
© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
A. Wooditch et al., A Beginner’s Guide to Statistics for Criminology and
Criminal Justice Using R, https://doi.org/10.1007/978-3-030-50625-4

 Appendix

A p p e n d i x 1 : N a v i g a t i n g R

1.1. Installing and Loading Packages

You will find that installing packages can be a pain. This section will try to
make it as painless as possible. You can check what packages are loaded,
as well as load packages, using the Packages tab. We suggest that you load
packages using code so when you run the code in the future, the package
loads automatically.

The first thing you want to do is install the desired package using the
install.packages() function, and it can then be loaded with the
library() function, which we suggest to use over the require() func-
tion. This can be done as follows:

install.packages("PackageName") # Install package

library(PackageName) # Load package

Was the package successfully loaded? If yes, GREAT! And you can stop
reading this section. If it failed :-(keep reading and try a few trouble
shooting steps.

Package not found:

Make sure that you typed the code correctly. Perhaps you forgot the period
between install and packages or the S at the end of the word packages.
Also, check to make sure that there are quotation marks around the pack-
age name when you install the package, but no quotation marks when you
load the package. Remember as well that R is case sensitive.

Package XXX not available:

1. Sometimes R can be buggy and not allow you to set repositories. If step
1 fails, We have found the most success with the code below. Make sure
to use the library() function afterward if the installation was successful.

install.packages("PackageName",
repos='https://cloud.r-project.org')

270

2. If the prior step fails, make sure that the device you are using is con-
nected to the Internet and rerun the function.

3. R may not be checking in the right place to find the package. You can
try to fix this by typing setRepositories(). You then want to enter
the values 1 (for CRAN). Run setRepositories() again, and then
enter 5 (for CRAN extras).

4. Still no work? Throw the laptop against the wall. No, just kidding. First,
recheck that you have completed all prior steps correctly. Second, if that
does not work, I would search the specific error that you are receiving
online. There are many online forums that are very helpful in solving
this issue.

1.2. Specifying Packages
In some circumstances, different functions will have the same name in dif-
ferent packages, or a package will contain a function with the same name
as a function available in base R. Just because functions have the same
name, it does not mean that they do the same thing or behave in the same
way. For example, base R has a function called range() which simply
calculates the range of values in a vector. However, the package called
mosaic used in Chapter 6 also includes a function called range(), which
behaves a little differently, containing additional options. You might have
noticed that when you load packages, R will give you warnings about the
function names which are conflicting. By default, R will use the function
from the package which you loaded last. To avoid any confusion, you can
actually specify which package you want to use by using :: before the
function name, either with the package name or simply base for base R.

base::range(numeric_vector)

mosaic::range(numeric_vector)

Uses the range() function
from base R
Uses the range() function
from mosaic

1.3. Projects and Working Directories
Working with here() As noted in Chapter 2, we recommend that you
use R projects. Wherever your R project is saved will be the default work-
ing directory. This is very helpful when it comes to loading or saving data,
because you don’t have to specify the whole working directory each time.
However, doing this yourself might bring up problems, largely because
working directories can differ between operating systems (e.g., Windows
and Mac). Your code might work for you, but not for other people (or
somebody else’s code won’t work for you!). A useful way to address this
is to use the here() function from the here package, in tandem with an
R project. Instead of specifying the working directory manually, you can
input each section of the directory within here() and stick them alto-
gether for you in a way that works consistently.

A p p e n d i x

271

Not recommended: specify whole working directory outside
of a project
df <- read_csv(file = "C:/Users/your_name/Documents/my_

project_folder/Datasets/my_file.csv")

Improvement: work from your project
But, this might not work for other people!
df <- read_csv(file = "Datasets/my_file.csv")

Ideal situation: work from your R project and use here()
df <- read_csv(here("Datasets", "my_file.csv"))

1.4. Setting Working Directory
Although we recommend that you use R projects, and use working direc-
tories via the here() function, it is possible to set the working directory
manually from within R using the function setwd(). How you do this var-
ies between Windows and Mac, as demonstrated below.

Windows
Note that in Windows, you cannot simply copy and paste your desired
working directory. You need to set the directory using two backward
slashes or, alternatively, one forward slash.

Either use two backward slashes
setwd("C:\\Users\\your_name\\Documents\\my_project_folder")

Or change backward slashes to forward slashes
setwd("C:/Users/your_name/Documents/my_project_folder")

Mac
To set your working directory on a Mac:

setwd("/Users/your_name/Documents/my_project")

1.5. Get Working Directory
You can check to see if your working directory was successfully defined,
or simply check what it is, by using getwd() on its own.

getwd()

A p p e n d i x

272

1.6. Opening Data Files and Exporting Data
R is capable of reading and exporting data in numerous different formats,
many of which are used in other software. Here, we make use of functions
from the packages haven, readr, and readxl, contained within the tidy-
verse, as well as functions from the openxlsx and foreign packages.

1.6.1. R Data Files
R data files have the file extension .R (or .RDA if the file was created in an
older version of R). Note that if you don’t assign the dataset to an object,
R specifies a dataset name for you.

• Read: load(file) loads your .rda file into the R environment.

• Write: save(x, path) saves your data frame x into an R data file
(.rda) specified in path.

.rda Example
load("Dataset Name.rda") # Imports your .rda file

write(ncvs, file = "New Dataset Name.rda")
Exports your data as an .rda file

1.6.2. General Delimited

• Read: read_delim(file, delim, ...) from the readr package
reads in delimited files, where users can specify the delimiter in the
delim argument. If you are importing a comma- or tab-delimited file,
see below.

• Write: write_delim(x, path, delim = " ", na = "NA", append
= FALSE, col_names = TRUE,...) from the readr package writes R
data objects x to a delimited file specified in path. The delimiter being
used should be entered into the delim argument. The default arguments
for this function include that the string that should be used for missing
values is NA; the new file should replace the old and not be appended to
the bottom (set append = TRUE for the opposite) and that the column
names will be included at the top of the file.

General Delimited Example
ncvs <- read_delim("Dataset Name.txt",

delim = "\t", col_names = TRUE)

write_delim(ncvs, "New Dataset Name.txt", delim = "\t",
na = "NA", append = FALSE, col_names = TRUE)

Importing a
tab-delimited
text file

Exporting the
tab-delimited
text file

A p p e n d i x

273

1.6.3. Comma Separated

• Read: read_csv(file, ...) from the readr package imports
comma-separated files. You can specify whether or not you want the
first row of your data to be considered the variable names. read_
csv2(file, ...) can also be used for the ; separator.

• Write: write_csv(x, path, na = "NA", append = FALSE,
col_names = TRUE,...) writes your data frame x to a comma-sepa-
rated file specified in path. The default arguments for this function
include that the string that should be used for missing values is NA;
the new file should replace the old and not be appended to the
bottom (set append = TRUE for the opposite); and the column names
will be included at the top of the file. write_csv2() may be used for
the ; separator.

.csv Example
Importing CSV file with the header
ncvs <- read_csv("Dataset Name.csv", col_names = TRUE)

Importing CSV file without header
ncvs <- read_csv("Dataset Name.csv", col_names = FALSE)

Exporting as a new CSV file with headers
write_csv(ncvs, file = "NewName.csv", na = "NA",
append = FALSE, col_names = TRUE)

Exporting as a new CSV file without headers
write_csv(ncvs, file = " NewName.csv", na = "NA",
append = FALSE, col_names = FALSE)

1.6.4. Tab Separated

• Read: read_tsv(file, ...) from the readr package imports a
tab-delimited file.

• Write: write_tsv(x, path, na = "NA", append = FALSE,
col_names = TRUE, ...) from the readr package can be used to
write a data frame or matrix x to a tab-delimited file. col_names must
be either True or False and specifies whether the column names
should be written to the top of the file.

.tsv Example

Import the tab-delimited text file
ncvs <- read_tsv("Dataset Name.tsv", col_names = TRUE)

Export as a tab-delimited text file
write_tsv(ncvs, file = "NewName.tsv", na = "NA",
 append = FALSE, col_names = TRUE)

A p p e n d i x

274

1.6.5. Excel

• Read: read_excel(file, ...) imports both .xls and .xlsx files into R
through the readxl package. read_excel(file, sheet = "name")
and read_excel(file, sheet = 2) both import a specific sheet
from the Excel file that you want to use, either by name or index.

• Write: write.xlsx(x, path, ...) from the openxlsx package
enables you to write your data frame x as an Excel file specified
in path.

Excel Example

ncvs <- read_excel("Dataset Name.xlsx")
Import excel file as the object ncvs

Export as dataset "New Dataset Name.xlsx"
write.xlsx(ncvs, file = "New Dataset Name.xlsx")

1.6.6. dBASE

• Read: read.dbf(file, ...) from the package foreign may be used
to read DBF files.

• Write: write.dbf(x, path, ...) can write the R data frame x in
DBF format.

dBASE Example

Import dbf dataset as the object ncvs
ncvs <- read.dbf("Dataset Name.dbf")

Export as dataset named New Dataset Name.dbf
write.dbf(ncvs, file = "New Dataset Name.dbf")

1.6.7. Stata

• Read: read_dta(file, ...) reads .dta files using the pack-
age haven.

• Write: write_dta(x, path, version = 14, ...) writes your data
to a Stata .dta file. This currently works with Stata versions 8–15.

Stata Example

Import Stata dataset as the object ncvs
ncvs <- read_dta("Dataset Name.dta")

Export as Stata dataset named New Dataset Name.dta
write_dta(ncvs, file = "New Dataset Name.dta")

A p p e n d i x

275

1.6.8. SPSS

• Read: read_sav(file, ...) from the package haven reads .sav files,
and read_por() can be used for older SPSS files.

• Write: write_sav(x, path, ...).

SPSS Example

Import SPSS dataset as the object named ncvs
ncvs <- read_sav("Dataset Name.sav")

Export as SPSS dataset named New Dataset Name.sav
write_sav(ncvs, file = "New Dataset Name.sav")

1.6.9. SAS

• Read: read_sas(file, ...) from the haven package reads .sas7bdat
files, and read_xpt() can be used to open SAS transport files
(versions 5 and 8)

• Write: write_sas(x, path, ...) writes your data to a SAS format
file specified in path, though this functionality is currently experimen-
tal. Make sure to keep apprised of package updates to get the most
out of these functions.

SAS Example

Import SAS dataset
ncvs <- read_sas("Dataset Name.sas7bdat")

Write to a SAS data file named New Dataset Name.sasb7dat
write_sas(ncvs, file = "New Dataset Name.sasb7dat")

1.6.10. From Web URL
You can load data directly from the web as long as you have the URL. To
do so, you will want to create an object with the permanent url address.
Then, we use a function to read the data into R. The data that can be saved
using an api is in tab-separated format; therefore, we use the read.
table() function from base R. We pass two arguments to the function.
The sep= '\t' is telling R this file is tab separated. The header = T func-
tion is telling R that is TRUE (T) that this file has a first row that acts as a
header (this row has the name of the variables). See example below where
we load the data into an object named sharkey:

A p p e n d i x

276

URL Example
data_url <- "https://dataverse.harvard.edu/api/access/

datafile/:persistentId?persistentId=doi:
10.7910/DVN/46WIH0/ARS2VS"

sharkey <- read.table(url(data_url), sep = '\t',header = T)

1.6.11. Systat

• Read: read.systat(file, ...) reads .sys or .syd files using the
foreign package.

• Write: The foreign package does not currently support writing data
in R as a Systat file. Make sure to keep apprised of package updates to
get the most out of these functions.

Systat Example
ncvs <- read.systat("Dataset Name.syd") # Import Systat file

1.6.12. Minitab

• Read: read.mtp(file, ...) reads .mtp files using the foreign
package.

• Write: The foreign package does not currently support writing data
in R as an .mtp file. Make sure to keep apprised of package updates to
get the most out of these functions.

Minitab Example
ncvs <- read.mtp("Dataset Name.mtp") # Import .mtp dataset

1.6.13. Matlab

• Read: read.mat(file, ...) reads .mat files using the rmatio
package.

• Write: write.mat(x, path,...) to save R objects as a MAT file.

Matlab Example
ncvs <- read.mat("Dataset Name.mat") # Import MAT file

Write object ncvs to a MAT file
write.mat(ncvs, file = "New Dataset Name.mat")

A p p e n d i x

277

1.6.14. JSON

• Read: read_json(file, ...) reads JSON files using the jsonlite
package.

• Write: write_json(x, path,...) to save R objects in JSON format.

JSON Example
ncvs <- read_json("Dataset Name.json") # Import JSON file

Write object ncvs to a JSON file
write_json(ncvs, file = "New Dataset Name.json")

1.7. Viewing Data Frame
It is good practice to do this to ensure R has read the data correctly and
there’s nothing terribly wrong with your dataset. It can also give you a first
impression for what the data look like. If you are used to spreadsheet-like
views of data, you can use the View() function, which should open this
view in R Studio. This can also be used to view R objects.

Example with a dataset named burglary_df
View(burglary_df)

1.8. Using attach() and detach()
The attach function attaches the dataset name to the R file path so you
can access variables of a dataset without calling the dataset name. You can
turn off the attach function using detach().

