "png". There are a number of other formats available (e.g., pdf, tiff, jpeg).

Appendix 6: List of Data Sources and Dataset Names

CHAPTER	DATA SOURCE	FILE NAME(S)
1	NA	NA
2	National Crime Victimization Survey (NCVS)	NCVS Ione offender assaults 1992 to 2013.sav
3	2017 crime data from Greater Manchester, England	gmp_2017.csv; gmp_monthly_2017.csv
4	2016 LEMAS-Body Worn Camera Supplement	37302-0001-Data.rda
5	2004 Survey of Inmates in State and Federal Correctional Facilities (SISFCF)	04572-0001-Data.Rda
6	Simulated data	NA
7	Simulated data	NA
8	Simulated data	NA
9	British Crime Survey	bcs_2007_8_teaching_data_unrestricted.dta
10	Synthetic data containing information about IO scores of prisoners	NA
11	National Youth Survey	nys_1_ID.dta, nys_2_ID.dta
12	Stop and searches carried out in London by police	stop_search_london.csv
13	Seattle Neighborhoods and Crime Survey	Seattle_Neighborhoods_Crime_RandomSample. dta
14	Prof. Sharkey et al.'s dataset to study the effect of nonprofit organizations in the levels of crime	sharkey.csv
15	Crime Survey for England and Wales	csew1314_teaching.csv

Appendix 7: Citations to Packages/Software

PACKAGE/ SOFTWARE	CITATION
arm	Gelman, A., \& Hill, J. (2007). Data analysis using regression and multi-level hierarchical models (Vol. 1). New York, NY, USA: Cambridge University Press
car	Fox, J., \& Weisberg, S. (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/ Books/Companion/
DescTools	Signorell, A., et al. (2020). DescTools: Tools for Descriptive Statistics. R package version 0.99.34, https://cran.r-project.org/package=DescTools
dplyr	Wickham, H., François, R., Henry, L. \& Müller, K. (2019). dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/ package=dplyr
forcats	Wickham, H. (2019). forcats: Tools for Working with Categorical Variables (Factors). R package version 0.4.0. https://CRAN.R-project.org/ package=forcats
Ggally	Schloerke, B., et al. (2020). GGally: Extension to 'ggplot2'. R package version 1.5.0. https://CRAN.R-project.org/package=GGally
ggplot2	Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. SpringerVerlag New York
gmodels	Warnes, G.C., Bolker, B., Lumley, T. \& Johnson, R.C. (2018). gmodels: Various R Programming Tools for Model Fitting. R package version 2.18.1. https:// CRAN.R-project.org/package=gmodels
GoodmanKruskal	Pearson, R. (2016) Goodman Kruskal: association analysis for categorical variables. R package version 0.0.2. https://CRAN.R-project.org/ package=GoodmanKruskal
haven	Wickham, H. \& Miller, E. (2019). haven: Import and Export 'SPSS', 'Stata' and 'SAS' Files. R package version 2.2.0. https://CRAN.R-project.org/ package=haven
here	Müller, K. (2017). here: A Simpler Way to Find Your Files. R package version 0.1. https://CRAN.R-project.org/package=here
labelled	Larmarange, J. (2019). labelled: Manipulating Labelled Data. R package version 2.2.1. https://CRAN.R-project.org/package=labelled
modeest	Poncet, P. (2019). modeest: Mode Estimation. R package version 2.4.0. https:// CRAN.R-project.org/package=modeest
moments	Komsta, L. \& Novomestky, F. (2015). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. https://CRAN.R-project. org/package=moments
mosaic	Pruim, R., Kaplan, D.T., \& Horton, N.J. (2017). The mosaic Package: Helping Students to 'Think with Data' Using R. The R Journal, 9(1):77-102
qualvar	Gombin, J. (2018). qualvar: Implements Indices of Qualitative Variation Proposed by Wilcox (1973). R package version 0.2.0. https://CRAN.R-project. org/package=qualvar
R	R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https:// www.R-project.org/
readr	Wickham, H., Hester, J. \& Francois, R. (2018). readr: Read Rectangular Text Data. R package version 1.3.1. https://CRAN.R-project.org/package=readr

PACKAGE/ SOFTWARE	CITATION
Rstudio	RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/
sjlabelled	Lüdecke, D. (2020). sjlabelled: Labelled Data Utility Functions. R package version 1.1.3. doi: 10.5281/zenodo. 1249215 (URL: https://doi.org/10.5281/ zenodo.1249215), URL: https://CRAN.R-project.org/package=sjlabelled
skimr	Waring, E., Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H. \& Ellis, S. (2020). skimr: Compact and Flexible Summaries of Data. R package version 2.1. https://CRAN.R-project.org/package=skimr
tibble	Müller, K. \& Wickham, H. (2019). tibble: Simple Data Frames. R package version 2.1.3. https://CRAN.R-project.org/package=tibble
tidyverse	Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss. 01686
tigerstats	Robinson, R. \& White, H. (2016). tigerstats: R Functions for Elementary Statistics. R package version 0.3. https://CRAN.R-project.org/ package=tigerstats

Appendix 8: Index of R Functions

FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
abs()	Calculates the absolute value (base R)	9, 20, 162
add_column()	Adds columns to a data frame (tibble)	31, 38, 279
add_labels()	Add value labels to a variable (sjlabelled)	29,37, 38
add_row()	Add rows to a data frame (tibble)	234, 244
add_value_labels()	Add value labels to a variable (labelled)	172, 182
aes()	Mapping aesthetics to variables (ggplot2)	$\begin{aligned} & 43,44,46-55,57,60 \\ & 71-73,92,96,107 \\ & 101,103,130, \\ & 186-188,195,198 \\ & 199,230,234,235 \\ & 252-254,261,293 \\ & 294,298,302 \end{aligned}$
aov()	Fit an analysis of variance model (base R)	$\begin{gathered} 191,193,194,196 \\ 204-206,208 \end{gathered}$
apply()	Applies a function to elements of an array or matrix (base R)	285
arrange()	Sorts rows by a given variable(s) (dplyr)	34, 37, 38
array()	Stores data in 1 dimension (vector) or 1+ dimension (matrix) (base R)	16, 20
as_factor()	Changes the class of an object to factor class (forcats)	$\begin{gathered} 139-141,143,145 \\ 147,151,290 \end{gathered}$
as.character()	Changes the class of an object to character (base R)	290
as.data.frame()	Checks if data frame and tries to coerce if not (base R)	17,20,142
as.factor()	Coerce vector to factor, including specifying levels (base R)	53-58, 60, 290, 298
as.numeric()	Changes the class of an object to numeric (base R)	29, 220, 289

FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
as.vector()	Coerce an object into a vector (base R)	82, 88
attach()	Commonly used to attach a data frame object for easier access (base R)	79, 81, 88
attributes()	Access object attributes, such as value labels (base R)	$\begin{gathered} 88,137,138,182,218 \\ 223,258,265 \end{gathered}$
bind_rows()	Combine data frame(s) together row-wise (dplyr)	97, 106
BinomCI()	Compute confidence intervals for binomial proportions (DescTools)	128-130, 132, 133
boxplot()	Produce a box and whisker plot (base R)	186-188
c ()	Concatenates elements to create vectors (base R)	$\begin{aligned} & 14,16-18,29,71, \\ & 124-126,170,177, \\ & 213,215,216,219, \\ & 221,238,263,281, \\ & 283,286,287, \\ & 291,292 \end{aligned}$
case_when()	Allows users to vectorize multiple if or if else statements (dplyr)	$\begin{aligned} & 33,34,37,38,72,177, \\ & 278-280 \end{aligned}$
cat()	Combines/concatinates character values and prints them (base R)	162, 165, 168
ceiling()	Always round up (base R)	9, 20
chisq.test()	Produces the chi-square test (base R)	$\begin{aligned} & 148-150,153,212, \\ & 213,215 \end{aligned}$
class()	Check the class of an object (base R)	$\begin{aligned} & 148-150,153,212, \\ & 213,215 \end{aligned}$
complete.cases()	Returns only complete cases that do not have NAs (base R)	250, 268
confint()	Computes confidence intervals for parameters in a fitted model (base R)	263, 265, 268
