Appendix A The Circle Bundle Point of View

The goal of this appendix is to compare the line bundle version of geometric quantisation and Berezin-Toeplitz operators with the circle bundle version of this theory. To this effect, we begin by recalling some useful facts about \mathbb{T}-principal bundles with connections. Then, we discuss the Hardy space and the Szegő projector of a strictly pseudoconvex domain. Finally, we explain how this enters the picture of geometric quantisation. For this appendix, we assume from the reader a basic knowledge of Lie groups and their representations.

A. 1 T-Principal Bundles and Connections

Let G be a Lie group and let X be a manifold.
Definition A.1.1. A G-principal bundle over X (or principal bundle over X with structure group G) is the data of a manifold P (the total space) and a smooth projection $\pi: P \rightarrow X$ together with an action of G on P such that
(1) G acts freely and transitively on P on the right: $(p, g) \in P \times G \mapsto p g \in P$,
(2) X is the quotient of P by the equivalence relation induced by this action, and π is the canonical projection,
(3) P is locally trivial in the sense that each point $x \in X$ has a neighbourhood U such that there exists a diffeomorphism

$$
\varphi: \pi^{-1}(U) \rightarrow U \times G
$$

of the form $\varphi(p)=(\pi(p), \psi(p))$, where the map $\psi: \pi^{-1}(U) \rightarrow G$ is such that $\psi(p g)=\psi(p) g$ for every $p \in \pi^{-1}(U)$ and $g \in G$.

Let $P \rightarrow X$ be a principal bundle with structure group G, and let $\phi: G \rightarrow \mathrm{GL}(V)$ be a representation of G on some vector space V. There is a free action of G on $P \times V$ on the right:

$$
(p, v, g) \in P \times V \times G \mapsto(p, g) v:=\left(p g, \phi\left(g^{-1}\right) v\right) \in P \times V
$$

This action induces an equivalence relation on $P \times V$; by taking the quotient, we obtain a vector bundle $(P \times V) / G \rightarrow P / G=X$ whose fibres $(G \times V) / G$ are isomorphic to V.

Definition A.1.2. We denote by $P \times_{\phi} V \rightarrow X$ the vector bundle $(P \times V) / G \rightarrow X$, and we call it the vector bundle associated with the G-principal bundle $P \rightarrow X$ and the representation ϕ.

\mathbb{T}-Principal Bundles

Let $P \rightarrow X$ be a principal bundle with structure group $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ and projection π. The action of $\theta \in \mathbb{T}$ will be denoted by

$$
(p, \theta) \in P \times \mathbb{T} \mapsto R_{\theta}(p) \in P
$$

To this action is associated the vector field ∂_{θ} of P defined as

$$
\forall p \in P \quad \partial_{\theta}(p)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} R_{t}(p)
$$

whose flow at time t is equal to R_{t}. The elements of $\operatorname{ker}\left(d_{p} \pi\right)=\operatorname{span}\left(\partial_{\theta}(p)\right)$ are called the vertical tangent vectors.

Definition A.1.3. A connection on $P \rightarrow X$ is the data of a one-form $\alpha \in \Omega^{1}(P)$ which is \mathbb{T}-invariant $\left(R_{\theta}^{*} \alpha=\alpha\right.$ for every $\left.\theta \in \mathbb{T}\right)$ and satisfies $i_{\partial_{\theta}} \alpha=1$.

A connection $\alpha \in \Omega^{1}(P)$ induces a splitting

$$
T_{p} P=\operatorname{ker}\left(\alpha_{p}\right) \oplus \operatorname{span}\left(\partial_{\theta}(p)\right)=\operatorname{ker}\left(\alpha_{p}\right) \oplus \operatorname{ker}\left(d_{p} \pi\right)
$$

The elements of the hyperplane $\operatorname{ker}\left(\alpha_{p}\right)$ of $T_{p} P$ are called the horizontal tangent vectors. Since α is \mathbb{T}-invariant, the distribution $\operatorname{ker} \alpha$ also is, and the data of a connection is equivalent to the data of a \mathbb{T}-invariant subbundle E of $T P$ such that $T P=E \oplus \operatorname{ker}(\mathrm{~d} \pi)$. By construction, the restriction of $\mathrm{d}_{p} \pi$ to the horizontal subspace at p is bijective. Thus, given a vector field Y on X, there exists a unique vector field $Y^{\text {hor }}$ on P which is horizontal and satisfies $\mathrm{d} \pi\left(Y^{\text {hor }}\right)=Y$; it is called the horizontal lift of Y.

The connections of the trivial \mathbb{T}-principal bundle $X \times \mathbb{T}$ are the one-forms of the type $\beta+\mathrm{d} \theta$, where $\beta \in \Omega^{1}(X)$ and $\mathrm{d} \theta$ is the usual 1-form of \mathbb{T}.