Without *Attach*:
df_name$my_variable

With *Attach*:
attach(df_name)
my_variable

Turn off *Attach*
detach("df_name")

1.9. Interrupting R
Sometimes R can take a long time to execute a task if you have asked it to
perform a particularly complex or computationally demanding operation. In
cases such as these, a small red stop sign will appear in the top right corner
of your console in RStudio. Click on this stop sign to interrupt the process.
You can also use the Esc key in Windows or Mac. If for some reason this still
does not halt the process, you may need to wait out the operation or navigate

A p p e n d i x

278

to your operating system’s task manager and quit RStudio altogether. Take
caution, however, that exiting the program will cause any unsaved work to
be lost. It is best practice to save your work, and save it often!

1.10. Keyboard Shortcuts
Though it is possible to use your cursor to navigate and execute tasks
within the RStudio IDE, RStudio has a large number of keyboard short-
cuts you can leverage without having to use your mouse. To check on the
available shortcuts for RStudio, simply navigate to the Tools menu in the
task bar, and select Keyboard shortcuts help from the dropdown. Users
even have the option of customizing their keyboard shortcuts. Table A1
lists just a few common shortcuts that may come in handy for most users
(adapted from this article: https://support.rstudio.com/hc/en-us/articles/
200711853-Keyboard-Shortcuts).

Again, be sure to check the Keyboard shortcuts help menu in your version
of RStudio to see the available shortcuts.

A p p e n d i x 2 : D a t a T r a n s f o r m a t i o n

Data transformation is often a necessary task in the data analysis process.
Of course, R has multiple ways of accomplishing the various transforma-
tions you may need to do. For most of the tasks in this section, we focus
on base R and tidyverse methods.

2.1. Recoding or Creating a New Variable
There are many different ways one can achieve generating or recoding a
variable. For instance, we can use the mutate() and case_when() func-
tions from dplyr to create transformed variables based on some criteria.

R Keyboard Shortcuts

TASK SHORTCUT (WINDOWS/LINUX) SHORTCUT (MAC)

Clear console Ctrl + L Ctrl + L
Navigate function history Up/Down Up/Down
Interrupt executing function Esc Esc
New document (except Chrome/Windows) Ctrl+ Shift + N Cmd + Shift + N
New document (Chrome only) Ctrl + Alt + Shift + N Cmd + Shift + Alt + N
Open document Ctrl + O Cmd + O
Save document Ctrl + S Cmd + S
Run current line/section Ctrl + Enter Cmd + Return
Run current document Ctrl + Alt + R Cmd + Option + R
Insert assignment operator Alt + - Option + -
Insert pipe operator Ctrl + Shift + M Cmd + Shift + M
Search R Help Ctrl + Alt + F1 Ctrl + Option + F1
Quit session Ctrl + Q Cmd + Q

Table A1

A p p e n d i x

https://www.support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts
https://www.support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

279

We can also create new variables, based on some computation or combi-
nation of other variables. In our data frame, df, we want to recode a vari-
able called shot, which is a character variable of whether someone was
injured via gunshot or another method.

Recode the variable injury_type into variable called "shot"
df <- df %>%
mutate(shot = case_when

(injury_type %in% "gun" ~ "Gun shot",
injury_type %in% "stab" ~ "Not Gun Shot"))

You can also create new variables based on some calculation. For instance,
if you wanted to create a variable that was a ratio of two variables, you
could simply divide one variable by the other within the mutate() function.

Create a new variable that is a calculation
In this case, a ratio of var1 to var2
df <- df %>%

group_by(sex) %>%
mutate(ratio = var1/var2)

Or you could create a new variable that was equal to the sum of four vari-
ables divided by four.

Create a new variable that is equal to the sum of four
vars divided by four
df <- df %>%

group_by(sex) %>%
mutate(someindexscore = (var1 + var2 + var3 + var4)/4)

You also may want to add a totally new column to your data frame. You
can use the add_column() function for this. The following example uses
this function to create an ID variable for our data frame, df:

Create a new column that is a row ID
add_column(df, newid = 1:nrow(df))

These are just several key ways to recode variables using dplyr. There are
many functions that can perform various tasks that might be useful to you
as you are cleaning your data. Which functions you choose simply depends
on what you need to do with your data.

A p p e n d i x

280

2.2. Binning Variables
Binning variables is useful, for example, when you need to create catego-
ries of a continuous variable, or when you simply want to collapse a cer-
tain number of categories into a fewer number of categories. Using
functions from dplyr and forcats, like mutate() and case_when(), or
fct_collapse(), you can define how you want your variable to be
binned. For instance, below, we create the variable injury_location that
collapses six different places people could have been injured into three
categories: home, school, and other.

Create a new collapsed character variable injury_location
from numeric values
df <- df %>%

mutate(injury_location = case_when(location %in% 0 ~ "Home",
location %in% 1 ~ "School",
location %in% 2:5 ~ "Other"))

Create collapsed version of variable if it’s a factor using
fct_collapse()
Manually decide your factor levels
df$injury_location <- fct_collapse(df$location,
other = c("Work", "Park", "Mall", "Other"),
school = "School",
home = "Home")

If you have a continuous variable like age or number of arrests, you
may want to be able to bin them into broader categories under certain
circumstances. In the example below, we are converting a continuous vari-
able of the number of full-time sworn officers in each law enforcement
agency (Q_8) into an ordinal measure of agency size (agcysize).

Create bins of agency size from the variable Q_8
bwcs <- bwcs %>%

mutate(agcysize=case_when(
Q_8 %in% 0:10 ~ "0-10 FTS",
Q_8 %in% 11:50 ~ "11-50 FTS",
Q_8 %in% 51:100 ~ "51-100 FTS",
Q_8 %in% 101:500 ~ "101-500 FTS",
Q_8 %in% 501:1000 ~ "501-1000 FTS",
Q_8 >= 1001 ~ ">1000 FTS"))

A p p e n d i x

281

2.3. Dealing with Missing Data
Missing data are a common occurrence in criminological research. It might
arise due to a variety of reasons. In police-recorded crime data, it might be
due to recording issues, or perhaps the information was simply not avail-
able or unknown (e.g., an offender’s home address). In survey data,
respondents might have refused to answer a question, or the respondent
might have simply dropped out of participating. How to deal with missing
values is a field of research in itself and should be considered carefully.
One important reason for this is because missing data might be missing for
an underlying systematic reason which impacts on your research. For
instance, many people don’t like answering questions about their income,
but perhaps certain demographic groups (or people on certain incomes)
are especially unlikely to answer this question. It would be unwise to sim-
ply remove all these people from your data, because you would end up
with a biased sample only containing people who were willing to discuss
their income. So, consider these issues carefully when dealing with your
missing data! With that in mind, the following functions might be of use.

First, let’s create an example data frame containing information about
the number of prior offenses committed by a sample of ten offenders. The
column crime_count contains missing values, because some of our offend-
ers did not want to discuss their offending history. Note that R actually
treats missings as missings using NA. This might seem obvious, but many
software assign a specific value like 9999 to define a missing value. Note
that NA is not the same as stating NA, which would be treated as a charac-
ter, and therefore not missing!

df <- data.frame(
id = 1:10,
crime_count = c(1,4,0,NA,6,0,23,NA,54,NA))

To remove observations with missing values (which as stated above, is
not always appropriate), we can use drop_na() from the tidyr package.
Make sure you have this package installed and loaded before trying the
following code. Because the data frame is so small, we will just print the
output to the Console without assigning it to anything.

drop_na(data = df, crime_count)

Note that if you do not specify a variable, drop_na() will just remove
any observations with missings in any column.

We can also replace missing values with another value using replace_
na(), which is also from tidyr. Let’s say we wanted to just replace miss-
ings with zeros. Again, in reality this might not be a good idea! We can do
this for any particular column, but in this example, we only have one, so
we only need to specify crime_count.

A p p e n d i x

282

replace_na(data = df, list(crime_count = 0))

The replacement does not have to be a number. Here, we just assign
refused to answer to these values.

replace_na(data = df, list(crime_count = "refused to answer"))

If we were to do things the other way round, we can also replace
observed (non-missing) values with missings using na_if() in the dplyr
package. This function is designed to be used within mutate() (see
Chapter 2) to create a new variable. Here, we just replace crime count
values of zero with missings.

df %>%
mutate(na_example = na_if(x = crime_count, y = 0))

2.4. Selecting Specific Rows, Columns, or Cells
Oftentimes in criminological research and data analysis in general, we
only need to work with a subset of a dataset. The dplyr package offers
ways of selecting various subsets of your data. For instance, one can make
selections based on rows, certain columns, or even cells. Making a selec-
tion based on rows is equivalent to keeping certain observations in your
dataset, while making a selection based on columns is equivalent to keep-
ing certain variables in your dataset. The following code provides some
examples of how to use the slice(), filter(), and select() functions
from dplyr to keep what we need of our data and nothing more. We
demonstrate how to use these functions on our data frame, df.

2.4.1. Selecting Rows (or Cases/Observations)

Subset the first 100 rows of data using the
slice() function
first100 <- df %>%

slice(1:100)

Alternatively...
first100 <- df[c(1:100),]

A p p e n d i x

283

2.4.2. Selecting Columns (or Variables)

Subset the first 30 variables (or columns) in your data
frame using the select() function
first30 <- df %>%

select(1:30)

Alternatively...
first30 <- df[,c(1:30)]

Same as above, but using the variable names
first30 <- df %>%

select(Var1:Var30)

You can also use select() in conjunction with special functions like
starts_with(), ends_with(), contains(), matches(), num_range(),
one_of(), and everything() to more easily filter out the variables you
want to select.

Select only variables beginning with "crime"
crime <- df %>%

select(starts_with("crime"))

Select only variables ending with "year2"
crime2 <- df %>%

select(ends_with("year2"))

2.4.3. Selecting Cells
Selecting certain cells in R is easy. Note that you can also use this way of
specifying cells for recoding.

Here, we are selecting/recoding a cell that falls on the 109th row and
in the 4th column.

df[109, 4] # Row 109, column 4

df[109, 4]<-NA # Code cell as missing

df[109, 4]<-99 # Change cell value to 99

2.5. Selecting Cases Based on Criteria
We have covered how to go about selecting your subset by rows and col-
umns, but you may also want to subset your data by some other criteria.
For instance, you want to examine only males, or only youth, but your
samples contain females and senior citizens. If you need to select cases
from your data frame that meet certain conditions, you can use the

A p p e n d i x

284

filter() function from dplyr. Assume in the following example that we
want to perform an analysis on a sample of recidivists. We can filter on the
dummy variable recidivist such that only cases where recidivist is equal to
1 are kept. We also want only adults in our sample, so we can filter on age
as well.

Subset rows based on some condition(s) using filter()
adult_recidivist_sample <- df %>%
filter(recidivist == 1 & age > 17)

2.6. Add Columns to a Data Frame
Unless you are lucky, you will sometimes need to merge multiple data
sources together for your analyses. The dplyr package allows users to
merge multiple data frames together through different join functions. Each
type of join merges your data a slightly different way.

2.6.1. Inner Join
The inner_join() function keeps only cases that exist in both datasets
you are merging. This means that if you have an ID for someone in your
first dataset, but not in your second, that case will be dropped in the
merged version.

Inner join
df3 <- inner_join(df1, df2, by = "ID")

2.6.2. Left Join
The left_join() function does not drop ALL unmatched cases, but
keeps unmatched cases from the first data frame, and simply assigning it
an NA for columns from the second data frame. If the second data frame
also had an unmatched case, this would be dropped.

Left join
df3 <- left_join(df1, df2, by = "ID")

2.6.3. Right Join
The right_join() function is the same as the left_join() function,
except that any unmatched cases from the second dataset are kept this
time, and the unmatched cases from the first dataset are dropped.

Right join
df3 <- right_join(df1, df2, by = "ID")

A p p e n d i x

285

2.6.4. Full Join
The full_join() function returns all of the columns from both datasets
and returns a NA when there are no matching values.

Full join
df3 <- full_join(df1, df2, by = "ID")

2.7. Add Rows to a Data Frame
You may want to add more cases to your data frame rather than adding
columns. This can be done by using the rbind() function from base R
where you specify the names of the objects you want to add together (can
be vector, matrix, or data frame). To use this function with a data frame,
make sure that the variable names in data frames being combined match.

Add rows with rbind()
New_df<-rbind(df1, df2)

2.8. Applying Functions to Every Column
If you want to apply a function to all columns in your data frame, you can
use one of the apply() family of functions from base R. Some key func-
tions from this family include apply(), lapply(), sapply(), and
tapply().

2.8.1. Using apply()
The apply() function does exactly what it sounds like—it applies a func-
tion to an array or matrix. You can choose whether to apply the function
to rows, columns, or both. Note that to pass the function to rows, you will
use the number 1, and to pass the function to columns, the number 2. This
function then returns either a vector, or an array, or list of values.

apply()

Applies the function mean to all COLUMNS in df
apply(df, 2, mean)

Applies the function mean to all ROWS in df
apply(df, 1, mean)

2.8.2. Using lapply()
Using the lapply() function applies a function to all elements of a list
and returns a list of results.

lapply()

Applies the function mean to the list "mylist"
lapply(mylist, mean)

A p p e n d i x

286

2.8.3. Using sapply()
The sapply() function is similar to lapply(), except that instead of
returning a list, it returns a vector or matrix.

sapply()

Applies the function mean to the list "mylist"
sapply(mylist, mean)

2.8.4. Using tapply()
The tapply() function is useful in that it allows users to apply a function
to parts of a vector rather than the whole thing. For instance, if you wanted
to apply a function to groups within a vector, you can simply specify the
vector that you want to apply the function to, the grouping vector, and
finally, the function itself. For instance, if you want to calculate the mean
number of officers by law enforcement agency type, you could do the
following:

tapply()

Calculates the mean number of officers per agency type
tapply(df$num_officers, df$agencytype, mean)

2.9. Calculating Variable Transformations
Sometimes we need to transform our variables before we include them in
a statistical model. You can use the mathematical operations discussed in
Chapter 1 on most variables in R (if your variable is numeric!). The follow-
ing are merely a few examples of key transformations you may want
to make.