contains()	Used in conjunction with select (), selects only variables that contains a certain string (dplyr)	283
```cor.test(...method = "kendall")```	Conducts a Kendall's correlation test (stats)	225, 238
cor.test()	Obtains correlation coefficient (base R)	$\begin{array}{r} 220,221,232,233, \\ 235,236,238,244 \end{array}$
cor ()	Produces the correlation of two variables (base R)	$\begin{gathered} 232,233,235-237, \\ 243,244 \end{gathered}$
count()	Counts the number of occurrences (dplyr)	31, 33, 38
CrossTable()	Produces contingency tables (gmodels)	$\begin{aligned} & 142-145,147,148, \\ & 151-153 \end{aligned}$
cut()	Divides by the specified interval (base R)	207, 208
data.frame()	Create a new data frame object (base R)	$\begin{gathered} 17-20,93,142,157 \\ 158,263,281 \\ 291-294,298 \end{gathered}$
dbinom()	Find probability of events occurring $X$ number of times (stats)	116-118
detach()	Turns off the attach() function (base R)	79, 88, 277
diff()	Computes differences between values in a numeric vector (base R)	84, 85, 87, 88
dim()	Check the dimensions of an R object (base R)	16, 20, 63, 137


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
display()	Gives a clean printout of $1 \mathrm{~m}, \mathrm{glm}$, and other such objects (arm)	259, 268
DM()	Computes deviation from the mode (qualvar)	82, 87, 88
dmy ()	Creates a date variable in the format of DD-MM-YYYY (lubridate)	291
do()	Loop for resampling (mosaic)	95,97
drop_na()	Removes observations with missing values (tidyr)	281
element_blank()	Assigns nothing to the component of the graphic it is called in (ggplot2)	295, 298
element_line()	Used to specify options relating to lines (ggplot2)	295
element_rect()	Used to specify options relating to panel borders or backgrounds (ggplot2)	295
element_text()	Refer to a text element in thematic options-see Index (ggplot2)	70-73, 76, 187, 295
ends_with()	Used in conjunction with select (), selects only variables that end with some suffix (dplyr)	283
everything()	Used in conjunction with select (), selects all variables (dplyr)	283
facet_wrap()	Facet graphics by one or more variables (ggplot2)	55, 58, 60, 71
factor()	Creates a factor (base R)	$\begin{gathered} 30,31,38,53-55,57 \\ 58,60,139-141 \\ 143,145,147,151 \\ 187,213,215,216 \\ 219,221,290,298 \end{gathered}$
factorial()	Compute the factorial of a numeric vector (base R)	114, 115, 118
fct_explicit_na()	Provides missing values an explicit factor level (forcats)	140, 141, 153
filter()	Subsets a data frame to rows when a condition is true (dplyr)	$\begin{aligned} & 36-38,69,82,153 \\ & 229,237,282,283 \\ & 284,298 \end{aligned}$
fisher.test()	Produces Fisher's exact test (base R)	149, 153
fitted()	Extract fitted values from objects when modeling functions (base R)	193, 194, 208
floor()	Always round down (base R)	9, 20
for()	Initiates a for loop (base R)	111, 112
full_join()	Joins two data frames together, keeping all columns from both data frames and returning an NA when there are no matching values (dplyr)	285
function()	Creates a user-specified function (base R)	162, 164, 165, 168
gather()	Reshapes a data frame to long format (tidyr)	289
geom_bar()	Geometry layer for bar plot (ggplot2)	54,60
geom_boxplot()	Geometry layer for box plot (ggplot2)	$57,60,70-72,187$
geom_density()	Geometry layer for density plots (ggplot2)	$\begin{gathered} 97,101,106,195 \\ 198,199 \end{gathered}$


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
geom_errorbar()	Draw error bars by specifying maximum and minimum value (ggplot2)	106, 130, 132
geom_histogram()	Geometry layer for histograms (ggplot2)	$\begin{aligned} & 52,53,58,60,73 \\ & 92,96 \end{aligned}$
geom_line()	Geometry layer for line charts (ggplot2)	56, 60, 234, 253, 293
geom_point()	Geometry layer for scatterplots (ggplot2)	$\begin{gathered} 43-47,50,51,55,57 \\ 59,60,103,130 \\ 234,235,252-254 \\ 261,293,294,302 \end{gathered}$
geom_smooth()	Geometry layer for smoothed lines (ggplot2)	59, 60, 235, 254, 261
geom_vline()	Geometry layer for adding vertical lines (ggplot2)	92, 96, 101, 103, 106
get_labels()	Returns value labels of labelled data (sjlabelled)	27,30,38
getwd()	Returns the current working directory (base R)	271, 302, 23
ggcorr()	Visualize a correlation matrix (GGally)	239-241, 244, 248
ggpairs()	Makes a matrix of plots, e.g., correlations, scatterplots (GGally)	241-244
ggplot()	Initialize a ggplot graphic, i.e., specify data, aesthetics (ggplot2)	$\begin{gathered} 43-48,50-55,57,59 \\ 60,70,71,73-75 \\ 92,96,101,103 \\ 104129,130,186 \\ 187,188,196,198 \\ 199,208,230,234 \\ 235,251-253,261, \\ 267,293,294,298, \\ 299,302 \end{gathered}$
ggsave()	Saves plot as a file (ggplot2)	302, 303
ggtitle()	Adds a title or subtitle to a graph made using gglot() (ggplot2)	71-73, 268
GKtau()	Conducts the Goodman-Kruskal measure of association (GoodmanKruskal)	216, 223, 225
GoodmanKruskalGamma()	Conducts Goodman-Kruskal measure of association (DescTools)	218, 219, 223, 225
group_by()	Group observations by variable(s) for performing operations (dplyr)	$\begin{gathered} 64,66,67,75,76,88 \\ 95,97,140,141, \\ 172,173,177,190 \\ 243,279,288 \end{gathered}$
guides()	Used to customize plot legend when using ggplot() (ggplot2)	187, 188, 208
head()	Returns the first parts of a vector, matrix, table, or data frame (base R)	$34,38,94,186$
here()	Find a project's files based on the current working directory (here)	$\begin{array}{r} 41,79,137,171,185 \\ 211,229,235,247 \end{array}$
if_else()	Tests conditions for true or false, taking on values for each (dplyr)	102, 106
inner_join()	Joins two data frames together, keeping only data that exists in both datasets (dplyr)	284


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
install.packages()	Installs non-base R packages (base R)	$\begin{gathered} \hline 23,24,38,41,63,79 \\ 90,120,136,156 \\ 171,185,211,229 \\ 247,269 \end{gathered}$
IQR()	Compute interquartile range (base R )	69, 76
is.na()	Returns TRUE when values are missing,   FALSE if not (base R)	80-82, 88, 139
KendallTauB()	Conducts the Kendall measure of association (DescTools)	220, 221, 223, 225
kruskal.test()	Performs a Kruskal-Wallis rank sum test (base R)	202, 208
labs()	Specify labels for ggplot object, e.g., title, caption (ggplot2)	$\begin{aligned} & 49-51,53,54,57,60, \\ & 70-73 \end{aligned}$
Lambda()	Conducts the measure of association (DescTools)	216, 223, 225
lapply()	Applies a function to all elements of a list, returning a list (base R )	285, 286
left_join()	Joins two data frames together, keeping unmatched cases from the first data frame (dplyr)	284
leveneTest()	Computes Levene's test for homogeneity of variance across groups (car)	192, 193, 206, 208
library()	loads the installed non-base $R$ package (base R)	$\begin{gathered} 23,24,38,41,59,63 \\ 79,90,120,136 \\ 156,171,185,211 \\ 229,247,269,290 \end{gathered}$
list()	Create a list (base R)	16, 20, 282, 289, 290
lm()	Fit linear models (base R)	258, 259, 267, 268
load()	Loads an R datafile (.R or .Rda) (base R)	63, 79, 272
$\log ()$	Computes the natural logarithm (base R)	235, 286, 287
log10()	Computes common (i.e., base 10) logarithms (base R)	$\begin{gathered} 187,188,199,200, \\ 208,286 \end{gathered}$
matches()	Used in conjunction with select (), selects only variables that match a regular expression (dplyr)	283
matrix()	Creates a vector with two dimensions (base R)	15,19, 20
$\max ()$	Returns the maximum value (base R )	64, 75, 76
mdy ()	Creates a date variable in the format of MM-DD-YYYY (lubridate)	292
mean()	Compute arithmetic mean (base R)	$\begin{gathered} 64-67,75,76,87,88 \\ 92-98,100,101 \\ 141,159,177 \\ 190,288 \end{gathered}$