\mathbb{T}-Principal Bundles and Hermitian Line Bundles

Let $L \rightarrow X$ be a Hermitian complex line bundle, and let $h(\cdot, \cdot)$ denote its Hermitian form. Let us consider the subbundle of L consisting of elements of norm 1:

$$
P=\{u \in L \mid h(u, u)=1\} .
$$

One readily checks that P is a \mathbb{T}-principal bundle over X, with \mathbb{T}-action given by $R_{\theta}(u)=\exp (\mathrm{i} \theta) u$. Moreover, L is the vector bundle associated with P and the representation

$$
\theta \in \mathbb{T} \mapsto(z \mapsto \exp (-\mathrm{i} \theta) z) \in \mathrm{GL}(\mathbb{C})
$$

of \mathbb{T}. There is a natural isomorphism of $\mathcal{C}^{\infty}(X)$-modules

$$
\phi: \mathcal{C}^{\infty}(X, L) \rightarrow\left\{f \in \mathcal{C}^{\infty}(P) \mid R_{\theta}^{*} f=\exp (-\mathrm{i} \theta) f\right\}, \quad s \mapsto f=\phi(s)
$$

where, for $u \in P, f(u)$ is the unique complex number such that

$$
s(\pi(u))=f(u) u
$$

where $\pi: P \rightarrow X$ is the canonical projection. Given any connection $\alpha \in \Omega^{1}(P)$ on P, we consider the connection ∇ on L such that the covariant derivative with respect to a vector field corresponds to the Lie derivative with respect to its horizontal lift:

$$
\forall Y \in \mathcal{C}^{\infty}(X, T X), \forall s \in \mathcal{C}^{\infty}(X, L) \quad \phi\left(\nabla_{Y} s\right)=\mathcal{L}_{Y^{\mathrm{hor}}}(\phi(s))
$$

This map ∇ is well-defined because ϕ is an isomorphism, and it satisfies the Leibniz rule because the Lie derivative does and ϕ^{-1} is $\mathcal{C}^{\infty}(X)$-linear.

Exercise A.1.4. Carefully check all the above statements.
Lemma A.1.5. The map sending α to ∇ is a bijection from the set of connections on P to the set of connections on L.

Proof. Let us work with local trivialisations. Let $U \subset X$ be an open subset endowed with a unitary frame $s \in \mathcal{C}^{\infty}(U, L)$. We get a local trivialisation of P over U,

$$
\varphi: P_{\mid U} \rightarrow U \times \mathbb{T}, \quad u \mapsto(\pi(u), \theta)
$$

where θ is the unique element of \mathbb{T} such that $s(\pi(u))=\exp (\mathrm{i} \theta) u$. Now, let us identify $\mathcal{C}^{\infty}(U, L)$ with $\mathcal{C}^{\infty}(U)$ by sending the section $f s$ to f, and $\mathcal{C}^{\infty}\left(P_{\mid U}\right)$ with $\mathcal{C}^{\infty}(U \times \mathbb{T})$ via φ. Then $\phi(f)=g$ with

$$
g(x, \theta)=f(x) \exp (-\mathrm{i} \theta)
$$

Using these identifications, $\alpha=\beta+\mathrm{d} \theta$ for some $\beta \in \Omega^{1}(U)$. Therefore, given some vector field Y on U, its horizontal lift is given by $Y^{\text {hor }}=Y-\beta(Y) \partial_{\theta}$, hence

$$
\left(\mathcal{L}_{Y_{\text {hor }}} g\right)(x, \theta)=\left(\mathrm{d}_{x} g(Y)-\beta(Y) \frac{\partial g}{\partial \theta}\right)(x, \theta)=\left(\mathcal{L}_{Y} f+\mathrm{i} \beta(Y) f\right)(x) \exp (\mathrm{i} \theta)
$$

Consequently,

$$
\nabla(f s)=(\mathrm{d} f+i \beta) \otimes s
$$

so ∇ is uniquely determined by α.

A. 2 The Szegő Projector of a Strictly Pseudoconvex Domain

Let Y be a complex manifold of complex dimension $n+1$. Let $D \subset Y$ be a domain (connected open subset) of Y with smooth compact boundary, defined as

$$
D=\{y \in Y \mid \eta(y)<0\}
$$

with $\eta: Y \rightarrow \mathbb{R}$ smooth and such that $\mathrm{d} \eta(y) \neq 0$ whenever y belongs to ∂D. Let H be the complex subbundle of $T(\partial D) \otimes \mathbb{C}$ consisting of the holomorphic tangent vectors of Y which are tangent to the boundary of D; it has complex dimension n. The Levi form of D is the restriction to H of the quadratic form $\partial \bar{\partial} \eta$.

Definition A.2.1. We say that D is strictly pseudoconvex if its Levi form is positive definite at every point of ∂D.