2.9.1. Logarithmic Transformation
Use the log10() function from base R to calculate the base 10 logarithm
of a vector.

Create a vector a
a <- c(50, 100, 40, 62, 922, 4000)
a

transform a using log
b <- log(a)
b

A p p e n d i x

287

2.9.2. Natural Log
To perform a natural log transformation on a vector, you can use the
log() function, also available through base R.

Create a vector named "a"
a <- c(50, 100, 40, 62, 922, 4000)
a

Transform "a" using log()
b <- log(a)
b

2.9.3. Exponentiation
Exponentiating a value or set of values in R is very straightforward. You
can perform calculations of values directly in R like a calculator.

10 squared
10^2

5 cubed
5^3

You can also perform calculations on vectors of values.

create a vector named "c"
c <- c(10, 33, 52, 900, 2246)

Square "c"
c^2

Raise "c" to the 4th power
c^4

These are just several data transformations you may want to make. Luckily,
with the use of R objects and vectorized operations, it is relatively easy to
transform your data to fit your specific needs.

2.10. Summarize a Data Frame by Groups
With the dplyr package, you can summarize variable(s) within groups.
For instance, in this example, imagine we want to calculate the mean and
standard deviation of inmates’ age (AGE) by their gender (GENDER), and
the variables are stored in a data frame named df.

A p p e n d i x

288

df %>%
group_by(GENDER) %>%

summarize(mean_age = mean(AGE, na.rm = TRUE),
sd_age = sd(AGE, na.rm = TRUE))

You can choose to store this as a data frame (named new_df).

new_df <- (df %>%
group_by(GENDER) %>%
summarize(mean_age = mean(AGE, na.rm = TRUE),
sd_age = sd(AGE, na.rm = TRUE)))

2.11. Reshaping Data Frames
Reshaping data is a task many analysts must perform at one time or
another. How else are you supposed to format your time series data to
examine changes in delinquency over time? Though the task itself seems
like it may be long and arduous, R, and more specifically tidyr, can make
this process much smoother than what you might first expect.

2.11.1. Into Wide Format
Load the library for tidyr, and use the spread() function to convert your
data into wide format. You just need to specify the data frame you want to
reshape (df, in this case), as well as the variable that you will convert to
multiple variables or column names (intervention_period).

Convert data frame into wide format
wide_df <- df %>% spread(key = intervention_period,

value = num_crimes)

You can also use the newer approach to reshaping data in tidyr,
pivot_wider(). This function works in a similar fashion, though it is still
being updated, unlike the spread() function. Rather than specify the key
and value column names, the pivot_wider() function allows you to
specify the columns that uniquely identify each observation (though the
default is that all columns in your data frame will be selected), as well as
the columns from which to get the new column names (names_from) and
values from (values_from). The following example will create a new data
frame with multiple columns beginning with intervention_period and will
include the number of crimes in each cell in the appropriate interven-
tion_period column.

Convert data frame into Wide format
wide_df <- pivot_wider(id_cols = id,

names_from = intervention_period,
values_from = num_crimes)

A p p e n d i x

289

2.11.2. Into Long Format
If on the flip side we want to take our 20 different variables indicating each
intervention period and collapse it into a single column, use the gather()
function to reshape wide format to long. Remember to specify both the
key and the value columns, or what variables you want to gather on, and
their values.

Convert data frame into long format using "gather"
long_df <- df %>% gather(key = intervention_period,

value = num_crimes)

Again, you can also use the newer approach offered by tidyr: the
pivot_longer() function. In the following example, we first need to
specify the columns we want to pivot on or make longer (in this case,
variables marking the intervention period), then the new column name for
the pivoted column names, and then finally the new column name for the
values associated with these columns.

Convert data frame into long format using "pivot_longer()"
long_df <- df %>% pivot_longer(cols = starts_with("period"),
names_to = "intervention_period", values_to = "num_crimes")

A p p e n d i x 3 : F o r m a t t i n g

3.1. Changing Classes

3.1.1. To Numeric Class
After importing data into R, you will often need to change the class of
some of your variables. In the example below, the variable age was stored
as a character class, i.e., the numbers are stored as strings rather than num-
bers. To change the class of the age variable, you can use the base R
as.numeric() function.

Change the "age" variable in the ncvs data frame
to numeric class
ncvs$age <- as.numeric(ncvs$age)

Dplyr method to change multiple variables to numeric
Changes variables x, y, and z to numeric class
ncvs <- ncvs %>%

mutate_at(vars(x, y, z), list(as.numeric))

A p p e n d i x

290

3.1.2. To Character Class
Sometimes, you may want to change a variable to a character class or
string. For example, if you import a dataset (df) that contains a column of
zip codes (zip), R may treat this column as a numeric class initially. However,
you may want zip code to be treated as a string variable. To change the
class of zip, you can use the base R as.character() function.

Change the "zip" variable in the data frame to a character
class variable
df$zip <- as.character(df$zip)

Dplyr method to change multiple variables to character
Changes variables x, y, and z to character class
df <- df %>%

mutate_at(vars(x, y, z), list(as.character))

3.1.3. To Factor Class
You may also need to convert variables to a factor class. This can be
accomplished with the base R as.factor(), or the as_factor() func-
tion from the forcats package. There is a difference between the two
functions in how levels are defined. Be sure to review the documentation
for whichever function you choose. Let’s convert the variable sex, a char-
acter variable, to a factor.

Change the "sex" variable in the data frame to a factor
class variable
df$sex2 <- as.factor(df$sex)

Forcats method to change variable to a factor
df$sex2 <- df %>% as_factor(sex)

3.2. Formatting Dates
As noted in Chapter 3, research in criminology and criminal justice is
increasingly making use of longitudinal and time-stamped data. For that
reason, it is useful to know how to work with dates in R. There is a specific
package in R used for working with dates called lubridate. Ensure that
you have this package installed and load it using library() as you
learned in the earlier chapters of this book.

First, let’s create a simple example dataset to work with. You will find
that a great deal of data, such as police-recorded crime records, come with
dates in this kind of format. Here, we will use the popular format of
DD-MM-YYYY to denote some specific days of the year in the variable
day_fac, with a separate variable count denoting the number of events
(e.g., crime counts) on that day.

Remember, we are using DD-MM-YYYY format, so the first date is 15
February 2012, and so on.

A p p e n d i x

291

df <- data.frame(
day_fac = c("15-02-2012","21-01-2012","01-03-2012",

"01-04-2012","15-04-2012 ","01-12-2012"),
count = c(54,102,32,57,301,1612)
)

Notice that when we check the class of day_fac, it is a factor. Sometimes
when you load in data like this (e.g., using read_csv()) it will be treated
as a character. Either way, the fact is that R does not know that this variable
is a date.

class(df$day_fac)

One implication of this is that when want to do things like arrange rows
by date, R does it inappropriately. For example, it thinks that 01-12-2012
(1 December 2012) comes before 15-02-2012 (15 February 2012).

This will just print the arranged df to your Console
arrange(df, day_fac)

Using the lubridate package, we can ensure that R treats dates cor-
rectly, either by reclassifying an existing variable or creating a new one.
Here, the appropriate function from lubridate is dmy() because we
know that the date format is DD-MM-YYYY. To retain the original for com-
parison, we will just create a new variable called day_dmy.

df <- df %>%
mutate(day_dmy = dmy(day_fac))

Now when we check the class, it confirms that the new day_dmy vari-
able is a date.

class(df$day_dmy)

This time, when we arrange by the new date, it gets it right.

This will just print the arranged df to your Console
arrange(df, day_dmy)

3.3. Extract Parts of Dates from a String
Perhaps you have a date variable stored as a string, but you really need a
column with just one part of the date, such as the year. See the example
below for how you can extract a part of a date using a substr() function

A p p e n d i x

292

from base R, the separate() function from tidyr, or by using functions
from the lubridate package.

Extract parts of the date you need when the date
is stored as a string
df <- data.frame(
date = c("01-01-2015", "01-02-2015" , "01-01-2016",

"01-02-2016"), count = c(100, 200, 300, 400))

The first value is position in the string you want
to start your subset
df$year <- substr(df$date, 7, 10)

The second value is what position in the string you want
to end your subset
df$month <- substr(df$date, 4, 5)
df$day <- substr(df$date, 1, 2)

You can also use the tidyr function separate()
df <- df %>% separate(date, c("Month", "Day", "Year"),

 sep = "-")

Alternatively, you can transform the string variable to
date format
Use the year() function from lubridate

Transforms string to the month, day, year date format
df <- df %>%

mutate(date2 = mdy(date))

Extracts the year from the MDY formatted variable
df <- df %>%

mutate(year2 = year(date2))

The lubridate package has many other options depending on the
format of your dates. It also has advanced functionality with timings such
as hours, seconds (even milliseconds, nanoseconds, and so on), as well as
time zones. However, hopefully the above demonstration showcases how
important it is to treat dates appropriately in R and how useful the lub-
ridate package is!

A p p e n d i x

293

A p p e n d i x 4 : P i m p M y g g p l o t

4.1. Shape Options

In Chapter 3, we covered data visualization using ggplot2. This included
the use of geometries such as geom_line() and geom_point(). We also
mapped variables to different aesthetics including shape and linetype.
In doing so, we saw some of the common shapes (e.g., circles and squares)
and line types (e.g., dotted and dashed) used to display data. By adapting
some code from the ggplot2 documentation, we can visualize the 25 dif-
ferent shapes available. Note that the position of each shape on the y-axis
corresponds to its unique number. So, if you wanted all your data points
to be shaped with the + symbol, you would specify shape = 3.

points_df <- data.frame(x = 1:5 , y = 1:25, option = 1:25)

ggplot(data = points_df) +
geom_point(mapping = aes(x = x, y = y, shape = option),

size = 5) +
scale_shape_identity()

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_3

294

It is worth being aware that shapes might respond differently to additional
aesthetics such as fill and color. This demonstrates important distinctions
between shapes that might otherwise appear identical (e.g., 1 and 21).

ggplot(data = points_df) +
geom_point(mapping = aes(x = x, y = y, shape = option),

size = 5, fill = "salmon",
color = "dodgerblue") +

scale_shape_identity()

4.2. Line Types
For line types, we can view the names of the options available in the help
documentation ?linetype. There are six options by default (excluding a
blank one). Like the shapes, these options can be referred to by number
(0–6). To take a look at some of these options, we can create a basic data
frame containing the line type names and visualize it.

lines_df <- data.frame(options = c("blank", "solid",
"dashed", "dotted",
"dotdash", "longdash"))

ggplot(data = lines_df) +
geom_segment(mapping = aes(x = 0, xend = 1, y = options,

yend = options,
linetype = options)) +

scale_linetype_identity()

A p p e n d i x

295

4.3. Font Types
The function element_blank() assigns nothing, and as such is often
used to remove something (e.g., axis ticks). For instance, to remove the
x-axis title, we would add the following to the theme() function:

theme(axis.title.x = element_blank())

The function element_text() is used to specify options to text
(e.g., font style or size). For instance, to change the y-axis text to size 10,
at a 90 degree angle, in font style mono, and in bold type, we would add
the following to theme():

theme(axis.text.y = element_text(size = 10,
angle = 90,
family = "mono",
face = "bold"))

The function element_rect() is used to specify options relating to
panel borders or backgrounds. To make the plot background pink, for
example, we would use the following within theme():

theme(plot.background = element_rect(fill = "pink"))

The function element_line() is for lines, such as the grid lines
(e.g., panel grid) of your graphic. So, to change the panel grid line color,
we would add:

theme(panel.grid = element_line(color = "black"))

A p p e n d i x

296

You may also want to check out the extrafont package if you would
like more options to change the appearance of the text in R.

4.4. Color Options
Colors in R can be referenced just as they are in HTML/CSS, where red,
green, and blue are represented using hexadecimal (hex) values (00 to FF)
in a string that starts with a pound symbol, e.g., #000099. R also has sev-
eral pre-defined color options that you can use instead by just specifying
the name of the color, e.g., "red", "darkred", "tomato", and "salmon".
You can obtain a list of these colors simply by running the function col-
ors(), which will print the list of color names to your console. The avail-
able hex color codes are provided in Fig. A4.1.

A p p e n d i x

297

Hex Code Color OptionsFigure A4.1

A p p e n d i x

298

4.4.1. ggplot2 Color Options
You can also visualize the colors themselves using some of the skills
picked up in Chapter 3, with some additional tweaks. Here, we just show
a sample of colors, because there are far too many (over six hundred!) in
total. Remember to ensure that the relevant libraries are loaded before you
try this code, such as by using library(ggplot2). For this example, we
use ggplot2, stringr, and dplyr.