median()	Compute the median (base R)	66, 67, 75, 76
merge()	Merge datasets by common row or columns names (base R)	180, 182
min()	Returns the minimum value (base R )	64, 65, 75, 76
$m l v()$	Compute the mode (modeest)	64, 67, 76, 80, 81


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
mutate()	Creates new vectors or transforms existing ones (dplyr)	$\begin{aligned} & \hline 32-34,37,38,59,72, \\ & 102,153,177,182, \\ & 278,279,280,282, \\ & 291,292 \end{aligned}$
n()	```Count observations, within summarize(), mutate(), or filter()(dplyr)```	32
na_if()	Replace non-missing values with missing values (dplyr)	282
names()	Provides the element names (base R)	16,20
nrow()	Counts the number of rows (base R)	$\begin{aligned} & 31,38,154,158,250 \\ & 279,298 \end{aligned}$
num_range()	Used in conjunction with select (), selects only variables that match a numerical range (dplyr)	283
oneway.test()	Tests if $2+$ samples from normal distributions have same means (base R )	195,208
pairwise.t.test()	Pairwise comparisons between group levels (base R)	203,208
par()	Set graphics parameters such as margins (base R)	71,76
paste()	Combines a series of string text (base R)	112, 114, 118
pbinom()	Find cumulative probability of a binomial probability distribution (stats)	117, 118
Phi ()	Conducts the measure of association (DescTools)	212-214, 223, 225
pivot_longer()	Reshapes a data frame to long format (tidyr)	289
pivot_wider()	Reshapes a data frame to wide format (tidyr)	288
pnorm()	Probability of random variable following normaldistribution (base R)	162, 168
pnormGC()	Compute probabilities for normal random variables (tigerstats)	159, 160, 168
predict()	Makes predictions from the results of model fitting functions (base R)	262, 267, 268
print()	Prints arguments and returns it invisibly (base R)	15, 20, 111-113
prop_z_test()	Function created in Chapter 10 for a single-sample $z$-test for proportions	164, 166, 168
prop.test()	Test null hypothesis that proportions in groups are the same (base R)	$\begin{gathered} 124-126,131,133, \\ 176,177,181 \end{gathered}$
qplot()	Creates a variety of plots/graphs (base R)	250, 251, 268
qqline()	Adds a reference line to Q-0 plot produced by qqnorm( ) (base R)	196, 208
qqnorm()	Produces a normal Q-Q plot of the variable (base R)	196,208
qqPlot()	Draws theoretical quantile-comparison plots for variables (car)	197,200,208
quantile()	Compute quantiles as per specified probabilities (base R)	69, 76
range()	Compute the minimum and maximum values (base R)	84, 85, 270,283


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
rbind()	Appends rows to a data frame (base R)	285
read_csv()	Read in comma separated values file (readr)	$\begin{gathered} 41,60,185,229,247 \\ 271,273,291 \end{gathered}$
read_delim()	Reads in a delimited file (readr)	272
read_dta()	Imports a .dta Stata file (haven)	$\begin{gathered} 137,153,171,211, \\ 274 \end{gathered}$
read_excel()	Reads in an .xls or .xlsx file (readxl)	274
read_json()	Reads in a JSON file (jsonlite)	277
read_sas()	Reads in a SAS format file (haven)	275
read_sav()	Reads in an SPSS .sav file (haven)	275
read_spss()	Imports SPSS .sav files (haven)	24,38
read_tsv()	Reads in a tab-separated file (readr)	273
read.dbf()	Reads in a dbf file (foreign)	274
read.mat()	Reads in a Matlab file (rmatio)	276
read.mtp()	Reads in a Minitab file (foreign)	276
read.systat()	Reads in a Systat file (foreign)	276
read.table()	Reads in data in tabular format (base R)	275
recode()	Replaces values of a integer/factor variable	172, 182
remove_labels()	Removes value labels from a variable (sjlabelled)	28, 29, 38
remove_var_label()	Removes a variable's label (labelled)	28,38
replace_na()	Replaces missing values with another value (tidyr)	281, 282
require()	Attempts to load a package in $R$, returning a logical value of whether the attempt was successful or not (base R)	269
resid()	Extract residuals from objects returned by modeling functions (base R)	193, 194, 196, 208
return()	Used in functions to tell R what to return/ print for the user (base R)	162, 168
right_join()	Joins two data frames together, keeping unmatched cases from the second data frame (dplyr)	284
rm()	Remove object from R environment (base R)	229, 244
rnorm()	Create synthetic normally distributed data (base R)	92, 93, 106, 157, 158
round()	Rounds to nearest whole number or specified number of decimals (base $R$ )	$\begin{gathered} 23,94,157,158 \\ 234,253 \end{gathered}$
sample()	Randomly sample from a vector or data frame (mosaic)	$\begin{gathered} 32,94,95,97,99 \\ 100,106 \end{gathered}$
sapply()	Applies a function over a vector or list (base R)	285, 286
save()	Saves an R data file (base R)	272
scale_color_brewer()	Default color scheme options (ggplot2)	46, 48, 50, 51, 60
scale_color virídis_d()	Colorblind-friendly palettes from viridis package (ggplot2)	48
scale_fill_discrete()	Specify fill of discrete aesthetics, e.g., color palette (ggplot2)	97,106
scale_y_log10()	Log scales the $y$-axis on your chart (ggplot2)	187, 188, 208


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
scale()	Mean centers or re-scales a numeric variable (base R)	158, 168
ScheffeTest()	Scheffés test for pairwise and otherwise comparisons (DescTools)	204, 208
sd()	Computes standard deviation of a numeric vector (base R)	$\begin{aligned} & \text { 86, 88, 99-102, 159, } \\ & 288 \end{aligned}$
select()	Select columns to retain or drop (dplyr)	$\begin{gathered} 32,35,36,38,229 \\ 234,282,283 \end{gathered}$
separate()	Separates a string by the given separator (tidyr)	292
set.seed()	Random number generator start point (base R)	93,106
setRepositories()	Sets the repository from which R should search for a package (base $R$ )	270
setwd()	Sets the working directory (base R)	24, 271
single_t_test()	Function created in Chapter 10 for single-sample $t$-tests for means	165, 166, 168
skewness()	Calculate degree of skewness in a numeric vector (modeest)	74-76
skim()	Provide summary statistics specific to object class (skimr)	$67,76,80,84,173$
slice()	Select rows based on their position in the data frame (dplyr)	36,38, 282
SomersDelta()	Conducts Somers' measure of association (DescTools)	222, 223, 225
spread()	Reshapes a data frame to wide format (tidyr)	288
sqrt()	Finds the square root (base R)	$\begin{gathered} 9,20,100,162 \\ 164-167 \end{gathered}$
starts_with()	Used in conjunction with select (), selects only variables that start with some prefix (dplyr)	283, 289
str ()	Returns internal structure of an R object (base R)	88, 142
StuartTauC()	Conducts the Kendall measure of association (DescTools)	221,225
substr()	Selects part of a string (base R)	291, 292
sum()	Sum values in a vector (base R)	67, 139, 177
summarize()	Create new summary variable(s), e.g., counts, mean (dplyr)	$\begin{aligned} & 82,88,95,97,99 \\ & 100,104,140,141 \\ & 153,172,177,190 \\ & 243,288 \end{aligned}$
summary.lm()	Summary method for class $\operatorname{lm}$ (base R)	205, 208, 265
summary()	Produce summary of model results (base R)	$\begin{gathered} 69,76,84,86,191 \\ 249,258,259,261 \\ 263,265-267 \end{gathered}$
summary()\$coefficients	Extract coefficients only from summary (base R)	268
summary()\$r.squared	Extract R squared only from summary (base R)	267, 268


FUNCTION	DESCRIPTION (PACKAGE)	PAGE \#S
symbox()	Transforms x to a series of selected powers and displays box plots (car)	199, 208
t.test()	Performs one and two sample $t$-tests on vectors of data (base R )	175, 181, 182, 203