Note that this implies that the restriction α of $-\mathrm{i} \partial \eta$ to ∂D is a contact form on ∂D. Thus we get a volume form $\mu=\alpha \wedge(\mathrm{d} \alpha)^{n}$ on ∂D, and we can consider the Hilbert space $L^{2}(\partial D)$ with respect to μ. The subspace

$$
\mathcal{H}(D)=\left\{f \in L^{2}(\partial D) \mid \forall Z \in \mathcal{C}^{\infty}(\partial D, H) \mathcal{L}_{\bar{Z}} f=0\right\}
$$

is called the Hardy space of D. The Szegő projector of D is the orthogonal projector $\Pi: L^{2}(\partial D) \rightarrow \mathcal{H}(D)$.

A. 3 Application to Geometric Quantisation

Coming back to our problem, where M is a compact Kähler manifold and $L \rightarrow M$ is a prequantum line bundle, let us introduce the \mathbb{T}-principal bundle $P \rightarrow M$ which consists of unit norm elements (with respect to the norm induced by h) of the line bundle L. It is such that for every integer k, we have the line bundle isomorphism $L^{k} \simeq P \times_{s_{k}} \mathbb{C}$ where $s_{k}: \mathbb{T} \rightarrow \mathrm{GL}(\mathbb{C})$ is the representation given by

$$
s_{k}(\theta) \cdot v=\exp (-\mathrm{i} k \theta) v
$$

We can embed P into $L^{-1} \simeq P \times_{s_{-1}} \mathbb{C}$ via

$$
\iota: P \rightarrow P \times_{s_{-1}} \mathbb{C}, \quad \iota(p)=[p, 1]
$$

where the square brackets stand for equivalence class. The connection on L^{-1}, that we still denote by ∇, induces a connection one-form $\alpha \in \Omega^{1}(P)$. Let $\operatorname{Hor}^{1,0}$ be the subbundle of $T P \otimes \mathbb{C}$ consisting of the horizontal lifts of the holomorphic vectors of $T M \otimes \mathbb{C}$. Let

$$
\rho: L^{-1} \rightarrow \mathbb{R}, \quad u \mapsto\|u\|^{2}
$$

and let $D=\left\{u \in L^{-1} \mid \rho(u)<1\right\}$.

Proposition A.3.1. D is a strictly pseudoconvex domain of L^{-1} and $\partial D=\iota(P)$. The bundle H of holomorphic vectors of L^{-1} that are tangent to $\iota(P)$ is $\iota_{*} \operatorname{Hor}^{1,0}$. Moreover, $\iota^{*} \partial \log \rho=\mathrm{i} \alpha$.

Proof. We begin by proving the second assertion. Let us use some local coordinates. Let $U \subset M$ be an open subset such that $P_{\mid U} \simeq U \times \mathbb{T}$, and let us use coordinates (x, θ) on $U \times \mathbb{T}$. Then $\alpha=\beta+\mathrm{d} \theta$ for some $\beta \in \Omega^{1}(U)$. Let s^{-1} be the local section of $L^{-1} \rightarrow U$ defined by

$$
s^{-1}(x)=[(x, 0), 1] \in(U \times \mathbb{T}) \times_{s^{-1}} \mathbb{C} \simeq L_{\mid U}^{-1}
$$

Then $\nabla s^{-1}=\mathrm{i} \beta \otimes s^{-1}$. We pick a function $\phi \in \mathcal{C}^{\infty}(U)$ such that

$$
\begin{equation*}
\bar{\partial} \phi+\mathrm{i} \beta^{(0,1)}=0 ; \tag{A.1}
\end{equation*}
$$

we know that such a function exists (taking a smaller U if necessary) thanks to the Dolbeault-Grothendieck lemma, since $\mathrm{d} \beta$ is a $(1,1)$-form. Then

$$
\nabla\left(\exp (\phi) s^{-1}\right)=\exp (\phi)(\partial \phi+\bar{\partial} \phi+\mathrm{i} \beta) \otimes s^{-1}=\exp (\phi)\left(\partial \phi+\mathrm{i} \beta^{(1,0)}\right) \otimes s^{-1}
$$

hence $\exp (\phi) s^{-1}$ is a holomorphic section. Let w be the complex linear coordinate of L^{-1} such that $w\left(\exp (\phi) s^{-1}\right)=1$, and let $\left(z_{j}\right)_{1 \leq j \leq n}$ be a system of complex coordinates on U. In these coordinates, the maps ι and ρ read

$$
\iota: U \times \mathbb{T} \rightarrow U \times \mathbb{C}, \quad\left(z_{1}, \ldots, z_{n}, \theta\right) \mapsto\left(z_{1}, \ldots, z_{n}, w=\exp (\mathrm{i} \theta-\phi(z))\right)
$$

and

$$
\rho: U \times \mathbb{C} \rightarrow \mathbb{R}, \quad\left(z_{1}, \ldots, z_{n}, w\right) \mapsto|w|^{2} \exp (\phi(z)+\bar{\phi}(z))
$$