Pull all colors containing the words pink, violet or purple
colors_df <- data.frame(col_names = colors()) %>%

filter(str_detect(col_names,
"pink|violet|purple"))

Visualize these colors in a tile plot
ggplot(data = colors_df) +

theme_minimal() +
geom_tile(aes(x = col_names, fill =

as.factor(1:nrow(colors_df)), y = 1)) +
scale_fill_manual(values = colors_df$col_names) +
coord_flip() +
theme(legend.position = "none",

axis.title = element_blank(),
axis.text.x = element_blank())

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_3

299

4.4.2. Color Palettes
Rather than refer to colors manually by name, we can use functions avail-
able within the scales package to extract the hex value names for the
default ggplot2 palette, or any other palette available.

A p p e n d i x

300

Print hex value names (in this example, for six colors)
hue_pal()(6) # default for ggplot2

[1] "#F8766D" "#B79F00" "#00BA38" "#00BFC4" "#619CFF"
 "#F564E3"

Specific palette name, e.g., spectral
brewer_pal(palette = "Spectral")(6)
[1] "#D53E4F" "#FC8D59" "#FEE08B" "#E6F598" "#99D594"
 "#3288BD"

If we are not sure what these colors look like, we can also visualize
them, along with the respective hex values.

Visualize hex values with names
show_col(hue_pal()(6)) # default for ggplot2

Specific palette name e.g. spectral
show_col(brewer_pal(palette = "Spectral")(6))

A p p e n d i x

301

Or simply visualize all the palettes available, along with their respective
palette names, using the RColorBrewer package.

display.brewer.all()

A p p e n d i x

302

A p p e n d i x 5 : S a v i n g O u t p u t

5.1. Exporting Plots

In Chapter 3, we covered how to explore your data using the visualization
tools available in ggplot2. Once you’ve created a visual with the R envi-
ronment, you will likely want to save it for use in a paper or presentation.
The simplest way to do this is to use the Export tab from the Plots window
in the RStudio environment. One of the downsides of this method is that
it is not reproducible. Someone running your code (including your future
self) might get the same graphic within R but then export it using different
settings (e.g., format, dimensions). For that reason, we recommend using
the function ggsave() within ggplot2. It allows you to export your
graphics in a way that is reproducible. It is also flexible, with numerous
different options around dimensions, formats, and resolution, which saves
you a bunch of time when producing lots of different visuals.

To start with, you will want to generate your graphic and assign it to an
object. If you want to run through this code, take a look at the first exam-
ple using police-recorded crime data in Chapter 3.

my_plot <- ggplot(data = burglary_df, mapping = aes
(x = incscore,
 y = burglary_count))+ geom_point()

You can then input this object into the ggsave() function, using the
arguments available within the function to specify our preferences. A brief
explanation of each is given using comments in the below code chunk,
but you can view the help documentation using ?ggsave to get the full
details. Note that we don’t specify where to save the file, so by default it
will be saved to whatever the current working directory is. Remember that
you can check this using getwd(). If you want to specify a working direc-
tory, you can either include it before the file name or use the path option
within the function.

ggsave(plot = my_plot, # name of ggplot object
filename = "my_plot_file.png", # file name
device = "png", # device i.e. file format
units = "cm", # units of dimensions
width = 10, # width dimension
height = 8, # height dimension
dpi = 300) # pixel density,

i.e., resolution

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_3
https://doi.org/10.1007/978-3-030-50625-4_3

303

It’s worth noting that ggsave() will guess the device (i.e., file format)
based on the extension used within the filename argument. However, in
the above example, we have been explicit and stated this using device =
"png". There are a number of other formats available (e.g., pdf, tiff, jpeg).

A p p e n d i x 6 : L i s t o f D a t a S o u r c e s a n d D a t a s e t N a m e s

CHAPTER DATA SOURCE FILE NAME(S)

1 NA NA
2 National Crime Victimization Survey

(NCVS)
NCVS lone offender assaults 1992 to 2013.sav

3 2017 crime data from Greater
Manchester, England

gmp_2017.csv; gmp_monthly_2017.csv

4 2016 LEMAS-Body Worn Camera
Supplement

37302-0001-Data.rda

5 2004 Survey of Inmates in State and
Federal Correctional Facilities
(SISFCF)

04572-0001-Data.Rda

6 Simulated data NA
7 Simulated data NA
8 Simulated data NA
9 British Crime Survey bcs_2007_8_teaching_data_unrestricted.dta
10 Synthetic data containing information

about IQ scores of prisoners
NA

11 National Youth Survey nys_1_ID.dta, nys_2_ID.dta
12 Stop and searches carried out in

London by police
stop_search_london.csv

13 Seattle Neighborhoods and Crime
Survey

Seattle_Neighborhoods_Crime_RandomSample.
dta

14 Prof. Sharkey et al.’s dataset to study
the effect of nonprofit
organizations in the levels of crime

sharkey.csv

15 Crime Survey for England and Wales csew1314_teaching.csv

A p p e n d i x

304

A p p e n d i x 7 : C i t a t i o n s t o P a c k a g e s / S o f t w a r e

PACKAGE/
SOFTWARE CITATION

arm Gelman, A., & Hill, J. (2007). Data analysis using regression and multi-level
hierarchical models (Vol. 1). New York, NY, USA: Cambridge University Press

car Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, Third
edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/
Books/Companion/

DescTools Signorell, A., et al. (2020). DescTools: Tools for Descriptive Statistics. R
package version 0.99.34, https://cran.r-project.org/package=DescTools

dplyr Wickham, H., François, R., Henry, L. & Müller, K. (2019). dplyr: A Grammar of
Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/
package=dplyr

forcats Wickham, H. (2019). forcats: Tools for Working with Categorical Variables
(Factors). R package version 0.4.0. https://CRAN.R-project.org/
package=forcats

Ggally Schloerke, B., et al. (2020). GGally: Extension to 'ggplot2'. R package version
1.5.0. https://CRAN.R-project.org/package=GGally

ggplot2 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York

gmodels Warnes, G.C., Bolker, B., Lumley, T. & Johnson, R.C. (2018). gmodels: Various R
Programming Tools for Model Fitting. R package version 2.18.1. https://
CRAN.R-project.org/package=gmodels

GoodmanKruskal Pearson, R. (2016) Goodman Kruskal: association analysis for categorical
variables. R package version 0.0.2. https://CRAN.R-project.org/
package=GoodmanKruskal

haven Wickham, H. & Miller, E. (2019). haven: Import and Export 'SPSS', 'Stata' and
'SAS' Files. R package version 2.2.0. https://CRAN.R-project.org/
package=haven

here Müller, K. (2017). here: A Simpler Way to Find Your Files. R package version
0.1. https://CRAN.R-project.org/package=here

labelled Larmarange, J. (2019). labelled: Manipulating Labelled Data. R package version
2.2.1. https://CRAN.R-project.org/package=labelled

modeest Poncet, P. (2019). modeest: Mode Estimation. R package version 2.4.0. https://
CRAN.R-project.org/package=modeest

moments Komsta, L. & Novomestky, F. (2015). moments: Moments, cumulants, skewness,
kurtosis and related tests. R package version 0.14. https://CRAN.R-project.
org/package=moments

mosaic Pruim, R., Kaplan, D.T., & Horton, N.J. (2017). The mosaic Package: Helping
Students to 'Think with Data' Using R. The R Journal, 9(1):77-102

qualvar Gombin, J. (2018). qualvar: Implements Indices of Qualitative Variation
Proposed by Wilcox (1973). R package version 0.2.0. https://CRAN.R-project.
org/package=qualvar

R R Core Team (2020). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://
www.R-project.org/

readr Wickham, H., Hester, J. & Francois, R. (2018). readr: Read Rectangular Text
Data. R package version 1.3.1. https://CRAN.R-project.org/package=readr

A p p e n d i x

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=forcats
https://cran.r-project.org/package=forcats
https://cran.r-project.org/package=GGally
https://cran.r-project.org/package=gmodels
https://cran.r-project.org/package=gmodels
https://CRAN.R-project.org/package=GoodmanKruskal
https://CRAN.R-project.org/package=GoodmanKruskal
https://cran.r-project.org/package=haven
https://cran.r-project.org/package=haven
https://cran.r-project.org/package=here
https://cran.r-project.org/package=labelled
https://cran.r-project.org/package=modeest
https://cran.r-project.org/package=modeest
https://cran.r-project.org/package=moments
https://cran.r-project.org/package=moments
https://cran.r-project.org/package=qualvar
https://cran.r-project.org/package=qualvar
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package=readr

305

PACKAGE/
SOFTWARE CITATION

Rstudio RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc.,
Boston, MA URL http://www.rstudio.com/

sjlabelled Lüdecke, D. (2020). sjlabelled: Labelled Data Utility Functions. R package
version 1.1.3. doi: 10.5281/zenodo.1249215 (URL: https://doi.org/10.5281/
zenodo.1249215), URL: https://CRAN.R-project.org/package=sjlabelled

skimr Waring, E., Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H. & Ellis, S.
(2020). skimr: Compact and Flexible Summaries of Data. R package version
2.1. https://CRAN.R-project.org/package=skimr

tibble Müller, K. & Wickham, H. (2019). tibble: Simple Data Frames. R package
version 2.1.3. https://CRAN.R-project.org/package=tibble

tidyverse Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source
Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

tigerstats Robinson, R. & White, H. (2016). tigerstats: R Functions for Elementary
Statistics. R package version 0.3. https://CRAN.R-project.org/
package=tigerstats

A p p e n d i x 8 : I n d e x o f R F u n c t i o n s

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

abs() Calculates the absolute value (base R) 9, 20, 162
add_column() Adds columns to a data frame (tibble) 31, 38, 279
add_labels() Add value labels to a variable

(sjlabelled)
29, 37, 38

add_row() Add rows to a data frame (tibble) 234, 244
add_value_labels() Add value labels to a variable (labelled) 172, 182
aes() Mapping aesthetics to variables

(ggplot2)
43, 44, 46-55, 57, 60,

71−73, 92, 96, 107,
101, 103, 130,
186−188, 195, 198,
199, 230, 234, 235,
252−254, 261, 293,
294, 298, 302

aov() Fit an analysis of variance model (base R) 191, 193, 194, 196,
204−206, 208

apply() Applies a function to elements of an array
or matrix (base R)

285

arrange() Sorts rows by a given variable(s) (dplyr) 34, 37, 38
array() Stores data in 1 dimension (vector) or 1+

dimension (matrix) (base R)
16, 20

as_factor() Changes the class of an object to factor
class (forcats)

139−141, 143, 145,
147, 151, 290

as.character() Changes the class of an object to character
(base R)

290

as.data.frame() Checks if data frame and tries to coerce if
not (base R)

17, 20, 142

as.factor() Coerce vector to factor, including specifying
levels (base R)

53−58, 60, 290, 298

as.numeric() Changes the class of an object to numeric
(base R)

29, 220, 289

A p p e n d i x

http://www.rstudio.com/
https://doi.org/10.5281/zenodo.1249215
https://doi.org/10.5281/zenodo.1249215
https://CRAN.R-project.org/package=sjlabelled
https://cran.r-project.org/package=skimr
https://cran.r-project.org/package=tibble
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=tigerstats
https://cran.r-project.org/package=tigerstats

306

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

as.vector() Coerce an object into a vector (base R) 82, 88
attach() Commonly used to attach a data frame

object for easier access (base R)
79, 81, 88

attributes() Access object attributes, such as value
labels (base R)

88, 137, 138, 182, 218,
223, 258, 265

bind_rows() Combine data frame(s) together row-wise
(dplyr)

97, 106

BinomCI() Compute confidence intervals for binomial
proportions (DescTools)

128−130, 132, 133

boxplot() Produce a box and whisker plot (base R) 186−188
c() Concatenates elements to create vectors

(base R)
14, 16−18, 29, 71,

124−126, 170, 177,
213, 215, 216, 219,
221, 238, 263, 281,
283, 286, 287,
291, 292

case_when() Allows users to vectorize multiple if or if
else statements (dplyr)

33, 34, 37, 38, 72, 177,
278−280

cat() Combines/concatinates character values
and prints them (base R)

162, 165, 168

ceiling() Always round up (base R) 9, 20
chisq.test() Produces the chi-square test (base R) 148−150, 153, 212,

213, 215
class() Check the class of an object (base R) 148−150, 153, 212,

213, 215
complete.cases() Returns only complete cases that do not

have NAs (base R)
250, 268

confint() Computes confidence intervals for
parameters in a fitted model (base R)

263, 265, 268

contains() Used in conjunction with select(),
selects only variables that contains a
certain string (dplyr)

283

cor.test(…method =
"kendall")

Conducts a Kendall’s correlation test
(stats)

225, 238

cor.test() Obtains correlation coefficient (base R) 220, 221, 232, 233,
235, 236, 238, 244

cor() Produces the correlation of two variables
(base R)

232, 233, 235−237,
243, 244

count() Counts the number of occurrences (dplyr) 31, 33, 38
CrossTable() Produces contingency tables (gmodels) 142−145, 147, 148,

151−153
cut() Divides by the specified interval (base R) 207, 208
data.frame() Create a new data frame object (base R) 17−20, 93, 142, 157,

158, 263, 281,
291−294, 298

dbinom() Find probability of events occurring X
number of times (stats)

116−118

detach() Turns off the attach() function (base R) 79, 88, 277
diff() Computes differences between values in a

numeric vector (base R)
84, 85, 87, 88

dim() Check the dimensions of an R object
(base R)