table()	Generates a frequency table (base R)	$\begin{gathered} 27,30,53,82,83,102, \\ 102,139,140,142 \\ 150,189,213,215, \\ 216,219,221,276 \end{gathered}$
tapply()	Applies a function to parts of a vector (base R)	285, 286
theme_bw()	The traditional dark-on-white ggplot theme (ggplot2)	$\begin{gathered} \text { 187, 188, 195 } \\ 199,208 \end{gathered}$
theme_minimal()	Default minimalist theme for ggplot graphics (ggplot2)	50, 51, 60, 130, 298
theme()	Customize ggplot graphics (ggplot2)	$\begin{gathered} 50,60,70-73,187 \\ 188,295,298 \end{gathered}$
TukeyHSD()	Implements Tukey's honest significant difference method (base R)	204, 208
var_label()	Returns or sets a variable label (labelled)	27-29, 37, 38
var.test()	Performs an $F$-test to compare the variances of two samples from normal populations (base R)	174, 181, 182
var()	Computes variance (base R)	85, 86, 88
View()	View data in new window (base R)	$\begin{gathered} 17,20,25,34,35,37 \\ 42,63,94,137,171 \\ 180,211,277 \end{gathered}$
$v i f()$	Calculate the variance inflation for OLS or other linear models (car)	266, 268
which()	Provides the position of the elements such as in a row (base R )	158
while()	Initiates a while loop (base R)	114, 118
with()	Evaluates an expression, often used to specify the data you want to use (base R)	$\begin{gathered} 142,143,145,147 \\ 151,153 \end{gathered}$
write_csv()	Writes a comma-separated file (readr)	273
write_delim()	Writes a delimited file (readr)	272
write_dta()	Writes a Stata .dta file (haven)	274
write_json()	Writes a JSON file (jsonlite)	277
write_sas()	Writes a SAS format file (haven)	275
write_sav()	Writes an SPSS .sav file (haven)	275
write_tsv()	Writes a tab-separated file (readr)	273
write.dbf()	Writes a dbf file (foreign)	274
write.mat()	Writes a Matlab (MAT) file (rmatio)	276
write.xlsx()	Writes an Excel file (.x\|sx) (openxlsx)	274
year()	Extracts the year from a date (lubridate)	292
z_test()	Function created in Chapter 10 for a single-sample $z$-test	$\begin{aligned} & 161,162,164-166, \\ & 168 \end{aligned}$

## Glossary

68-95-99.7 rule Empirical rule that states that $68 \%$ of the cases in a normal distribution should fall within 1 standard deviation of the mean (so within a z -score of -1 and +1 ); $95 \%$ of the cases in the distribution should fall within 2 standard deviations of the mean (so within a $z$-score of -2 and +2 ); and $99.7 \%$ of the cases in the distribution should fall within 3 standard deviations of the mean (so within a $z$-score of -3 and +3 ). In the real world, you will likely not find a distribution where this rule is exact.

Aesthetics Describe visual characteristics that represent the data.
Arrangements The different ways events can be ordered and result in a single outcome. For example, there is only one arrangement for gaining the outcome of ten heads in ten tosses of a coin. There are, however, ten different arrangements for gaining the outcome of nine heads in ten tosses of a coin.

Array A three-dimensional data structure that can contain homogenous elements (of the same class).

Assignment operators Symbols used to make assignations to objects.
Atomic vector A one-dimensional data structure that can contain homogeneous elements (of the same class).

Bell Curve See Gaussian distribution.
Binomial distribution The probability or sampling distribution for an event that has only two possible outcomes.

Binomial formula The means of determining the probability that a given set of binomial events will occur in all its possible arrangements.
Bivariate regression A technique for predicting change in a dependent variable using one independent variable.

Bonferroni correction A post-hoc pairwise comparison of means that controls the type I error rate by dividing the selected $\alpha$-level by the number of pairwise comparisons made.

Central limit theorem A theorem that states: "If repeated independent random samples of size N are drawn from a population, as N grows large, the sampling distribution of sample means will be approximately normal." The central limit theorem enables the researcher to make inferences about an unknown population using a normal sampling distribution.

Chi-square statistic The test statistic resulting from applying the chisquare formula to the observed and expected frequencies for each cell. This statistic tells us how much the observed distribution differs from that expected under the null hypothesis.

Coefficient of variation (CV) A measure of dispersion calculated by dividing the standard deviation by the mean.

Comments Code annotations that are not interpreted by R.
Concordant pairs of observations Pairs of observations that have consistent rankings on two ordinal variables.

Confidence interval An interval of values around a statistic (usually a point estimate). If we were to draw repeated samples and calculate a $95 \%$ confidence interval for each, then in only 5 in 100 of these samples would the interval fail to include the true population parameter. In the case of a $99 \%$ confidence interval, only 1 in 100 samples would fail to include the true population parameter.
Contingency table A tabular way of viewing the relationship between categorical variables (also referred to as cross tabs).

Covariation A measure of the extent to which two variables vary together relative to their respective means. The covariation between the two variables serves as the numerator for the equation to calculate Pearson's $r$.

Cramer's V A measure of association for two nominal variables that adjusts the chi-square statistic by the sample size. V is appropriate when at least one of the nominal variables has more than two categories.

Data Information used to answer a research question; typically will be stored in a data frame. Data (plural) are made up of numerous datum (singular).

Data frame A data structure that is defined by the number of rows and columns.

Data transformation An adjustment of data to a different unit or scale (normally to deal with normality issues).

Dependent sample $\boldsymbol{t}$-test A test of statistical significance that is used when two samples are not independent.
Dependent variable (Y) The variable assumed by the researcher to be influenced by one or more independent variables.
Directional hypothesis A research hypothesis that indicates a specific type of outcome by specifying the nature of the relationship that is expected.

Discordant pairs of observations Pairs of observations that have inconsistent rankings on two ordinal variables.

Environment Where objects are stored.
Eta squared The proportion of the total sum of squares that is accounted for by the between sum of squares. Eta squared is sometimes referred to as the percent of variance explained.
Expected frequency The number of observations one would predict for a cell if the null hypothesis were true.

External validity The extent to which a study sample is reflective of the population from which it is drawn. A study is said to have high external validity when the sample used is representative of the population to which inferences are made.
$\boldsymbol{F}$-distribution A continuous probability distribution used as the null distribution in ANOVA.

Gamma ( $\boldsymbol{\gamma}$ ) PRE measure of association for two ordinal variables that uses information about concordant and discordant pairs of observations within a table. Gamma has a standardized scale ranging from -1.0 to 1.0.
Gaussian distribution Normal distribution or bell curve.
Geom Abbreviation for geometries from the ggplot2 package.