Let $j \in \llbracket 1, n \rrbracket$; the horizontal lift of $\partial_{z_{j}}$ is

$$
\partial_{z_{j}}^{\mathrm{hor}}=\partial_{z_{j}}-\beta\left(\partial_{z_{j}}\right) \partial_{\theta}
$$

We compute

$$
\beta\left(\partial_{z_{j}}\right)=\beta^{(1,0)}\left(\partial_{z_{j}}\right)=-\mathrm{i} \frac{\partial \bar{\phi}}{\partial z_{j}},
$$

the last equality coming from the fact that $\partial \bar{\phi}-\mathrm{i} \beta^{(1,0)}=0$ because β is real-valued and satisfies (A.1). Hence

$$
\partial_{z_{j}}^{\text {hor }}=\partial_{z_{j}}+\mathrm{i} \frac{\partial \bar{\phi}}{\partial z_{j}} \partial_{\theta}
$$

Therefore, its pushforward by ι satisfies

$$
\iota_{*}\left(\partial_{z_{j}}^{\mathrm{hor}}\right)=\mathrm{d} z_{j}\left(\partial_{z_{j}}+\mathrm{i} \frac{\partial \bar{\phi}}{\partial z_{j}} \partial_{\theta}\right) \partial_{z_{j}}+\mathrm{d} w\left(\partial_{z_{j}}+\mathrm{i} \frac{\partial \bar{\phi}}{\partial z_{j}} \partial_{\theta}\right) \partial_{w}
$$

which yields

$$
\iota_{*}\left(\partial_{z_{j}}^{\mathrm{hor}}\right)=\partial_{z_{j}}+\mathrm{d} w\left(\partial_{z_{j}}+\mathrm{i} \frac{\partial \bar{\phi}}{\partial z_{j}} \partial_{\theta}\right) \partial_{w}
$$

Since $\mathrm{d} w=w(\mathrm{id} \theta-\mathrm{d} \phi)$, we finally obtain that

$$
\iota_{*}\left(\partial_{z_{j}}^{\mathrm{hor}}\right)=\partial_{z_{j}}-\frac{\partial(\phi+\bar{\phi})}{\partial z_{j}} \partial_{w} .
$$

This implies that ι_{*} Hor 1,0 is a subbundle of the bundle H of holomorphic vectors of L^{-1} which are tangent to $\iota(P)$; since both bundles have complex dimension n, this means that they are equal.

Let us now prove the last claim of the proposition. We have that

$$
\partial \rho=\exp (\phi+\bar{\phi})\left(\bar{w} \mathrm{~d} w+|w|^{2} \partial(\phi+\bar{\phi})\right)
$$

hence

$$
\partial(\log \rho)=\frac{\mathrm{d} w}{w}+\partial(\phi+\bar{\phi})
$$

Consequently,

$$
\iota^{*} \partial(\log \rho)=\mathrm{id} \theta-\mathrm{d} \phi+\partial(\phi+\bar{\phi})=\mathrm{id} \theta-\bar{\partial} \phi+\partial \bar{\phi}
$$

Remembering (A.1) and the conjugate equality, we finally obtain that

$$
\iota^{*} \partial(\log \rho)=\mathrm{i}(\mathrm{~d} \theta+\beta)=\mathrm{i} \alpha
$$

It remains to show that D is strictly pseudoconvex. Its Levi form is equal to the restriction of $\iota^{*}(\partial \bar{\partial} \log \rho)$ to $H=\iota_{*} \operatorname{Hor}^{1,0}$. But

$$
\iota^{*}(\partial \bar{\partial} \log \rho)=-\iota^{*}(\bar{\partial} \partial \log \rho)=-\iota^{*}(\mathrm{~d} \bar{\partial} \log \rho)=-\mathrm{d} \iota^{*}(\partial \log \rho)=-\mathrm{id} \alpha
$$

Since $-\mathrm{id} \alpha$ corresponds to the curvature of the connection on L over U, we have that

$$
-\mathrm{id} \alpha\left(\partial_{z_{j}}^{\mathrm{hor}}, \partial_{\bar{z}_{\ell}}^{\mathrm{hor}}\right)=-\mathrm{i} \omega\left(\partial_{z_{j}}, \partial_{\bar{z}_{\ell}}\right)>0,
$$

which concludes the proof.
As a consequence of this result, we construct the Hilbert space $L^{2}(P)$ by using the volume form $\mu_{P}=(1 /(2 \pi n!)) \alpha \wedge(\mathrm{d} \alpha)^{n}$, the Hardy space

$$
\mathcal{H}(P)=\left\{f \in L^{2}(P) \mid \forall Z \in \mathcal{C}^{\infty}(P, H), \mathcal{L}_{\bar{Z}} f=0\right\} \subset L^{2}(P)
$$

as in the previous section and the Szegő projector $\Pi: L^{2}(P) \rightarrow \mathcal{H}(P)$.
Since $L^{k} \simeq P \times_{s_{k}} \mathbb{C}$, we have an identification

$$
\mathcal{C}^{\infty}\left(M, L^{k}\right) \rightarrow\left\{f \in \mathcal{C}^{\infty}(P) \mid R_{\theta}^{*} f=\exp (\mathrm{i} k \theta) f\right\}
$$

which sends $s \in \mathcal{C}^{\infty}\left(M, L^{k}\right)$ to $f \in \mathcal{C}^{\infty}(P)$, where, for $p \in P, f(p)$ is the unique complex number such that $s(\pi(p))=f(p) p$.