16, 20, 63, 137

A p p e n d i x

307

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

display() Gives a clean printout of lm, glm, and
other such objects (arm)

259, 268

DM() Computes deviation from the mode
(qualvar)

82, 87, 88

dmy() Creates a date variable in the format of
DD-MM-YYYY (lubridate)

291

do() Loop for resampling (mosaic) 95, 97
drop_na() Removes observations with missing values

(tidyr)
281

element_blank() Assigns nothing to the component of the
graphic it is called in (ggplot2)

295, 298

element_line() Used to specify options relating to lines
(ggplot2)

295

element_rect() Used to specify options relating to panel
borders or backgrounds (ggplot2)

295

element_text() Refer to a text element in thematic
options—see Index (ggplot2)

70−73, 76, 187, 295

ends_with() Used in conjunction with select(),
selects only variables that end with some
suffix (dplyr)

283

everything() Used in conjunction with select(),
selects all variables (dplyr)

283

facet_wrap() Facet graphics by one or more variables
(ggplot2)

55, 58, 60, 71

factor() Creates a factor (base R) 30, 31, 38, 53−55, 57,
58, 60, 139−141,
143, 145, 147, 151,
187, 213, 215, 216,
219, 221, 290, 298

factorial() Compute the factorial of a numeric vector
(base R)

114, 115, 118

fct_explicit_na() Provides missing values an explicit factor
level (forcats)

140, 141, 153

filter() Subsets a data frame to rows when a
condition is true (dplyr)

36−38, 69, 82, 153,
229, 237, 282, 283,
284, 298

fisher.test() Produces Fisher’s exact test (base R) 149, 153
fitted() Extract fitted values from objects when

modeling functions (base R)
193, 194, 208

floor() Always round down (base R) 9, 20
for() Initiates a for loop (base R) 111, 112
full_join() Joins two data frames together, keeping all

columns from both data frames and
returning an NA when there are no
matching values (dplyr)

285

function() Creates a user-specified function (base R) 162, 164, 165, 168
gather() Reshapes a data frame to long format

(tidyr)
289

geom_bar() Geometry layer for bar plot (ggplot2) 54, 60
geom_boxplot() Geometry layer for box plot (ggplot2) 57, 60, 70−72, 187,

188
geom_density() Geometry layer for density plots (ggplot2) 97, 101, 106, 195,

198, 199

A p p e n d i x

308

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

geom_errorbar() Draw error bars by specifying maximum and
minimum value (ggplot2)

106, 130, 132

geom_histogram() Geometry layer for histograms (ggplot2) 52, 53, 58, 60, 73,
92, 96

geom_line() Geometry layer for line charts (ggplot2) 56, 60, 234, 253, 293
geom_point() Geometry layer for scatterplots (ggplot2) 43−47, 50, 51, 55, 57,

59, 60, 103, 130,
234, 235, 252−254,
261, 293, 294, 302

geom_smooth() Geometry layer for smoothed lines
(ggplot2)

59, 60, 235, 254, 261

geom_vline() Geometry layer for adding vertical lines
(ggplot2)

92, 96, 101, 103, 106

get_labels() Returns value labels of labelled data
(sjlabelled)

27, 30, 38

getwd() Returns the current working directory
(base R)

271, 302, 23

ggcorr() Visualize a correlation matrix (GGally) 239−241, 244, 248
ggpairs() Makes a matrix of plots, e.g., correlations,

scatterplots (GGally)
241−244

ggplot() Initialize a ggplot graphic, i.e., specify data,
aesthetics (ggplot2)

43−48, 50-55, 57, 59,
60, 70, 71, 73−75,
92, 96, 101, 103,
104 129, 130, 186,
187, 188, 196, 198,
199, 208, 230, 234,
235, 251-253, 261,
267, 293, 294, 298,
299, 302

ggsave() Saves plot as a file (ggplot2) 302, 303
ggtitle() Adds a title or subtitle to a graph made

using gglot() (ggplot2)
71−73, 268

GKtau() Conducts the Goodman-Kruskal measure of
association (GoodmanKruskal)

216, 223, 225

GoodmanKruskalGamma() Conducts Goodman-Kruskal measure of
association (DescTools)

218, 219, 223, 225

group_by() Group observations by variable(s) for
performing operations (dplyr)

64, 66, 67, 75, 76, 88,
95, 97, 140, 141,
172, 173, 177, 190,
243, 279, 288

guides() Used to customize plot legend when using
ggplot() (ggplot2)

187, 188, 208

head() Returns the first parts of a vector, matrix,
table, or data frame (base R)

34, 38, 94, 186

here() Find a project’s files based on the current
working directory (here)

41, 79, 137, 171, 185,
211, 229, 235, 247

if_else() Tests conditions for true or false, taking on
values for each (dplyr)

102, 106

inner_join() Joins two data frames together, keeping
only data that exists in both datasets
(dplyr)

284

A p p e n d i x

309

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

install.packages() Installs non-base R packages (base R) 23, 24, 38, 41, 63, 79,
90, 120, 136, 156,
171, 185, 211, 229,
247, 269

IQR() Compute interquartile range (base R) 69, 76
is.na() Returns TRUE when values are missing,

FALSE if not (base R)
80−82, 88, 139

KendallTauB() Conducts the Kendall measure of
association (DescTools)

220, 221, 223, 225

kruskal.test() Performs a Kruskal-Wallis rank sum test
(base R)

202, 208

labs() Specify labels for ggplot object, e.g., title,
caption (ggplot2)

49−51, 53, 54, 57, 60,
70−73

Lambda() Conducts the measure of association
(DescTools)

216, 223, 225

lapply() Applies a function to all elements of a list,
returning a list (base R)

285, 286

left_join() Joins two data frames together, keeping
unmatched cases from the first data
frame (dplyr)

284

leveneTest() Computes Levene’s test for homogeneity of
variance across groups (car)

192, 193, 206, 208

library() loads the installed non-base R package
(base R)

23, 24, 38, 41, 59, 63,
79, 90, 120, 136,
156, 171, 185, 211,
229, 247, 269, 290

list() Create a list (base R) 16, 20, 282, 289, 290
lm() Fit linear models (base R) 258, 259, 267, 268
load() Loads an R datafile (.R or .Rda) (base R) 63, 79, 272
log() Computes the natural logarithm (base R) 235, 286, 287
log10() Computes common (i.e., base 10) logarithms

(base R)
187, 188, 199, 200,

208, 286
matches() Used in conjunction with select(),

selects only variables that match a
regular expression (dplyr)

283

matrix() Creates a vector with two dimensions
(base R)

15, 19, 20

max() Returns the maximum value (base R) 64, 75, 76
mdy() Creates a date variable in the format of

MM-DD-YYYY (lubridate)
292

mean() Compute arithmetic mean (base R) 64−67, 75, 76, 87, 88,
92−98, 100, 101,
141, 159, 177,
190, 288

median() Compute the median (base R) 66, 67, 75, 76
merge() Merge datasets by common row or columns

names (base R)
180, 182

min() Returns the minimum value (base R) 64, 65, 75, 76
mlv() Compute the mode (modeest) 64, 67, 76, 80, 81

A p p e n d i x

310

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

mutate() Creates new vectors or transforms existing
ones (dplyr)

32−34, 37, 38, 59, 72,
102, 153, 177, 182,
278, 279, 280, 282,
291, 292

n() Count observations, within
summarize(), mutate(), or
filter() (dplyr)

32

na_if() Replace non-missing values with missing
values (dplyr)

282

names() Provides the element names (base R) 16, 20
nrow() Counts the number of rows (base R) 31, 38, 154, 158, 250,

279, 298
num_range() Used in conjunction with select(),

selects only variables that match a
numerical range (dplyr)

283

oneway.test() Tests if 2+ samples from normal
distributions have same means (base R)

195, 208

pairwise.t.test() Pairwise comparisons between group levels
(base R)

203, 208

par() Set graphics parameters such as margins
(base R)

71, 76

paste() Combines a series of string text (base R) 112, 114, 118
pbinom() Find cumulative probability of a binomial

probability distribution (stats)
117, 118

Phi() Conducts the measure of association
(DescTools)

212−214, 223, 225

pivot_longer() Reshapes a data frame to long format
(tidyr)

289

pivot_wider() Reshapes a data frame to wide format
(tidyr)

288

pnorm() Probability of random variable following
normaldistribution (base R)

162, 168

pnormGC() Compute probabilities for normal random
variables (tigerstats)

159, 160, 168

predict() Makes predictions from the results of model
fitting functions (base R)

262, 267, 268

print() Prints arguments and returns it invisibly
(base R)

15, 20, 111−113

prop_z_test() Function created in Chapter 10 for a
single-sample z-test for proportions

164, 166, 168

prop.test() Test null hypothesis that proportions in
groups are the same (base R)

124−126, 131, 133,
176, 177, 181

qplot() Creates a variety of plots/graphs (base R) 250, 251, 268
qqline() Adds a reference line to Q-Q plot produced

by qqnorm() (base R)
196, 208

qqnorm() Produces a normal Q-Q plot of the variable
(base R)

196, 208

qqPlot() Draws theoretical quantile-comparison plots
for variables (car)

197, 200, 208

quantile() Compute quantiles as per specified
probabilities (base R)

69, 76

range() Compute the minimum and maximum values
(base R)

84, 85, 270, 283

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_10

311

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

rbind() Appends rows to a data frame (base R) 285
read_csv() Read in comma separated values file

(readr)
41, 60, 185, 229, 247,

271, 273, 291
read_delim() Reads in a delimited file (readr) 272
read_dta() Imports a .dta Stata file (haven) 137, 153, 171, 211,

274
read_excel() Reads in an .xls or .xlsx file (readxl) 274
read_json() Reads in a JSON file (jsonlite) 277
read_sas() Reads in a SAS format file (haven) 275
read_sav() Reads in an SPSS .sav file (haven) 275
read_spss() Imports SPSS .sav files (haven) 24, 38
read_tsv() Reads in a tab-separated file (readr) 273
read.dbf() Reads in a .dbf file (foreign) 274
read.mat() Reads in a Matlab file (rmatio) 276
read.mtp() Reads in a Minitab file (foreign) 276
read.systat() Reads in a Systat file (foreign) 276
read.table() Reads in data in tabular format (base R) 275
recode() Replaces values of a integer/factor variable 172, 182
remove_labels() Removes value labels from a variable

(sjlabelled)
28, 29, 38

remove_var_label() Removes a variable’s label (labelled) 28, 38
replace_na() Replaces missing values with another value

(tidyr)
281, 282

require() Attempts to load a package in R, returning a
logical value of whether the attempt was
successful or not (base R)

269

resid() Extract residuals from objects returned by
modeling functions (base R)

193, 194, 196, 208

return() Used in functions to tell R what to return/
print for the user (base R)

162, 168

right_join() Joins two data frames together, keeping
unmatched cases from the second data
frame (dplyr)

284

rm() Remove object from R environment (base R) 229, 244
rnorm() Create synthetic normally distributed data

(base R)
92, 93, 106, 157, 158

round() Rounds to nearest whole number or
specified number of decimals (base R)

23, 94, 157, 158,
234, 253

sample() Randomly sample from a vector or data
frame (mosaic)

32, 94, 95, 97, 99,
100, 106

sapply() Applies a function over a vector or list
(base R)

285, 286

save() Saves an R data file (base R) 272
scale_color_brewer() Default color scheme options (ggplot2) 46, 48, 50, 51, 60
scale_color_
viridis_d()

Colorblind-friendly palettes from viridis
package (ggplot2)

48

scale_fill_discrete() Specify fill of discrete aesthetics, e.g., color
palette (ggplot2)

97, 106

scale_y_log10() Log scales the y-axis on your chart
(ggplot2)

187, 188, 208

A p p e n d i x

312

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

scale() Mean centers or re-scales a numeric
variable (base R)

158, 168

ScheffeTest() Scheffé’s test for pairwise and otherwise
comparisons (DescTools)

204, 208

sd() Computes standard deviation of a numeric
vector (base R)

86, 88, 99−102, 159,
288

select() Select columns to retain or drop (dplyr) 32, 35, 36, 38, 229,
234, 282, 283

separate() Separates a string by the given separator
(tidyr)

292

set.seed() Random number generator start point
(base R)

93, 106

setRepositories() Sets the repository from which R should
search for a package (base R)

270

setwd() Sets the working directory (base R) 24, 271
single_t_test() Function created in Chapter 10 for

single-sample t-tests for means
165, 166, 168

skewness() Calculate degree of skewness in a numeric
vector (modeest)

74−76

skim() Provide summary statistics specific to object
class (skimr)

67, 76, 80, 84, 173

slice() Select rows based on their position in the
data frame (dplyr)

36, 38, 282

SomersDelta() Conducts Somers’ measure of association
(DescTools)

222, 223, 225

spread() Reshapes a data frame to wide format
(tidyr)

288

sqrt() Finds the square root (base R) 9, 20, 100, 162,
164−167

starts_with() Used in conjunction with select(),
selects only variables that start with
some prefix (dplyr)

283, 289

str() Returns internal structure of an R object
(base R)

88, 142

StuartTauC() Conducts the Kendall measure of
association (DescTools)