Geometries Describe the objects that represent the data.
Goodman and Kruskal's lambda ( $\lambda$ ) PRE measure of association for two nominal variables that uses information about the modal category of the dependent variable for each category of the independent variable. Lambda has a standardized scale ranging from 0 to 1.0 .

Goodman and Kruskal's tau ( $\boldsymbol{\tau}$ ) PRE measure of association for two nominal variables that uses information about the proportional distribution of cases within a table. Tau has a standardized scale ranging from 0 to 1.0. For this measure, the researcher must define the independent and dependent variables.

Heteroscedasticity A situation in which the variances of scores on two or more variables are not equal. Heteroscedasticity violates one of the assumptions of the parametric test of statistical significance for the correlation coefficient.

Independent Describing two events when the occurrence of one does not affect the occurrence of the other.

Independent sample $\boldsymbol{t}$-test A test of statistical significance that examines the difference observed between the means of two unrelated samples.

Independent variable ( $\mathbf{X}$ ) A variable assumed by the researcher to have an impact on the value of the dependent variable, Y .
Index of qualitative variation (IQV) A measure of dispersion calculated by dividing the sum of the possible pairs of observed scores by the sum of the possible pairs of expected scores (when cases are equally distributed across categories).

Inferential statistics A broad area of statistics that provides the researcher with tools for making statements about populations on the basis of knowledge about samples. Inferential statistics allow the researcher to make inferences regarding populations from information gained in samples.

Interval/ratio variables Numeric variables with equal intervals between values; functionally the same, yet ratio-level variables have a true zero.
Kendall's tau Measures the strength and direction of two rank-ordered variables on a standardized scale between 0 and 1.0, whereby higher values indicate a stronger relationship.

Kendall's $\boldsymbol{\tau}_{\mathbf{b}}$ PRE measure of association for two ordinal variables that uses information about concordant pairs, discordant pairs, and pairs of observations tied on both variables examined. $\tau_{\mathrm{b}}$ has a standardized scale ranging from -1.0 to 1.0 and is appropriate only when the number of rows equals the number of columns in a table.
Kendall's $\boldsymbol{\tau}_{\mathbf{c}}$ A measure of association for two ordinal variables that uses information about concordant pairs, discordant pairs, and pairs of observations tied on both variables examined. $\tau_{\mathrm{c}}$ has a standardized scale ranging from -1.0 to 1.0 and is appropriate when the number of rows is not equal to the number of columns in a table.
Kruskal-Wallis test A nonparametric test of statistical significance for multiple groups, requiring at least an ordinal scale of measurement.
Levene's test A test of the equality of variances.
Linear relationship An association between two variables whose joint distribution may be represented in linear form when plotted on a scatter diagram.

List A one-dimensional data structure that can contain heterogenous elements (of different classes).
Logical operators Boolean operators that return TRUE or FALSE.
Marginal The value in the margin of a table that totals the scores in the appropriate column or row.

Matrix A specific type of array that has at least two columns and two rows and can contain homogeneous elements (of the same class).

Mean A measure of central tendency calculated by dividing the sum of the scores by the number of cases.

Measures of central tendency Descriptive statistics that allow us to identify the typical case in a sample or population. Measures of central tendency are measures of typicality.

Median A measure of central tendency calculated by identifying the value or category of the score that occupies the middle position in the distribution of scores.

Mode A measure of central tendency calculated by identifying the score or category that occurs most frequently.
Multicollinearity Condition in a multivariate regression model in which independent variables examined are very strongly intercorrelated. Multicollinearity leads to unstable regression coefficients

Multiple comparisons problem The problem associated with the chance of obtaining a false-positive (type I error) increase as the number of comparisons increase.
Multiplication rule The means for determining the probability that a series of events will jointly occur.

Nominal variables Categorical, unordered variables.
Non-directional hypothesis A research hypothesis that does not indicate a specific type of outcome, stating only that there is a relationship or a difference.

Nonparametric tests Tests that do not make an assumption about the distribution of the population; also called distribution-free tests.
Normal distribution A bell-shaped frequency distribution, symmetrical in form. Its mean, mode, and median are always the same. The percentage of cases between the mean and points at a measured distance from the mean is fixed.

Null hypothesis A statement that reduces the research question to a simple assertion to be tested by the researcher. The null hypothesis normally suggests that there is no relationship or no difference.

Object A specialized data structure; everything in $R$ is an object.
Observed frequency The observed result of the study, recorded in a cell.

OLS regression See ordinary least squares regression analysis.

One-way analysis of variance (ANOVA) A parametric test of statistical significance that assesses whether differences in the means of several samples (groups) can lead the researcher to reject the null hypothesis that the means of the populations from which the samples are drawn are the same.

Ordinal variables Categorical, ordered variables.
Ordinary least squares regression analysis A type of regression analysis in which the sum of squared errors from the regression line is minimized.

Outliers A single or small number of exceptional cases that substantially deviate from the general pattern of scores.

Packages Modules that expand what R can do.
Parametric tests Tests that make an assumption about the shape of the population distribution.

Pearson's correlation coefficient See Pearson's $r$.
Pearson's $\boldsymbol{r}$ A commonly used measure of association between two variables. Pearson's $r$ measures the strength and direction of linear relationships on a standardized scale from -1.0 to 1.0.

Percent of variance explained ( $\boldsymbol{R}^{\mathbf{2}}$ ) A measure for evaluating how well the regression model predicts values of Y. It represents the improvement in predicting Y that the regression line provides over the mean of Y .

Phi ( $\boldsymbol{\varphi}$ ) A measure of association for two nominal variables that adjusts the chi-square statistic by the sample size. Phi is appropriate only for nominal variables that each has two categories.

Population The universe of cases that the researcher seeks to study. The population of cases is fixed at a particular time (e.g., the population of the United States). However, populations usually change across time.

Population distribution The frequency distribution of a particular variable within a population.
Project A self-contained working directory.
Proportional reduction in error (PRE) The proportional reduction in errors made when the value of one measure is predicted using information about the second measure.

QQ-plot Used to check for normality of data, plots the correlation between the sample and a normal distribution.

R A language and free software environment used for statistical computing.

R Script Where R programming code is written and stored.
Range A measure of dispersion calculated by subtracting the smallest score from the largest score. The range may also be calculated from specific points in a distribution, such as the 5 th and 95 th percentile scores.
Regression coefficient (b) A statistic used to assess the influence of an independent variable, X , on a dependent variable, Y . The regression coefficient b is interpreted as the estimated change in Y that is associated with a one-unit change in X .
Regression error (e) The difference between the predicted value of Y and the actual value of Y.

Regression line The line predicting values of Y. The line is plotted from knowledge of the Y-intercept and the regression coefficient.

Regression model The hypothesized statement by the researcher of the factor or factors that define the value of the dependent variable, Y. The model is normally expressed in equation form.

Reproducibility When there is a record of one's research such that these steps can be repeated by others and the findings reproduced.
Residual An index of the relative deviation of the observed frequency from the expected frequency for a cell of a contingency table. It is useful for guiding the interpretation of an association between two nominal variables.

RStudio An integrated development environment (IDE) designed specifically for $R$.
Sample A set of actual observations or cases drawn from a population.
Sampling distribution A distribution of all the results of a very large number of samples, each one of the same size and drawn from the same population under the same conditions. Ordinarily, sampling distributions are derived using probability theory and are based on probability distributions.

Sample statistic A characteristic of a sample-for example, the mean number of previous convictions in a random sample of 1,000 prisoners.

Scatterplot A graph whose two axes are defined by two variables and upon which a point is plotted for each subject in a sample according to its score on the two variables.

Scheffés test A multiple comparison test that accounts for familywise error rate by weighting the test statistic by the mean squared error, between-samples degrees of freedom, and group sizes.