Lemma A.3.2. This identification is compatible with the scalar products on $\mathcal{C}^{\infty}(P)$ and $\mathcal{C}^{\infty}\left(M, L^{k}\right)$ (i.e., it defines an isometry).

Proof. Let $s, t \in \mathcal{C}^{\infty}\left(M, L^{k}\right)$ and let $f, g \in \mathcal{C}^{\infty}(P)$ be the corresponding functions. Observe that for $p \in P$,

$$
h_{k}(s(\pi(p)), t(\pi(p)))=f(p) \bar{g}(p)
$$

since $h(p, p)=1$. Therefore, we have that

$$
\langle f, g\rangle_{P}=\int_{P} f \bar{g} \mu_{P}=\int_{P} \pi^{*}\left(h_{k}(s, t)\right) \mu_{P}
$$

Since $\alpha \wedge(\mathrm{d} \alpha)^{n}=\mathrm{d} \theta \wedge \pi^{*} \omega^{n}$, we deduce from this equality that

$$
\langle f, g\rangle_{P}=\int_{M} h_{k}(s, t) \mu=\langle s, t\rangle_{k}
$$

which was to be proved.
Under this identification, the covariant derivative $\nabla_{X} s$ corresponds to the Lie derivative $\mathcal{L}_{X^{\text {hor }}} f$; hence, s is holomorphic if and only if f belongs to $\mathcal{H}(P)$, since, as we saw earlier, $H=\iota_{*}$ Hor 1,0. By Fourier decomposition, we have the splitting

$$
L^{2}(P)=\bigoplus_{k \in \mathbb{Z}}\left\{f \in L^{2}(P) \mid \forall \theta \in \mathbb{T}, R_{\theta}^{*} f=\exp (\mathrm{i} k \theta) f\right\}
$$

To be more precise, $\left(R_{\theta}^{*}\right)_{\theta \in \mathbb{T}}$ is a family of commuting self-adjoint operators acting on $L^{2}(P)$, each R_{θ}^{*} has discrete spectrum $(\exp (\mathrm{i} k \theta))_{k \in \mathbb{Z}}$, therefore they all have the same eigenspaces, and $L^{2}(P)$ splits into the direct sum of these eigenspaces. Now, using the above lemma, this yields a unitary isomorphism

$$
L^{2}(P) \simeq \bigoplus_{k \in \mathbb{Z}} L^{2}\left(M, L^{k}\right)
$$

Since Π commutes with every $R_{\theta}^{*}, \theta \in \mathbb{T}$, we also obtain the unitary equivalence

$$
\mathcal{H}(P) \simeq \bigoplus_{k \in \mathbb{Z}} H^{0}\left(M, L^{k}\right)=\bigoplus_{k \in \mathbb{Z}} \mathcal{H}_{k}=\bigoplus_{k \geq 0} \mathcal{H}_{k}
$$

where the last equality comes from Proposition 4.2.1, and Π_{k} corresponds to the Fourier coefficient at order k of Π, that is its restriction to the space $L^{2}\left(M, L^{k}\right)$.

One can use this approach to derive another proof of Theorem 7.2.1, in a way that we quickly describe now. In their seminal article [34], Boutet de Monvel and Sjöstrand obtained a precise description of the Schwartz kernel of this projector,
that we describe now. Let $\phi \in \mathcal{C}^{\infty}(Y \times Y)$ be such that

$$
\phi(y, y)=-\mathrm{i} \eta, \quad \phi(x, y)=-\overline{\phi(y, x)}, \quad \mathcal{L}_{\bar{Z}_{\ell}} \phi \equiv \mathcal{L}_{Z_{r}} \phi \equiv 0 \bmod \mathcal{I}^{\infty}\left(\operatorname{diag}\left(Y^{2}\right)\right)
$$

for every holomorphic vector field Z, where Z_{ℓ} (respectively Z_{r}) means acting on the left (respectively right) variable, and $\mathcal{I}^{\infty}\left(\operatorname{diag}\left(Y^{2}\right)\right)$ is the set of functions vanishing to infinite order along the diagonal of Y^{2}. It is known that such a function ϕ exists and is unique up to a function vanishing to infinite order along the diagonal of Y^{2}.