221, 225

substr() Selects part of a string (base R) 291, 292
sum() Sum values in a vector (base R) 67, 139, 177
summarize() Create new summary variable(s),

e.g., counts, mean (dplyr)
82, 88, 95, 97, 99,

100, 104, 140, 141,
153, 172, 177, 190,
243, 288

summary.lm() Summary method for class lm (base R) 205, 208, 265
summary() Produce summary of model results (base R) 69, 76, 84, 86, 191,

249, 258, 259, 261,
263, 265−267

summary()$coefficients Extract coefficients only from summary
(base R)

268

summary()$r.squared Extract R squared only from summary
(base R)

267, 268

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_10

313

FUNCTION DESCRIPTION (PACKAGE) PAGE #S

symbox() Transforms x to a series of selected powers
and displays box plots (car)

199, 208

t.test() Performs one and two sample t-tests on
vectors of data (base R)

175, 181, 182, 203

table() Generates a frequency table (base R) 27, 30, 53, 82, 83, 102,
102, 139, 140, 142,
150, 189, 213, 215,
216, 219, 221, 276

tapply() Applies a function to parts of a vector
(base R)

285, 286

theme_bw() The traditional dark-on-white ggplot
theme (ggplot2)

187, 188, 195,
199, 208

theme_minimal() Default minimalist theme for ggplot
graphics (ggplot2)

50, 51, 60, 130, 298

theme() Customize ggplot graphics (ggplot2) 50, 60, 70−73, 187,
188, 295, 298

TukeyHSD() Implements Tukey’s honest significant
difference method (base R)

204, 208

var_label() Returns or sets a variable label
(labelled)

27−29, 37, 38

var.test() Performs an F-test to compare the variances
of two samples from normal populations
(base R)

174, 181, 182

var() Computes variance (base R) 85, 86, 88
View() View data in new window (base R) 17, 20, 25, 34, 35, 37,

42, 63, 94, 137, 171,
180, 211, 277

vif() Calculate the variance inflation for OLS or
other linear models (car)

266, 268

which() Provides the position of the elements such
as in a row (base R)

158

while() Initiates a while loop (base R) 114, 118
with() Evaluates an expression, often used to

specify the data you want to use (base R)
142, 143, 145, 147,

151, 153
write_csv() Writes a comma-separated file (readr) 273
write_delim() Writes a delimited file (readr) 272
write_dta() Writes a Stata .dta file (haven) 274
write_json() Writes a JSON file (jsonlite) 277
write_sas() Writes a SAS format file (haven) 275
write_sav() Writes an SPSS .sav file (haven) 275
write_tsv() Writes a tab-separated file (readr) 273
write.dbf() Writes a .dbf file (foreign) 274
write.mat() Writes a Matlab (MAT) file (rmatio) 276
write.xlsx() Writes an Excel file (.xlsx) (openxlsx) 274
year() Extracts the year from a date (lubridate) 292
z_test() Function created in Chapter 10 for a

single-sample z-test
161, 162, 164−166,

168

A p p e n d i x

https://doi.org/10.1007/978-3-030-50625-4_10

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
A. Wooditch et al., A Beginner’s Guide to Statistics for Criminology and
Criminal Justice Using R, https://doi.org/10.1007/978-3-030-50625-4

Glossary

68-95-99.7 rule Empirical rule that states that 68% of the cases in a nor-
mal distribution should fall within 1 standard deviation of the mean (so
within a z-score of -1 and +1); 95% of the cases in the distribution should
fall within 2 standard deviations of the mean (so within a z-score of -2
and +2); and 99.7% of the cases in the distribution should fall within 3
standard deviations of the mean (so within a z-score of -3 and +3). In the
real world, you will likely not find a distribution where this rule is exact.

Aesthetics Describe visual characteristics that represent the data.

Arrangements The different ways events can be ordered and result in a
single outcome. For example, there is only one arrangement for gaining
the outcome of ten heads in ten tosses of a coin. There are, however,
ten different arrangements for gaining the outcome of nine heads in ten
tosses of a coin.

Array A three-dimensional data structure that can contain homogenous
elements (of the same class).

Assignment operators Symbols used to make assignations to objects.

Atomic vector A one-dimensional data structure that can contain homo-
geneous elements (of the same class).

Bell Curve See Gaussian distribution.

Binomial distribution The probability or sampling distribution for an
event that has only two possible outcomes.

Binomial formula The means of determining the probability that a
given set of binomial events will occur in all its possible arrangements.

Bivariate regression A technique for predicting change in a dependent
variable using one independent variable.

Bonferroni correction A post-hoc pairwise comparison of means that
controls the type I error rate by dividing the selected α-level by the num-
ber of pairwise comparisons made.

Central limit theorem A theorem that states: “If repeated independent
random samples of size N are drawn from a population, as N grows
large, the sampling distribution of sample means will be approximately
normal.” The central limit theorem enables the researcher to make
inferences about an unknown population using a normal sampling
distribution.

https://doi.org/10.1007/978-3-030-50625-4#DOI

315

Chi-square statistic The test statistic resulting from applying the chi-
square formula to the observed and expected frequencies for each cell.
This statistic tells us how much the observed distribution differs from that
expected under the null hypothesis.

Coefficient of variation (CV) A measure of dispersion calculated by
dividing the standard deviation by the mean.

Comments Code annotations that are not interpreted by R.

Concordant pairs of observations Pairs of observations that have
consistent rankings on two ordinal variables.

Confidence interval An interval of values around a statistic (usually
a point estimate). If we were to draw repeated samples and calculate a
95% confidence interval for each, then in only 5 in 100 of these samples
would the interval fail to include the true population parameter. In the
case of a 99% confidence interval, only 1 in 100 samples would fail to
include the true population parameter.

Contingency table A tabular way of viewing the relationship between
categorical variables (also referred to as cross tabs).

Covariation A measure of the extent to which two variables vary
together relative to their respective means. The covariation between
the two variables serves as the numerator for the equation to calculate
Pearson’s r.

Cramer’s V A measure of association for two nominal variables that
adjusts the chi-square statistic by the sample size. V is appropriate when
at least one of the nominal variables has more than two categories.

Data Information used to answer a research question; typically will be
stored in a data frame. Data (plural) are made up of numerous datum
(singular).

Data frame A data structure that is defined by the number of rows and
columns.

Data transformation An adjustment of data to a different unit or scale
(normally to deal with normality issues).

Dependent sample t-test A test of statistical significance that is used
when two samples are not independent.

Dependent variable (Y) The variable assumed by the researcher to be
influenced by one or more independent variables.

Directional hypothesis A research hypothesis that indicates a spe-
cific type of outcome by specifying the nature of the relationship that is
expected.

G l o s s A r y

316

Discordant pairs of observations Pairs of observations that have
inconsistent rankings on two ordinal variables.

Environment Where objects are stored.

Eta squared The proportion of the total sum of squares that is
accounted for by the between sum of squares. Eta squared is sometimes
referred to as the percent of variance explained.

Expected frequency The number of observations one would predict
for a cell if the null hypothesis were true.

External validity The extent to which a study sample is reflective of
the population from which it is drawn. A study is said to have high exter-
nal validity when the sample used is representative of the population to
which inferences are made.

F-distribution A continuous probability distribution used as the null
distribution in ANOVA.

Gamma (γ) PRE measure of association for two ordinal variables that
uses information about concordant and discordant pairs of observations
within a table. Gamma has a standardized scale ranging from −1.0 to 1.0.

Gaussian distribution Normal distribution or bell curve.

Geom Abbreviation for geometries from the ggplot2 package.

Geometries Describe the objects that represent the data.

Goodman and Kruskal’s lambda (λ) PRE measure of association for
two nominal variables that uses information about the modal category
of the dependent variable for each category of the independent variable.
Lambda has a standardized scale ranging from 0 to 1.0.

Goodman and Kruskal’s tau (τ) PRE measure of association for two
nominal variables that uses information about the proportional distribu-
tion of cases within a table. Tau has a standardized scale ranging from 0
to 1.0. For this measure, the researcher must define the independent and
dependent variables.

Heteroscedasticity A situation in which the variances of scores on two
or more variables are not equal. Heteroscedasticity violates one of the
assumptions of the parametric test of statistical significance for the cor-
relation coefficient.

Independent Describing two events when the occurrence of one does
not affect the occurrence of the other.

Independent sample t-test A test of statistical significance that exam-
ines the difference observed between the means of two unrelated
samples.

G l o s s A r y

317

Independent variable (X) A variable assumed by the researcher to
have an impact on the value of the dependent variable, Y.

Index of qualitative variation (IQV) A measure of dispersion calcu-
lated by dividing the sum of the possible pairs of observed scores by the
sum of the possible pairs of expected scores (when cases are equally
distributed across categories).

Inferential statistics A broad area of statistics that provides the
researcher with tools for making statements about populations on
the basis of knowledge about samples. Inferential statistics allow the
researcher to make inferences regarding populations from information
gained in samples.

Interval/ratio variables Numeric variables with equal intervals
between values; functionally the same, yet ratio-level variables have a
true zero.

Kendall’s tau Measures the strength and direction of two rank-ordered
variables on a standardized scale between 0 and 1.0, whereby higher
values indicate a stronger relationship.

Kendall’s τb PRE measure of association for two ordinal variables that
uses information about concordant pairs, discordant pairs, and pairs of
observations tied on both variables examined. τb has a standardized scale
ranging from −1.0 to 1.0 and is appropriate only when the number of
rows equals the number of columns in a table.

Kendall’s τc A measure of association for two ordinal variables that
uses information about concordant pairs, discordant pairs, and pairs of
observations tied on both variables examined. τc has a standardized scale
ranging from −1.0 to 1.0 and is appropriate when the number of rows is
not equal to the number of columns in a table.

Kruskal-Wallis test A nonparametric test of statistical significance for
multiple groups, requiring at least an ordinal scale of measurement.

Levene’s test A test of the equality of variances.

Linear relationship An association between two variables whose joint
distribution may be represented in linear form when plotted on a scatter
diagram.

List A one-dimensional data structure that can contain heterogenous ele-
ments (of different classes).

Logical operators Boolean operators that return TRUE or FALSE.

Marginal The value in the margin of a table that totals the scores in the
appropriate column or row.

G l o s s A r y

318

Matrix A specific type of array that has at least two columns and two
rows and can contain homogeneous elements (of the same class).

Mean A measure of central tendency calculated by dividing the sum of
the scores by the number of cases.

Measures of central tendency Descriptive statistics that allow us to
identify the typical case in a sample or population. Measures of central
tendency are measures of typicality.

Median A measure of central tendency calculated by identifying the
value or category of the score that occupies the middle position in the
distribution of scores.

Mode A measure of central tendency calculated by identifying the score
or category that occurs most frequently.

Multicollinearity Condition in a multivariate regression model in
which independent variables examined are very strongly intercorrelated.
Multicollinearity leads to unstable regression coefficients

Multiple comparisons problem The problem associated with the
chance of obtaining a false-positive (type I error) increase as the number
of comparisons increase.

Multiplication rule The means for determining the probability that a
series of events will jointly occur.

Nominal variables Categorical, unordered variables.

Non-directional hypothesis A research hypothesis that does not indi-
cate a specific type of outcome, stating only that there is a relationship or
a difference.

Nonparametric tests Tests that do not make an assumption about the
distribution of the population; also called distribution-free tests.

Normal distribution A bell-shaped frequency distribution, symmetrical
in form. Its mean, mode, and median are always the same. The percent-
age of cases between the mean and points at a measured distance from
the mean is fixed.

Null hypothesis A statement that reduces the research question to a
simple assertion to be tested by the researcher. The null hypothesis nor-
mally suggests that there is no relationship or no difference.

Object A specialized data structure; everything in R is an object.

Observed frequency The observed result of the study, recorded
in a cell.

OLS regression See ordinary least squares regression analysis.

G l o s s A r y

319

One-way analysis of variance (ANOVA) A parametric test of statisti-
cal significance that assesses whether differences in the means of several
samples (groups) can lead the researcher to reject the null hypothesis
that the means of the populations from which the samples are drawn are
the same.

Ordinal variables Categorical, ordered variables.

Ordinary least squares regression analysis A type of regression
analysis in which the sum of squared errors from the regression line is
minimized.

Outliers A single or small number of exceptional cases that substantially
deviate from the general pattern of scores.

Packages Modules that expand what R can do.

Parametric tests Tests that make an assumption about the shape of the
population distribution.

Pearson’s correlation coefficient See Pearson ’s r.

Pearson’s r A commonly used measure of association between two
variables. Pearson’s r measures the strength and direction of linear rela-
tionships on a standardized scale from –1.0 to 1.0.

Percent of variance explained (R2) A measure for evaluating
how well the regression model predicts values of Y. It represents the
improvement in predicting Y that the regression line provides over the
mean of Y.

Phi (φ) A measure of association for two nominal variables that adjusts
the chi-square statistic by the sample size. Phi is appropriate only for
nominal variables that each has two categories.

Population The universe of cases that the researcher seeks to study.
The population of cases is fixed at a particular time (e.g., the population
of the United States). However, populations usually change across time.

Population distribution The frequency distribution of a particular vari-
able within a population.

Project A self-contained working directory.

Proportional reduction in error (PRE) The proportional reduction in
errors made when the value of one measure is predicted using informa-
tion about the second measure.

QQ-plot Used to check for normality of data, plots the correlation
between the sample and a normal distribution.