Single-sample $\boldsymbol{t}$-test A test of statistical significance that is used to examine whether a sample is drawn from a specific population with a
known or hypothesized mean. In a $t$-test, the standard deviation of the population to which the sample is being compared is unknown.
Single-sample $\boldsymbol{z}$-test A test of statistical significance that is used to examine whether a sample is drawn from a specific population with a known or hypothesized mean. In a $z$-test, the standard deviation of the population to which the sample is being compared either is known oras in the case of a proportion-is defined by the null hypothesis.
Somers' D PRE measure of association for two ordinal variables that uses information about concordant pairs, discordant pairs, and pairs of observations tied on the independent variable. Somers' D has a standardized scale ranging from -1.0 to 1.0 .

Spearman's correlation coefficient See Spearman 's rho.
Spearman's rho ( $\mathbf{r}_{\mathbf{s}}$ ) A measure of association between two rankordered variables. Spearman's $r$ measures the strength and direction of linear relationships on a standardized scale between -1.0 and 1.0.
Standard deviation A measure of dispersion calculated by taking the square root of the variance.

Standard deviation unit A unit of measurement used to describe the deviation of a specific score or value from the mean in a $z$ distribution.

Standard error The standard deviation of a sampling distribution.
Synthetic data Computer-generated data.
Test for equality of variance An $F$-test used to assess the null hypothesis that the two population variances are equal.
Themes Customizations that can alter the general appearance of a plot.
Tibble Modern version of base R's data frame (simpler and more userfriendly) that is from the tidyverse package.
Tied pairs of observations (ties) Pairs of observation that have the same ranking on two ordinal variables.
Tukey's honestly significant difference (HSD) A parametric test of statistical significance, adjusted for making pairwise comparisons. The HSD test defines the difference between the pairwise comparisons required to reject the null hypothesis.
Type I error Also known as alpha error and false positive. The mistake made when a researcher rejects the null hypothesis on the basis of a sample statistic (i.e., claiming that there is a relationship) when in fact the null hypothesis is true (i.e., there is actually no such relationship in the population).

Variance ( $\mathbf{s}^{\mathbf{2}}$ ) A measure of dispersion calculated by adding together the squared deviation of each score from the mean and then dividing the sum by the number of cases.
Variation ratio A measure of dispersion calculated by subtracting the proportion of cases in the modal category from 1.

Welch's ANOVA ANOVA test for when the equality of variances assumption (homoscedasticity) is not met.

Y-intercept ( $\boldsymbol{b}_{\mathbf{0}}$ ) The expected value of Y when $\mathrm{X}=0$. The Y -intercept is used in predicting values of Y.
$\boldsymbol{z}$-score Score that represents an observation in standard deviation units from the mean.

## Index

## A

Adjusted standardized residuals, 150
Aesthetics, 41, 43, 45, 49, 56, 58, 59
Alternative hypothesis $\left(\mathrm{H}_{\mathrm{A}}\right), 121,123-126,152$, 156, 161, 164, 171, 174-176, 179, 181, 182, 206
Analysis of variance (ANOVA), 265
assumptions, 191, 192
Bonferroni correction, 202, 203
box plot, 188
dataset, 185
data transformation, 198-201
eta squared, 205, 206
$F$-distribution, 190
homogeneity, 192-194
hypotheses, 190
Kruskal-Wallis test, 201
multiple comparisons problem, 185
normality issues, 195-198
null hypothesis, 191
one-way analysis of variance test, 185
post-hoc tests, 202
probability, 185
ratio/interval variable, 185
Scheffé's test, 204, 205
Tukey's HSD, 203, 204
variability, 190
Welch's ANOVA, 195
Arrangements, 114
Arrays, 11, 12, 15
Assignment operator, 10
Assumptions
non-parametric, 119, 122, 132, 309
parametric, 119, 122, 132
Atomic vectors, $11-15$

## B

Bar graphs, 53, 54
Binning variables, 280
Binomial distribution, 121
hypothesis testing, 119-133
level of measurement, 122
statistical significance, 121
Binomial formula, 116
Binomial test, 108, 122
Bivariate correlation
covariation, 229
linear relationship, 231
Pearson's correlation, 230
scatterplot, 229
variables, 229
Bivariate regression, 247
Bonferroni correction, 202, 203
Boolean operations, 17
Box plot, 40, 57, 58, 60, 70-73, 75, 76, 186, 188, 192, 195, 199, 208, 306, 307, 312
British Crime Survey, 136, 137

## C

Categorical variables, 139, 242
See also Levels of Measurement (Nominal)
Central limit theorem, 99
Chi-square test, 146, 150
Code structure, 45, 46
Coefficient of variation (CV), 87
Color palettes, 46-48
Comments, 8
Commercial statistical packages, 142
Concordant pairs, 218
Confidence intervals, 100, 103, 131, 166
Confirmatory and exploratory research, 128
Console, 3, 4, 8, 15, 18, 23, 53, 63, 87, 144, 277, 278, 281, 291, 296
Contingency tables, 137, 142
Correlation matrix, 239, 240, 242
Covariation, 229, 247
Cramer's V, 214, 215
Crime Survey for England and Wales, 246, 303
Criminological research and data analysis, 282
Cross tabulations, 137
frequency form, 141
in R, 141
table form, 141

Cumulative probability, 117
Customizing in R
colors, 294
elements, 302
ggplot2 package, 293

## D

Data
adding labels, 29
formatting classes, 30
installing packages, 23, 24
NCVS dataset, 24, 25
R Projects, 23
recoding and creating new variables, 30,31 , 33, 34
removing labels, 28
sorting, 34
subsetting, 34-36
types, 25-27
value labels, 30
viewing labels, 27
Data frame, 11, 12, 16, 287
Datasets, 23
Data sources and dataset names, 304-313
Data transformation, 198-201, 278
variable, 278
Data visualization
bar graph, 53-54
box plot, 57
built-in themes, 50, 51
code structure, 45, 46
color palettes, 46-48
Grammar of Graphics, 41, 42
histograms, 52-53
labels, 49, 50
line graph, 56, 59
multiple graphs, 54-55
scatterplot, 43-45
sizes, 48, 49
transparency, 48, 49
Date variable, 291
Dependent sample $t$-test, 178
DescTools package, 128
Directional hypothesis, 122
Discordant pairs, 218
dplyr package, 139, 140, 282

## E

Environment, 11
Equal variance assumption, 192
Eta squared, 205, 206
Expected frequencies, 146
External validity, 122

## F

F-distribution, 190
Fisher's exact test, 149
For loop, 111, 112
Font, 7, 295, 296
Formatting, 289
character class, 290
Frequency distributions, 137
Functions
abs(), 162
add_column(), 31, 279
add_labels(), 29
add_row(), 234
add_value_labels(), 172
aes(), 44, 46-48, 50-55, 57, 70-73, 92, 96, 97, 101, 103, 130, 186-188, 195, 198, 199, 230, 234, 235, 252-254, 261, 293, 294
aov(), 191, 193, 194, 204, 205
apply(), 285
arrange(), 34, 37
array(), 16
as_factor(), 139-141, 143, 145, 147, 151, 290
as.character(), 290
as.data.frame(), 142
as.factor(), 54, 56, 57, 58, 290
as.numeric(), 220, 289
as.vector(), 82
attach(), 277
attributes(), 26, 83, 86, 138, 258, 265
bind_rows(), 97
BinomCI(), 128-130
box plot(), 70-72, 186
c(), 47
case_when(), 33, 34, 72, 177, 279, 280
cat(), 162, 165
ceiling(), 9
chisq.test(), 149, 150, 213, 216
class(), 16, 26, 64, 138, 219, 258, 291
complete.cases(), 250
confint(), 265