Define $\varphi \in \mathcal{C}^{\infty}(\partial D \times \partial D)$ as the restriction of ϕ to $\partial D \times \partial D$. Then d φ does not vanish on $\operatorname{diag}(\partial D \times \partial D)$, whereas $\mathrm{d}(\Im \varphi)$ vanishes on $\operatorname{diag}(\partial D \times \partial D)$ and has negative Hessian with kernel $\operatorname{diag}(T \partial D \times T \partial D)$. Thus we may assume, by modifying φ outside a neighbourhood of $\operatorname{diag}(\partial D \times \partial D)$ if necessary, that $\Im \varphi\left(u_{\ell}, u_{r}\right)<0$ if $u_{\ell} \neq u_{r}$.

Theorem A.3.3. ([34, Theorem 1.5]) The Schwartz kernel of the Szegő projector Π satisfies

$$
\Pi\left(u_{\ell}, u_{r}\right)=\int_{\mathbb{R}^{+}} \exp \left(i \tau \varphi\left(u_{\ell}, u_{r}\right)\right) s\left(u_{\ell}, u_{r}, \tau\right) d \tau+f\left(u_{\ell}, u_{r}\right)
$$

where $f \in \mathcal{C}^{\infty}(\partial D \times \partial D)$ and $s \in S^{n}\left(\partial D \times \partial D \times \mathbb{R}^{+}\right)$is a classical symbol having the asymptotic expansion

$$
s\left(u_{\ell}, u_{r}, \tau\right) \sim \sum_{j \geq 0} \tau^{n-j} s_{j}\left(u_{\ell}, u_{r}\right)
$$

Theorem 7.2.1 can be inferred from this result, the idea being that one can deduce the asymptotics of Π_{k} when k goes to infinity from the description of the Schwartz kernel of Π, in a way which is similar to the deduction of the behaviour of the Fourier coefficients of a function at $\pm \infty$ from the regularity of this function. For a detailed proof using this approach, one can, for example, look at Section 3.3 in [14].