R A language and free software environment used for statistical
computing.

G l o s s A r y

320

R Script Where R programming code is written and stored.

Range A measure of dispersion calculated by subtracting the smallest
score from the largest score. The range may also be calculated from spe-
cific points in a distribution, such as the 5th and 95th percentile scores.

Regression coefficient (b) A statistic used to assess the influence of
an independent variable, X, on a dependent variable, Y. The regression
coefficient b is interpreted as the estimated change in Y that is associated
with a one-unit change in X.

Regression error (e) The difference between the predicted value of Y
and the actual value of Y.

Regression line The line predicting values of Y. The line is plotted
from knowledge of the Y-intercept and the regression coefficient.

Regression model The hypothesized statement by the researcher of the
factor or factors that define the value of the dependent variable, Y. The
model is normally expressed in equation form.

Reproducibility When there is a record of one’s research such that
these steps can be repeated by others and the findings reproduced.

Residual An index of the relative deviation of the observed frequency
from the expected frequency for a cell of a contingency table. It is useful
for guiding the interpretation of an association between two nominal
variables.

RStudio An integrated development environment (IDE) designed spe-
cifically for R.

Sample A set of actual observations or cases drawn from a population.

Sampling distribution A distribution of all the results of a very large
number of samples, each one of the same size and drawn from the same
population under the same conditions. Ordinarily, sampling distribu-
tions are derived using probability theory and are based on probability
distributions.

Sample statistic A characteristic of a sample—for example, the mean
number of previous convictions in a random sample of 1,000 prisoners.

Scatterplot A graph whose two axes are defined by two variables and
upon which a point is plotted for each subject in a sample according to
its score on the two variables.

Scheffé’s test A multiple comparison test that accounts for family-
wise error rate by weighting the test statistic by the mean squared error,
between-samples degrees of freedom, and group sizes.

Single-sample t-test A test of statistical significance that is used to
examine whether a sample is drawn from a specific population with a

G l o s s A r y

321

known or hypothesized mean. In a t-test, the standard deviation of the
population to which the sample is being compared is unknown.

Single-sample z-test A test of statistical significance that is used to
examine whether a sample is drawn from a specific population with a
known or hypothesized mean. In a z-test, the standard deviation of the
population to which the sample is being compared either is known or—
as in the case of a proportion—is defined by the null hypothesis.

Somers’ D PRE measure of association for two ordinal variables that
uses information about concordant pairs, discordant pairs, and pairs of
observations tied on the independent variable. Somers’ D has a standard-
ized scale ranging from −1.0 to 1.0.

Spearman’s correlation coefficient See Spearman ’s rho.

Spearman’s rho (rs) A measure of association between two rank-
ordered variables. Spearman’s r measures the strength and direction of
linear relationships on a standardized scale between −1.0 and 1.0.

Standard deviation A measure of dispersion calculated by taking the
square root of the variance.

Standard deviation unit A unit of measurement used to describe the
deviation of a specific score or value from the mean in a z distribution.

Standard error The standard deviation of a sampling distribution.

Synthetic data Computer-generated data.

Test for equality of variance An F-test used to assess the null hypoth-
esis that the two population variances are equal.

Themes Customizations that can alter the general appearance of a plot.

Tibble Modern version of base R’s data frame (simpler and more user-
friendly) that is from the tidyverse package.

Tied pairs of observations (ties) Pairs of observation that have the
same ranking on two ordinal variables.

Tukey’s honestly significant difference (HSD) A parametric test
of statistical significance, adjusted for making pairwise comparisons.
The HSD test defines the difference between the pairwise comparisons
required to reject the null hypothesis.

Type I error Also known as alpha error and false positive. The mistake
made when a researcher rejects the null hypothesis on the basis of a
sample statistic (i.e., claiming that there is a relationship) when in fact
the null hypothesis is true (i.e., there is actually no such relationship in
the population).

G l o s s A r y

322

Variance (s²) A measure of dispersion calculated by adding together
the squared deviation of each score from the mean and then dividing the
sum by the number of cases.

Variation ratio A measure of dispersion calculated by subtracting the
proportion of cases in the modal category from 1.

Welch’s ANOVA ANOVA test for when the equality of variances assump-
tion (homoscedasticity) is not met.

Y-intercept (b0) The expected value of Y when X = 0. The Y-intercept
is used in predicting values of Y.

z-score Score that represents an observation in standard deviation units
from the mean.

G l o s s A r y

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
A. Wooditch et al., A Beginner’s Guide to Statistics for Criminology and
Criminal Justice Using R, https://doi.org/10.1007/978-3-030-50625-4

A
Adjusted standardized residuals, 150
Aesthetics, 41, 43, 45, 49, 56, 58, 59
Alternative hypothesis (HA), 121, 123–126, 152,

156, 161, 164, 171, 174–176, 179, 181,
182, 206

Analysis of variance (ANOVA), 265
assumptions, 191, 192
Bonferroni correction, 202, 203
box plot, 188
dataset, 185
data transformation, 198–201
eta squared, 205, 206
F-distribution, 190
homogeneity, 192–194
hypotheses, 190
Kruskal-Wallis test, 201
multiple comparisons problem, 185
normality issues, 195–198
null hypothesis, 191
one-way analysis of variance

test, 185
post-hoc tests, 202
probability, 185
ratio/interval variable, 185
Scheffé’s test, 204, 205
Tukey’s HSD, 203, 204
variability, 190
Welch’s ANOVA, 195

Arrangements, 114
Arrays, 11, 12, 15
Assignment operator, 10
Assumptions

non-parametric, 119, 122, 132, 309
parametric, 119, 122, 132

Atomic vectors, 11–15

B
Bar graphs, 53, 54
Binning variables, 280
Binomial distribution, 121

hypothesis testing, 119–133

level of measurement, 122
statistical significance, 121

Binomial formula, 116
Binomial test, 108, 122
Bivariate correlation

covariation, 229
linear relationship, 231
Pearson’s correlation, 230
scatterplot, 229
variables, 229

Bivariate regression, 247
Bonferroni correction, 202, 203
Boolean operations, 17
Box plot, 40, 57, 58, 60, 70–73, 75, 76, 186, 188, 192,

195, 199, 208, 306, 307, 312
British Crime Survey, 136, 137

C
Categorical variables, 139, 242

See also Levels of Measurement (Nominal)
Central limit theorem, 99
Chi-square test, 146, 150
Code structure, 45, 46
Coefficient of variation (CV), 87
Color palettes, 46–48
Comments, 8
Commercial statistical packages, 142
Concordant pairs, 218
Confidence intervals, 100, 103, 131, 166
Confirmatory and exploratory research, 128
Console, 3, 4, 8, 15, 18, 23, 53, 63, 87, 144, 277, 278,

281, 291, 296
Contingency tables, 137, 142
Correlation matrix, 239, 240, 242
Covariation, 229, 247
Cramer’s V, 214, 215
Crime Survey for England and Wales, 246, 303
Criminological research and data analysis, 282
Cross tabulations, 137

frequency form, 141
in R, 141
table form, 141

Index

https://doi.org/10.1007/978-3-030-50625-4#DOI

324

Cumulative probability, 117
Customizing in R

colors, 294
elements, 302
ggplot2 package, 293

D
Data

adding labels, 29
formatting classes, 30
installing packages, 23, 24
NCVS dataset, 24, 25
R Projects, 23
recoding and creating new variables, 30, 31,

33, 34
removing labels, 28
sorting, 34
subsetting, 34–36
types, 25–27
value labels, 30
viewing labels, 27

Data frame, 11, 12, 16, 287
Datasets, 23
Data sources and dataset names, 304–313
Data transformation, 198–201, 278

variable, 278
Data visualization

bar graph, 53–54
box plot, 57
built-in themes, 50, 51
code structure, 45, 46
color palettes, 46–48
Grammar of Graphics, 41, 42
histograms, 52–53
labels, 49, 50
line graph, 56, 59
multiple graphs, 54–55
scatterplot, 43–45
sizes, 48, 49
transparency, 48, 49

Date variable, 291
Dependent sample t-test, 178
DescTools package, 128
Directional hypothesis, 122
Discordant pairs, 218
dplyr package, 139, 140, 282

E
Environment, 11
Equal variance assumption, 192
Eta squared, 205, 206
Expected frequencies, 146
External validity, 122

F
F-distribution, 190
Fisher’s exact test, 149
For loop, 111, 112
Font, 7, 295, 296
Formatting, 289

character class, 290
Frequency distributions, 137
Functions

abs(), 162
add_column(), 31, 279
add_labels(), 29
add_row(), 234
add_value_labels(), 172
aes(), 44, 46–48, 50–55, 57, 70–73, 92, 96, 97,

101, 103, 130, 186–188, 195, 198, 199, 230,
234, 235, 252–254, 261, 293, 294

aov(), 191, 193, 194, 204, 205
apply(), 285
arrange(), 34, 37
array(), 16
as_factor(), 139–141, 143, 145, 147,

151, 290
as.character(), 290
as.data.frame(), 142
as.factor(), 54, 56, 57, 58, 290
as.numeric(), 220, 289
as.vector(), 82
attach(), 277
attributes(), 26, 83, 86, 138,

258, 265
bind_rows(), 97
BinomCI(), 128–130
box plot(), 70–72, 186
c(), 47
case_when(), 33, 34, 72, 177, 279, 280
cat(), 162, 165
ceiling(), 9
chisq.test(), 149, 150, 213, 216
class(), 16, 26, 64, 138, 219,

258, 291
complete.cases(), 250
confint(), 265
contains(), 15
cor.test(), 220, 233, 236–238
cor(), 233
count(), 31, 44, 50, 51
CrossTable(), 143, 145, 151
cut(), 207
data.frame(), 17, 93, 143, 158, 263,

281, 291–293
dbinom(), 117
detach(), 277
diff(), 85
dim(), 16

I N D E X

display(), 259
DM(), 82
dmy(), 291
do(), 95, 97
drop_na(), 281
element_blank(), 295
element_line(), 295
element_rect(), 295
element_text(), 70–73, 187
ends_with(), 283
everything(), 219
facet_wrap(), 55, 71
factor(), 30, 31, 187, 213, 215, 216, 219,

221, 222
factorial(), 115
fct_explicit_na(), 141
filter(), 36, 69, 82, 99, 229, 237, 284
fisher.test(), 149
fitted(), 194
floor(), 9
for(), 307
full_join(), 285
function(), 162, 164, 165
gather(), 289
geom_bar(), 53, 54
geom_box plot(), 57, 70–72, 186–188
geom_density(), 97, 101, 195,

198, 199
geom_errorbar(), 103, 130
geom_histogram(), 52, 53, 73, 92, 96
geom_line(), 56, 234, 253
geom_point(), 44, 46, 50, 51, 55, 103, 130, 230,

234, 235, 252–254, 261, 293, 294
geom_smooth(), 235, 254, 261
geom_vline(), 92, 96, 101, 103
get_labels(), 27–29
getwd(), 271
ggcorr(), 239–241
ggpairs(), 241, 242
ggplot(), 43, 44, 46–48, 50–55, 57, 70–73,

92, 96, 97, 101, 103, 130, 186–188, 195,
198, 234, 235, 252–254, 261, 293, 295,
199, 230

ggsave(), 302
ggtitle(), 71–73
GKtau(), 217
GoodmanKruskalGamma(), 219
group_by(), 64, 66, 67, 95, 97, 141, 172, 173, 177,

190, 279, 288
guides(), 186–188
head(), 34, 186
here(), 24, 271
if_else(), 102
inner_join(), 284
install.packages(), 24, 269

IQR(), 69
is.na(), 81, 82, 139
KendallTauB(), 220
kruskal.test(), 202
labs(), 50, 51, 53, 54, 57, 70–73
Lambda(), 217
lapply(), 285
left_join(), 284
leveneTest(), 193
library(), 24, 269
list(), 16, 282, 289, 290
lm(), 258, 259
load(), 272
log(), 287
log10(), 200
matches(), 283
matrix(), 15
max(), 75
mdy(), 292
mean(), 75
median(), 66, 67, 93, 94
merge(), 180
min(), 65
mlv(), 64, 67, 81
mutate(), 32–34, 72, 102, 177, 279, 280,

282, 289–292
n(), 64
na_if(), 282
names(), 16
nrow(), 31, 158, 250, 279
num_range(), 283
oneway.test(), 195
pairwise.t.test(), 203
par(), 71
paste(), 112, 114
pbinom(), 117
Phi(), 214
pivot_longer(), 289
pivot_wider(), 288
pnorm(), 162
pnormGC(), 159, 160
predict(), 263
print(), 15, 111
prop_z_test(), 164
prop.test(), 124–126, 178
qplot(), 197, 200, 250, 251
qqline(), 196
qqnorm(), 196
qqPlot(), 197, 200
quantile(), 69
range(), 85
rbind(), 285
read_csv(), 271, 273
read_delim(), 272
read_dta(), 274

325I N D E X

326

Functions (cont.)
read_excel(), 274
read_json(), 277
read_sas(), 275
read_sav(), 275
read_spss(), 24
read_tsv(), 273
read.dbf(), 274
read.mat(), 276
read.mtp(), 276
read.systat(), 276
read.table(), 276
recode(), 172
remove_labels(), 29
remove_var_label(), 28
replace_na(), 282
require(), 269
resid(), 194, 196
return(), 162, 164
right_join(), 284
rm(), 229
rnorm(), 92, 93, 158
round(), 9, 234, 240
sample(), 32, 95, 97, 100
sapply(), 25, 286
save(), 272
scale_colour_brewer(), 46, 48,