contains(), 15
cor.test(), 220, 233, 236-238
cor(), 233
count(), 31, 44, 50, 51
CrossTable(), 143, 145, 151
cut(), 207
data.frame(), 17, 93, 143, 158, 263, 281, 291-293
dbinom(), 117
detach(), 277
diff(), 85
dim(), 16
display(), 259
DM(), 82
dmy (), 291
do(), 95, 97
drop_na(), 281
element_blank(), 295
element_line(), 295
element_rect(), 295
element_text(), 70-73, 187
ends_with(), 283
everything(), 219
facet_wrap(), 55, 71
factor(), 30, 31, 187, 213, 215, 216, 219, 221, 222
factorial(), 115
fct_explicit_na(), 141
filtèr(), 36, 69, 82, 99, 229, 237, 284
fisher.test(), 149
fitted(), 194
floor(), 9
for(), 307
full_join(), 285
function(), 162, 164, 165
gather(), 289
geom_bar(), 53, 54
geom_box plot(), 57, 70-72, 186-188
geom_density(), 97, 101, 195, 198, 199
geom_errorbar(), 103, 130
geom_histogram(), 52, 53, 73, 92, 96
geom_line(), 56, 234, 253
geom_point(), 44, 46, 50, 51, 55, 103, 130, 230, 234, 235, 252-254, 261, 293, 294
geom_smooth( ), 235, 254, 261
geom_vline(), 92, 96, 101, 103
get_labels(), 27-29
getwd(), 271
ggcorr(), 239-241
ggpairs( ), 241, 242
ggplot(), 43, 44, 46-48, 50-55, 57, 70-73, 92, 96, 97, 101, 103, 130, 186-188, 195, 198, 234, 235, 252-254, 261, 293, 295, 199, 230
ggsave(), 302
ggtitle(), 71-73
GKtau(), 217
GoodmanKruskalGamma(), 219
group_by (), 64, 66, 67, 95, 97, 141, 172, 173, 177, 190, 279, 288
guides(), 186-188
head(), 34, 186
here(), 24, 271
if_else(), 102
inner_join(), 284
install.packages(), 24, 269

IQR(), 69
is.na(), 81, 82, 139
KendallTauB( ), 220
kruskal.test(), 202
labs(), 50, 51, 53, 54, 57, 70-73
Lambda(), 217
lapply(), 285
left_join(), 284
leveneTest(), 193
library(), 24, 269
list(), 16, 282, 289, 290
$\operatorname{lm}(), 258,259$
load(), 272
$\log (), 287$
log10(), 200
matches(), 283
matrix(), 15
$\max (), 75$
mdy (), 292
mean(), 75
median(), 66, 67, 93, 94
merge(), 180
$\min (), 65$
$m \operatorname{lv}(), 64,67,81$
mutate(), 32-34, 72, 102, 177, 279, 280, 282, 289-292
n()$, 64$
na_if(), 282
names(), 16
nrow(), 31, 158, 250, 279
num_range(), 283
oneway.test(), 195
pairwise.t.test(), 203
par(), 71
paste(), 112, 114
pbinom(), 117
Phi(), 214
pivot_longer(), 289
pivot_wider(), 288
pnorm(), 162
pnormGC(), 159, 160
predict(), 263
print(), 15, 111
prop_z_test(), 164
prop.test(), 124-126, 178
qplot(), 197, 200, 250, 251
qqline(), 196
qqnorm(), 196
qqPlot(), 197, 200
quantile(), 69
range(), 85
rbind(), 285
read_csv(), 271, 273
read_delim(), 272
read_dta(), 274

```
Functions (cont.)
 read_excel(), 274
 read_json(), 277
 read_sas(), 275
 read_sav(), 275
 read_spss(), 24
 read_tsv(), 273
 read.dbf(), 274
 read.mat(), 276
 read.mtp(), 276
 read.systat(), 276
 read.table(), 276
 recode(), 172
 remove_labels(), 29
 remove_var_label(), 28
 replace_na(), 282
 require(), 269
 resid(), 194, 196
 return(), 162,164
 right_join(), 284
 rm(), 229
 rnorm(), 92, 93, 158
 round(), 9, 234, 240
 sample(), 32, 95, 97, 100
 sapply(), 25, 286
 save(), 272
 scale_colour_brewer(), 46, 48,
 50,51
 scale_colour_viridis_d(),47
 scale_fill_discrete(), 97
 scale_y_log10(), 187, 188
 scale(), 46, 47, 71
 ScheffeTest(), 205
 sd(), 86
 select(),36
 separate(), 292
 set.seed(), 93
 setRepositories(), 270
 setwd(), 271
 single_t_test(), 165
 skewness(), 74
 skim(), 67, 80, 84, 173
 slice(), 36, 102, }28
 SomersDelta(), 222
 spread(), 288
 sqrt(), 99, 162, 164, 165, 167
 starts_with(), 283, 289
 str(), 83, 142, 292
 StuartTauC(), 221
 substr(), 292
 sum(),139
 summarize(), 66, 67, 82, 99, 100, 141, 172, 177,
 190,288
 summary.lm(), 205, 265
 summary(), 69, 84, 86, 191, 249, 250,
 259,266
```

summary()\$coefficients, 263
summary()\$r.squared, 266
symbox(), 199
t.test(), 175, 180
table(), 30, 65, 80, 81, 138-140
tapply(), 286
theme_bw(), 186-188, 195, 199, 208
theme_minimal(), 51, 130
theme(), 51
TukeyHSD(), 204
var_label(), 27-29
var.test(), 174
$\operatorname{var}(), 86$
View(), 180, 277
vif(), 266
which(), 158
while(), 113
with(), 143, 145, 147, 149, 151
write_csv(), 273
write_delim(), 272
write_dta(), 274
write_json(), 277
write_sas(), 275
write_sav(), 275
write_tsv(), 273
write.dbf(), 274
write.mat(), 276
write.xlsx(), 274
year(), 292
z_test(), 161, 165

## G

Gamma coefficient, 218
Gaussian distribution/bell curve, 93, 157
Geometry, 41
bar graphs, 53, 54
box plots, 57, 58
facet_wrap( ) layer, 55, 58
grouped bar graph, 54, 55
histograms, 52, 53
line graphs, 56, 57
Goodman and Kruskal's lambda, 215-217
Goodman-Kruskal Gamma, 217, 218, 220
Goodman and Kruskal's tau, see
Kendall's tau
Grammar of Graphics, 41, 42
Graphical user interface (GUI), 3

## H

$\mathrm{H}_{\mathrm{A}}$, see Hypothesis testing (alternative)
Heterogenous vectors, 12
Heteroscedasticity, 248
Histograms, 52-53, 57, 58, 67, 73, 74, 92
$\mathrm{H}_{0}$, see Hypothesis testing (null)

Hypothesis, 109, 110, 116, 119-132, 146, 148, 150, 152, 160-166, 171, 174-179, 190-192, 195, 201, 202, 233, 260, 263
alternative, $110,126,131,148,152,161,164,166$, $171,175,176,178,179,181,182,191,206$, 233, 235-238, 260
directional, 122, 132, 176, 181, 306
non-directional, 122, 132, 161, 164, 179, 309
null, 110, 116, 117, 121, 123, 125-127, 131-133, 146, 148, 150, 152, 163-167, 174, 178, 181, 182, 190-192, 195, 201, 202, 206, 207, 233, 260, 306, 307, 309, 310, 312
one-sided, 125
two-sided, 125, 126
Hypothesis testing, 109, 122, 126, 160, 249
assumptions, 122-123

## I

Independence assumption, 191
Independent, 109
Independent sample $t$-test, 171,172, 174
Index of qualitative variation (IQV), 82
Inferential statistics, 91
descriptive statistics, 94
population vs. samples, 91
synthetic data, 91
visualization skills, 92
Integrated development environment (IDE), 3
Interquartile Range (IQR), 68
Interval-/ratio-level variables, see Levels of measurement (ratio/interval)

## J

JSON format, 277

## K

Kendall's tau, 238
Kendall's tau ${ }_{b}, 220-222$
Kendall's tau ${ }_{c}$, 220-222
Keyboard shortcuts, 278
Kruskal-Wallis test, 201

## L

Labels, 49, 50
Least squares estimation, 257
LEMAS-Body Worn Camera supplement survey, 303
Level of measurement, 25, 30, 37
nominal, 209-225
ordinal, 209-225
ratio/interval, 185
Levene's test, 192
Line graphs, 56-59

Line types, 57, 59
Linearity, 253
assumptions, 256
global environment, 258
master dataset, 250
OLS regression, 254
regression, 251
statistics, 257
Linear model, 255
Linear relationship, 229
Line graphs, 56, 57
Lists, 12, 16
Logarithmic transformation, 199
Logical operators, 17
Lower Super Output Area (LSOA), 186
Lubridate package, 290, 292

## M

Marginal column, 145
row, 145
Matrix, 11, 15, 16
Mean squared error (MSE), 204
Mean values, 63-68
Measures of central tendency mean, 63-68 median, 63-68
mode, 63-68
outliers, 68, 70-73
skewness, 73, 74
Measures of dispersion Coefficient of variation (CV), 87
Index of qualitative variation (IQV), 82
range, 83-85
ratio-/interval-level data, 83
standard deviation, 86, 87
variance, 85,86
Variation Ratio (VR), 79, 81, 82
Median value, 63-68
Missing data, 281
Mode, 63-68
Multicollinearity, 248
Multiple comparisons problem, 185
Multiple probabilities
verdicts, 113
while loop, 112
Multiplication rule, 109, 110

## N

National Crime Victimization Survey (NCVS), 22, 91
National Youth Survey (NYS), 170, 171, 303
Navigating R
excel file, 274
functions, 270

Navigating R (cont.)