References

1. Andersen, J.E., Blaavand, J.L.: Asymptotics of Toeplitz operators and applications in TQFT. In: M. Schlichenmaier, A. Sergeev, O. Sheinman (eds.) Geometry and Quantization, Trav. Math., vol. 19, pp. 167-201. Univ. of Luxembourg, Luxembourg (2011)
2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14, 187-214 (1961)
3. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm. Pure Appl. Math. 20, 1-101 (1967)
4. Barron, T., Ma, X., Marinescu, G., Pinsonnault, M.: Semi-classical properties of BerezinToeplitz operators with \mathcal{C}^{k}-symbol. J. Math. Phys. 55(4), 042108, 25 pp. (2014). DOI https:// doi.org/10.1063/1.4870869
5. Berezin, F.A.: General concept of quantization. Comm. Math. Phys. 40, 153-174 (1975)
6. Berman, R., Berndtsson, B., Sjöstrand, J.: A direct approach to Bergman kernel asymptotics for positive line bundles. Ark. Mat. 46(2), 197-217 (2008). https://doi.org/10.1007/s11512-008-0077-x
7. Bloch, A., Golse, F., Paul, T., Uribe, A.: Dispersionless Toda and Toeplitz operators. Duke Math. J. 117(1), 157-196 (2003). https://doi.org/10.1215/S0012-7094-03-11713-5
8. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and $\operatorname{gl}(N), N \rightarrow \infty$ limits. Comm. Math. Phys. 165(2), 281-296 (1994)
9. Borthwick, D., Paul, T., Uribe, A.: Semiclassical spectral estimates for Toeplitz operators. Ann. Inst. Fourier (Grenoble) 48(4), 1189-1229 (1998)
10. Borthwick, D., Uribe, A.: Almost complex structures and geometric quantization. Math. Res. Lett. 3(6), 845-861 (1996). https://doi.org/10.4310/MRL.1996.v3.n6.a12
11. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, Grad. Texts in Math., vol. 82. Springer, New York (1982)
12. Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Modern Birkhäuser Classics. Birkhäuser, Boston, MA (2008). DOI https://doi.org/10.1007/978-0-8176-4731-5
13. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds. II. Trans. Amer. Math. Soc. 337(1), 73-98 (1993). https://doi.org/10.2307/2154310
14. Charles, L.: Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys. 239(12), 1-28 (2003). https://doi.org/10.1007/s00220-003-0882-9
15. Charles, L.: Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators. Comm. Partial Differential Equations 28(9-10), 1527-1566 (2003). https://doi.org/10.1081/PDE120024521
16. Charles, L.: Symbolic calculus for Toeplitz operators with half-form. J. Symplectic Geom. 4(2), 171-198 (2006)
17. Charles, L.: Quantization of compact symplectic manifolds. J. Geom. Anal. 26(4), 2664-2710 (2016). https://doi.org/10.1007/s12220-015-9644-0
18. Charles, L., Marché, J.: Knot state asymptotics. I. AJ conjecture and Abelian representations. Publ. Math., Inst. Hautes Étud. Sci. 121, 279-322 (2015). DOI https://doi.org/10. 1007/s10240-015-0068-y
19. Charles, L., Marché, J.: Knot state asymptotics. II. Witten conjecture and irreducible representations. Publ. Math., Inst. Hautes Étud. Sci. 121, 323-361 (2015). DOI https://doi.org/ 10.1007/s10240-015-0069-x
20. Charles, L., Polterovich, L.: Sharp correspondence principle and quantum measurements. Algebra i Analiz 29(1), 237-278 (2017). St. Petersburg Math. J. 29(1), 177-207 (2018). https:// doi.org/10.1090/spmj/1488
21. Charles, L., Polterovich, L.: Quantum speed limit versus classical displacement energy. Ann. Henri Poincaré 19(4), 1215-1257 (2018). https://doi.org/10.1007/s00023-018-0649-7
22. Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differential Geom. 59(3), 479-522 (2001)
23. Guillemin, V.: Star products on compact pre-quantizable symplectic manifolds. Lett. Math. Phys. 35(1), 85-89 (1995). https://doi.org/10.1007/BF00739157
24. Huybrechts, D.: Complex Geometry. An Introduction. Universitext. Springer, Berlin (2005). DOI https://doi.org/10.1007/b137952
25. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, North-Holland Math. Library, vol. 7. Elsevier, Amsterdam (1973)
26. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., vol. 256. Springer, Berlin (1983). DOI https://doi.org/10.1007/978-3-642-96750-4
27. Karabegov, A.V., Schlichenmaier, M.: Identification of Berezin-Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49-76 (2001). https://doi.org/10.1515/crll.2001.086
28. Kostant, B.: Quantization and unitary representations. I. Prequantization. In: Lectures in Modern Analysis and Applications. III, Lecture Notes in Math., vol. 170, pp. 87-208. Springer, Berlin (1970). Russian transl., Uspehi Mat. Nauk 28(1), 163-225 (1973)
29. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Progr. Math., vol. 254. Birkhäuser, Basel (2007)
30. Ma, X., Marinescu, G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18(2), 565-611 (2008). https://doi.org/10.1007/s12220-008-9022-2
31. Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1-56 (2012). https://doi.org/10.1515/CRELLE. 2011.133
32. Marché, J., Paul, T.: Toeplitz operators in TQFT via skein theory. Trans. Am. Math. Soc. 367(5), 3669-3704 (2015)
33. Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators, Ann. of Math. Stud., vol. 99. Princeton Univ. Press, Princeton, NJ (1981)
34. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. In: J. Camus (ed.) Journées: Équations aux Dérivées Partielles de Rennes (1975), no. 34-35 in Astérisque, pp. 123-164. Soc. Math. France, Paris (1976)
35. Moroianu, A.: Lectures on Kähler Geometry, London Math. Soc. Stud. Texts, vol. 69. Cambridge Univ. Press, Cambridge (2007)
36. Mumford, D.: Tata Lectures on Theta. I. Modern Birkhäuser Classics. Birkhäuser, Boston, MA (2007). DOI https://doi.org/10.1007/978-0-8176-4578-6. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman
37. Polterovich, L.: Quantum unsharpness and symplectic rigidity. Lett. Math. Phys. 102(3), 245-264 (2012). https://doi.org/10.1007/s11005-012-0564-7
38. Polterovich, L.: Symplectic geometry of quantum noise. Comm. Math. Phys. 327(2), 481-519 (2014). https://doi.org/10.1007/s00220-014-1937-9
39. Rawnsley, J., Cahen, M., Gutt, S.: Quantization of Kähler manifolds. I. Geometric interpretation of Berezin's quantization. J. Geom. Phys. 7(1), 45-62 (1990). https://doi.org/10.1016/ 0393-0440(90)90019-Y
40. Rawnsley, J.H.: Coherent states and Kähler manifolds. Quart. J. Math. Oxford Ser. (2) 28(112), 403-415 (1977). DOI https://doi.org/10.1093/qmath/28.4.403
41. Rubinstein, Y.A., Zelditch, S.: The Cauchy problem for the homogeneous Monge-Ampère equation. I. Toeplitz quantization. J. Differential Geom. 90(2), 303-327 (2012)
42. Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by BerezinToeplitz quantization. In: G. Dito, D. Sternheimer (eds.) Conférence Moshé Flato 1999, Vol. II (Dijon, 1999), Math. Phys. Stud., vol. 22, pp. 289-306. Kluwer, Dordrecht (2000)
43. Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys. 2010, 927280, 38 pp. (2010)
44. Shiffman, B., Zelditch, S.: Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544, 181-222 (2002). https://doi.org/10. 1515/crll.2002.023
45. Souriau, J.-M.: Quantification géométrique. Comm. Math. Phys. 1, 374-398 (1966)
46. Tuynman, G.M.: Quantization: Towards a comparison between methods. J. Math. Phys. 28(12), 2829-2840 (1987). https://doi.org/10.1063/1.527681
47. Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford Math. Monogr. Oxford Univ. Press, New York (1992)
48. Zelditch, S.: Index and dynamics of quantized contact transformations. Ann. Inst. Fourier (Grenoble) 47(1), 305-363 (1997)
49. Zelditch, S.: Szegö kernels and a theorem of Tian. Internat. Math. Res. Notices 1998(6), 317-331 (1998). https://doi.org/10.1155/S107379289800021X