50, 51
scale_colour_viridis_d(), 47
scale_fill_discrete(), 97
scale_y_log10(), 187, 188
scale(), 46, 47, 71
ScheffeTest(), 205
sd(), 86
select(), 36
separate(), 292
set.seed(), 93
setRepositories(), 270
setwd(), 271
single_t_test(), 165
skewness(), 74
skim(), 67, 80, 84, 173
slice(), 36, 102, 282
SomersDelta(), 222
spread(), 288
sqrt(), 99, 162, 164, 165, 167
starts_with(), 283, 289
str(), 83, 142, 292
StuartTauC(), 221
substr(), 292
sum(), 139
summarize(), 66, 67, 82, 99, 100, 141, 172, 177,

190, 288
summary.lm(), 205, 265
summary(), 69, 84, 86, 191, 249, 250,

259, 266

summary()$coefficients, 263
summary()$r.squared, 266
symbox(), 199
t.test(), 175, 180
table(), 30, 65, 80, 81, 138–140
tapply(), 286
theme_bw(), 186–188, 195, 199, 208
theme_minimal(), 51, 130
theme(), 51
TukeyHSD(), 204
var_label(), 27–29
var.test(), 174
var(), 86
View(), 180, 277
vif(), 266
which(), 158
while(), 113
with(), 143, 145, 147, 149, 151
write_csv(), 273
write_delim(), 272
write_dta(), 274
write_json(), 277
write_sas(), 275
write_sav(), 275
write_tsv(), 273
write.dbf(), 274
write.mat(), 276
write.xlsx(), 274
year(), 292
z_test(), 161, 165

G
Gamma coefficient, 218
Gaussian distribution/bell curve, 93, 157
Geometry, 41

bar graphs, 53, 54
box plots, 57, 58
facet_wrap() layer, 55, 58
grouped bar graph, 54, 55
histograms, 52, 53
line graphs, 56, 57

Goodman and Kruskal’s lambda, 215–217
Goodman-Kruskal Gamma, 217, 218, 220
Goodman and Kruskal’s tau, see

Kendall’s tau
Grammar of Graphics, 41, 42
Graphical user interface (GUI), 3

H
HA, see Hypothesis testing (alternative)
Heterogenous vectors, 12
Heteroscedasticity, 248
Histograms, 52–53, 57, 58, 67, 73, 74, 92
H0, see Hypothesis testing (null)

I N D E X

Hypothesis, 109, 110, 116, 119–132, 146, 148, 150,
152, 160–166, 171, 174–179, 190–192, 195,
201, 202, 233, 260, 263

alternative, 110, 126, 131, 148, 152, 161, 164, 166,
171, 175, 176, 178, 179, 181, 182, 191, 206,
233, 235–238, 260

directional, 122, 132, 176, 181, 306
non-directional, 122, 132, 161, 164, 179, 309
null, 110, 116, 117, 121, 123, 125–127, 131–133,

146, 148, 150, 152, 163–167, 174, 178, 181,
182, 190–192, 195, 201, 202, 206, 207, 233,
260, 306, 307, 309, 310, 312

one-sided, 125
two-sided, 125, 126

Hypothesis testing, 109, 122, 126, 160, 249
assumptions, 122–123

I
Independence assumption, 191
Independent, 109
Independent sample t-test, 171, 172, 174
Index of qualitative variation (IQV), 82
Inferential statistics, 91

descriptive statistics, 94
population vs. samples, 91
synthetic data, 91
visualization skills, 92

Integrated development environment (IDE), 3
Interquartile Range (IQR), 68
Interval-/ratio-level variables, see Levels of

measurement (ratio/interval)

J
JSON format, 277

K
Kendall’s tau, 238
Kendall’s taub, 220–222
Kendall’s tauc, 220–222
Keyboard shortcuts, 278
Kruskal-Wallis test, 201

L
Labels, 49, 50
Least squares estimation, 257
LEMAS-Body Worn Camera supplement survey, 303
Level of measurement, 25, 30, 37

nominal, 209–225
ordinal, 209–225
ratio/interval, 185

Levene's test, 192
Line graphs, 56–59

Line types, 57, 59
Linearity, 253

assumptions, 256
global environment, 258
master dataset, 250
OLS regression, 254
regression, 251
statistics, 257

Linear model, 255
Linear relationship, 229
Line graphs, 56, 57
Lists, 12, 16
Logarithmic transformation, 199
Logical operators, 17
Lower Super Output Area (LSOA), 186
Lubridate package, 290, 292

M
Marginal

column, 145
row, 145

Matrix, 11, 15, 16
Mean squared error (MSE), 204
Mean values, 63–68
Measures of central tendency

mean, 63–68
median, 63–68
mode, 63–68
outliers, 68, 70–73
skewness, 73, 74

Measures of dispersion
Coefficient of variation (CV), 87
Index of qualitative variation (IQV), 82
range, 83–85
ratio-/interval-level data, 83
standard deviation, 86, 87
variance, 85, 86
Variation Ratio (VR), 79, 81, 82

Median value, 63–68
Missing data, 281
Mode, 63–68
Multicollinearity, 248
Multiple comparisons problem, 185
Multiple probabilities

verdicts, 113
while loop, 112

Multiplication rule, 109, 110

N
National Crime Victimization Survey (NCVS), 22, 91
National Youth Survey (NYS), 170, 171, 303
Navigating R

excel file, 274
functions, 270

327I N D E X

328

Navigating R (cont.)
installation, 269
interrupting R, 277
JSON format, 277
Matlab, 270
Minitab, 276
packages, 269
R data files, 272
reading and exporting data, 272
SAS transport files, 275
SPSS files, 275
Systat, 276
tab-delimited file, 272
Windows, 271
working directory, 271
xlsx, 274

Nominal variables, 25
Non-directional hypothesis, 122, 161, 164
Nonlinear relationships, 234–237, 239
Nonparametric test, 122
Normal distribution, 157

population characteristics, 161
68-95-99.7 rule, 160
z-scores, 158, 163

Normal population assumption, 192
Null hypothesis (H0), see Hypothesis, null

O
Object, 10, 11
Observed frequencies, 146
One-way analysis of variance test, 185, see Analysis

of variance (ANOVA)
Ordinary least squares (OLS) regression

bivariate regression, 247
correlation matrix, 257
covariates, 247
dependent variable, 247
distributions, 250
independent variable, 247
linearity, 247
multicollinearity, 248
predictions, 262
regression, 251
regression line, 248
residuals, 248
standard error, 262
variables, 249

Outliers, 68, 70–73

P
Packages

arm, 259
car, 192, 197, 199, 266
DescTools, 128, 133, 204, 208, 214, 216, 218,

220–222, 225, 296

dplyr, 23, 24, 32, 33, 38, 59, 64, 106, 139, 140,
229, 282, 287, 296

forcats, 140, 290, 296
foreign, 274, 276
GGally, 141, 239, 248, 279, 304
ggplot2, 41, 60, 76, 92, 106, 186, 208, 230, 251,

268, 293, 298
gmodels, 142, 153, 304
GoodmanKruskal, 216, 225, 303
grid, 295
haven, 24, 272, 275, 304
here, 24, 270
labelled, 28, 304
lubridate, 291, 292
modeest, 64
moments, 74
mosaic, 94, 95, 270
qualvar, 79, 82
readr, 272, 273
readxl, 272, 274
sjlabelled, 28
skimr, 67, 173
stats, 85, 116, 117, 157, 162, 177, 220
tibble, 31, 234
tidyr, 281
tidyverse, 31, 33, 35, 41, 176, 272
tigerstats, 159

Packages/software citations, 6
Parametric tests, 122
Pearson’s correlation, 230–232

coefficient, 233
hypotheses, 232
variables, 232

Phi, 212–214
Population distribution, 92
Power transformation, 199
Proportion, 79, 123–125, 128, 131, 132, 140,

141, 144, 157, 159, 160, 163, 164,
169–182, 206, 212

confidence intervals, 100–104
Proportion test, 163–164

single-sample, 163–164
two-sample, 119–133

Proportional reduction in errors (PRE), 215
p-value, 126, 150, 164, 260

Q
Q-Q plot, 196

R
Random variation, 124
Randomization condition, 192
Range, 83–85
Rate, 68, 81, 84, 122, 163, 164, 173, 204, 230, 232,

233, 235

I N D E X

Regression coefficient, 259
Regression error, 262
Research

confirmatory, 127, 128
exploratory, 127, 128

Reshaping data, 288
tidyr, 288

Residuals, 150, 263
vs. fitted values, 194

R programming
array, 33
atomic vectors, 13–15
basic operations, 8, 9
command line interface, 3
classes, 14, 25–26
color options, 296
comments, 8
customizing, 293–294
data frames, 11, 12, 16–17
data structures, 11–13
data types, 17, 25
data view, 180
environment view, 11, 19, 272, 310
formatting dates, 290–292
formatting classes, 290–291
files, 6
functions, 20
help, 6
history view, 278
interrupting, 277–278
Keyboard shortcuts, 278
installation, 4
learning, 2
lists, 11, 12
logical operators, 17
matrix, 15, 16
objects, 10
packages, 6
projects, 23
plots, 6
script, 4–7
vector, 11, 25
Windows operating system, 3

R Projects, 23
R Script, 5–7
RStudio, 277

customizing, 7, 8
installation, 4
open and explore, 4–7

S
Sample distributions, 98
Sample sizes, 97
Sample statistic, 96
Sampling and sampling variability, 94
Sampling distribution, 95, 96, 98, 101, 116

Sampling variability, 95
Saving output

ggplot2, 302
RStudio environment, 302

Scatterplot, 43–45, 229
Scheffé’s test, 204, 205
Seattle Neighborhoods and Crime Survey,

210–211
Significance level, 123
Single-sample t-test

means, 165
Single-sample z-test, 161

proportions, 163, 164
68-95-99.7 rule, 160
Skewness, 73, 74
Somers’ D, 222, 223
Sorting, 34
Spearman method, 241
Spearman’s (rho) rank correlation, 238
Standard deviation unit, 86, 87, 158
Standard error, 99, 100
Statistical computing environments, 116
Statistical significance, 121
Statistical tests, 122
Survey of Inmates in State and Federal Correctional

Facilities (SISFCF), 78

T
Test for equality of variance, 174
Themes, 50, 51
Tied pairs of observations, 218
Total variation, 264
t-test, 174–176
Tukey’s Honest Significant Difference (HSD) method,

203, 204
Two-sample means/proportions

binary variable, 176
dependent sample t-test, 178
independent sample t-test, 171,

172, 174
null hypothesis, 178
test for equality of variance, 174
t-test, 174–176
z-test, 176, 177

Type I error, 109, 121
Type II error, 109

V
Variable transformations

data transformations, 287
exponentiating, 287
log, 287

Variance, 85, 86
Variance explained (R2), 263
Variance inflation factor (VIF), 248, 266

329I N D E X

330

Variation ratio (VR), 79, 81, 82
Vector, 11, 13–16, 18, 25–27, 34, 82, 92, 102, 177,

270, 285–287
Viewing Data Frame, 277

W
Welch’s ANOVA, 194, 195
While loop, 113

Y
Y-Intercept, 261

Z
z-scores, 158
z-test

single sample, 161, 163, 164
two-sample means, 176, 177

I N D E X

	Appendix
	1.1. Installing and Loading Packages
	1.2. Specifying Packages
	1.3. Projects and Working Directories
	1.4. Setting Working Directory
	Windows
	Mac

	1.5. Get Working Directory
	1.6. Opening Data Files and Exporting Data
	R Data Files
	General Delimited
	Comma Separated
	Tab Separated
	Excel
	dBASE
	Stata
	SPSS
	SAS
	From Web URL
	Systat
	Minitab
	Matlab
	JSON

	1.7. Viewing Data Frame
	1.8. Using attach() and detach()
	1.9. Interrupting R
	1.10. Keyboard Shortcuts

	Appendix 2: Data Transformation
	Recoding or Creating a New Variable
	Binning Variables
	Dealing with Missing Data
	Selecting Specific Rows, Columns, or Cells
	Selecting Rows (or Cases/Observations)
	Selecting Columns (or Variables)
	Selecting Cells

	Selecting Cases Based on Criteria
	Add Columns to a Data Frame
	Inner Join
	Left Join
	Right Join
	Full Join

	Add Rows to a Data Frame
	Applying Functions to Every Column
	Using apply()
	Using lapply()
	Using sapply()
	Using tapply()

	Calculating Variable Transformations
	Logarithmic Transformation
	Natural Log
	Exponentiation

	Summarize a Data Frame by Groups
	Reshaping Data Frames
	Into Wide Format
	Into Long Format

	Appendix 3: Formatting
	Changing Classes
	To Numeric Class
	To Character Class
	To Factor Class

	Formatting Dates
	Extract Parts of Dates from a String

	Appendix 4: Pimp My ggplot
	Shape Options
	Line Types
	Font Types
	Color Options
	ggplot2 Color Options
	Color Palettes

	Appendix 5: Saving Output
	Exporting Plots

	Appendix 6: List of Data Sources and Dataset Names
	Appendix 7: Citations to Packages/Software
	Glossary
	Index