installation, 269
interrupting R, 277
JSON format, 277
Matlab, 270
Minitab, 276
packages, 269
R data files, 272
reading and exporting data, 272
SAS transport files, 275
SPSS files, 275
Systat, 276
tab-delimited file, 272
Windows, 271
working directory, 271
xlsx, 274
Nominal variables, 25
Non-directional hypothesis, 122, 161, 164
Nonlinear relationships, 234-237, 239
Nonparametric test, 122
Normal distribution, 157
population characteristics, 161
68-95-99.7 rule, 160
$z$-scores, 158, 163
Normal population assumption, 192
Null hypothesis $\left(\mathrm{H}_{0}\right)$, see Hypothesis, null

## 0

Object, 10, 11
Observed frequencies, 146
One-way analysis of variance test, 185, see Analysis of variance (ANOVA)
Ordinary least squares (OLS) regression
bivariate regression, 247
correlation matrix, 257
covariates, 247
dependent variable, 247
distributions, 250
independent variable, 247
linearity, 247
multicollinearity, 248
predictions, 262
regression, 251
regression line, 248
residuals, 248
standard error, 262
variables, 249
Outliers, 68, 70-73

[^0]dplyr, 23, 24, 32, 33, 38, 59, 64, 106, 139, 140, 229, 282, 287, 296
forcats, 140, 290, 296
foreign, 274, 276
GGally, 141, 239, 248, 279, 304
ggplot2, 41, 60, 76, 92, 106, 186, 208, 230, 251, 268, 293, 298
gmodels, 142, 153, 304
GoodmanKruskal, 216, 225, 303
grid, 295
haven, 24, 272, 275, 304
here, 24,270
labelled, 28, 304
lubridate, 291, 292
modeest, 64
moments, 74
mosaic, 94, 95, 270
qualvar, 79, 82
readr, 272, 273
readxl, 272, 274
sjlabelled, 28
skimr, 67, 173
stats, $85,116,117,157,162,177,220$
tibble, 31, 234
tidyr, 281
tidyverse, 31, 33, 35, 41, 176, 272
tigerstats, 159
Packages/software citations, 6
Parametric tests, 122
Pearson's correlation, 230-232
coefficient, 233
hypotheses, 232
variables, 232
Phi, 212-214
Population distribution, 92
Power transformation, 199
Proportion, 79, 123-125, 128, 131, 132, 140, $141,144,157,159,160,163,164$, 169-182, 206, 212
confidence intervals, 100-104
Proportion test, 163-164
single-sample, 163-164
two-sample, 119-133
Proportional reduction in errors (PRE), 215
$p$-value, 126, 150, 164, 260

## Q

Q-Q plot, 196

## R

Random variation, 124
Randomization condition, 192
Range, 83-85
Rate, 68, 81, 84, 122, 163, 164, 173, 204, 230, 232, 233, 235

Regression coefficient, 259
Regression error, 262
Research
confirmatory, 127, 128
exploratory, 127, 128
Reshaping data, 288
tidyr, 288
Residuals, 150, 263
vs. fitted values, 194
R programming
array, 33
atomic vectors, 13-15
basic operations, 8,9
command line interface, 3
classes, 14, 25-26
color options, 296
comments, 8
customizing, 293-294
data frames, 11, 12, 16-17
data structures, 11-13
data types, 17, 25
data view, 180
environment view, 11, 19, 272, 310
formatting dates, 290-292
formatting classes, 290-291
files, 6
functions, 20
help, 6
history view, 278
interrupting, 277-278
Keyboard shortcuts, 278
installation, 4
learning, 2
lists, 11, 12
logical operators, 17
matrix, 15,16
objects, 10
packages, 6
projects, 23
plots, 6
script, 4-7
vector, 11, 25
Windows operating system, 3
R Projects, 23
R Script, 5-7
RStudio, 277
customizing, 7, 8
installation, 4
open and explore, 4-7

## S

Sample distributions, 98
Sample sizes, 97
Sample statistic, 96
Sampling and sampling variability, 94
Sampling distribution, 95, 96, 98, 101, 116

Sampling variability, 95
Saving output
ggplot2, 302
RStudio environment, 302
Scatterplot, 43-45, 229
Scheffé's test, 204, 205
Seattle Neighborhoods and Crime Survey, 210-211
Significance level, 123
Single-sample $t$-test means, 165
Single-sample $z$-test, 161
proportions, 163, 164
68-95-99.7 rule, 160
Skewness, 73, 74
Somers' D, 222, 223
Sorting, 34
Spearman method, 241
Spearman's (rho) rank correlation, 238
Standard deviation unit, 86, 87, 158
Standard error, 99, 100
Statistical computing environments, 116
Statistical significance, 121
Statistical tests, 122
Survey of Inmates in State and Federal Correctional Facilities (SISFCF), 78

## T

Test for equality of variance, 174
Themes, 50, 51
Tied pairs of observations, 218
Total variation, 264
$t$-test, 174-176
Tukey's Honest Significant Difference (HSD) method, 203, 204
Two-sample means/proportions
binary variable, 176
dependent sample $t$-test, 178
independent sample $t$-test, 171, 172, 174
null hypothesis, 178
test for equality of variance, 174
$t$-test, 174-176
$z$-test, 176, 177
Type I error, 109, 121
Type II error, 109

## V

Variable transformations
data transformations, 287
exponentiating, 287
log, 287
Variance, 85, 86
Variance explained ( $R^{2}$ ), 263
Variance inflation factor (VIF), 248, 266

Variation ratio (VR), 79, 81, 82 Y
Vector, 11, 13-16, 18, 25-27, 34, 82, 92, 102, 177, 270, 285-287
Viewing Data Frame, 277

## W

Welch's ANOVA, 194, 195
While loop, 113

Y-Intercept, 261

## Z

$z$-scores, 158
$z$-test
single sample, 161, 163, 164
two-sample means, 176, 177


[^0]:    ## P

    Packages
    arm, 259
    car, 192, 197, 199, 266
    DescTools, 128, 133, 204, 208, 214, 216, 218, 220-222, 225, 296