Index of Notations

(L, ∇, h) : prequantum line bundle, 37
$\langle\cdot, \cdot\rangle_{k}$: inner product on $\mathcal{H}_{k}, 39$
\because contraction with respect to $h, 65$
\boxtimes : external tensor product, 28
$\|\cdot\|_{k}:$ norm on $\mathcal{H}_{k}, 39$
$\|f, g\|_{p, q}, 56$
$\alpha_{E}, 77$
$B_{E}, 77$
$\mathcal{C}^{\infty}\left(M, L^{k}\right), 39$
$\mathcal{C}^{\infty}(M, T M), 7$
$\operatorname{curv}(\nabla)$: curvature of $\nabla, 31$
Δ : Laplacian, 99
$\Delta_{M}:$ diagonal of $M^{2}, 75$
$E:$ section of $L \boxtimes \bar{L} \rightarrow M \times \bar{M}, 75$
\bar{F} : conjugate of a vector bundle, 65
$\tilde{g}, 77$
$\mathcal{H}_{k}, 39$
$h_{k}, 39$
$\mathcal{I}_{\infty}(Y), 75$
$i_{X} \alpha$: interior product, 7
$\tilde{j}, 77$
j : almost complex structure, 7
$L^{2}\left(M, L^{k}\right), 55$
$L^{k}, 27$
\mathcal{L}_{X} : Lie derivative with respect to $X, 12$
$\bar{M}, 75$
μ : Liouville volume form, 20
$\nabla^{k}, 40$
$\widetilde{\nabla}$: connection on $L \boxtimes \bar{L}, 76$
$\mathcal{O}(-1)$: tautological bundle, 26
$\mathcal{O}(k), 47$
$\Omega^{p}(M), 7$
$\Omega^{p, q}(M), 10$
ω_{FS} : Fubini-Study symplectic form, 20
$\widetilde{w}, 77$
$P_{k}(f)$: Kostant-Souriau operator associated with $f, 97$
$\partial, \bar{\partial}, 13$
$\varphi_{E}, 78$
Π_{k} : Szegő projector, 55
$\Pi_{k}(\cdot, \cdot)$: Bergman kernel, 82
$T^{1,0} M, T^{0,1} M, 8$
$T_{k}(f)$: Berezin-Toeplitz operator associated with $f, 55$
$T_{k}^{\mathrm{c}}(f), 97$
X_{f} : Hamiltonian vector field associated with f, 20
$\xi_{k}^{u}:$ coherent vector at $u, 115$
$Y^{1,0}, Y^{0,1}, 8$

Index

Symbols

(p, q)-form, 10

B

Bargmann space, 45
Bergman kernel, 75

C

Chern
character, 43
class, 28, 37, 38, 43
connection, 34, 36-38, 46, 95
coherent state, 117
compatible
almost complex structure, 16
connection (Hermitian structure), 34
connection (holomorphic structure), 34
correspondence principle, 57, 98

F

Fubini-Study symplectic form, 20, 38, 48, $57,80,84,122$

H

Heisenberg group, 48

K

Kähler
form, 20, 45
manifold, 16, 21, 36, 37,39, 43, 52, 55
metric, $4,16,18,43,77,99,128$
potential, 16, 18, 19, 47, 80

L

lemma
$i \partial \bar{\partial}, 14$
Dolbeault-Grothendieck, 14
global $i \partial \bar{\partial}, 21$
Tuynman's, 99
line bundle, 23
canonical, 43
Hermitian, 34
holomorphic, 25
positive, 43
prequantum, 4, 37-40, 43-46, 48-50, 52, $55,80,84,128$
tautological, 26, 46, 80, 85
trivial, 23

O

operator
Berezin-Toeplitz, 55-57, 98, 115, 119
Kostant-Souriau, 97, 102, 108

P

positive operator-valued measure, 119
prequantizable, 37

R

Rawnsley's function, 121

S

Schur test, 70, 108
Schwartz kernel, 66
spin, 58
strictly pseudoconvex, 4, 128-130

T

theorem
Egorov's, 60, 62
Fubini's, 88
Hartog's, 47
Hirzebruch-Riemann-Roch, 43
Kodaira vanishing, 43
Kodaira's embedding, 121

Montel's, 41
Newlander-Nirenberg, 9
Riesz representation, 17, 115
Whitney extension, 77

V

Veronese embedding, 123

