
Appendix A

The Circle Bundle Point of View

The goal of this appendix is to compare the line bundle version of geometric quanti-
sation and Berezin–Toeplitz operators with the circle bundle version of this theory.
To this effect, we begin by recalling some useful facts about T-principal bundles with
connections. Then, we discuss the Hardy space and the Szegő projector of a strictly
pseudoconvex domain. Finally, we explain how this enters the picture of geometric
quantisation. For this appendix, we assume from the reader a basic knowledge of
Lie groups and their representations.

A.1 T-Principal Bundles and Connections

Let G be a Lie group and let X be a manifold.

Definition A.1.1. A G-principal bundle over X (or principal bundle over X with
structure group G) is the data of a manifold P (the total space) and a smooth
projection π : P → X together with an action of G on P such that

(1) G acts freely and transitively on P on the right: (p, g) ∈ P ×G �→ pg ∈ P ,
(2) X is the quotient of P by the equivalence relation induced by this action, and π

is the canonical projection,
(3) P is locally trivial in the sense that each point x ∈ X has a neighbourhood U

such that there exists a diffeomorphism

ϕ : π−1(U) → U ×G

of the form ϕ(p) =
(
π(p), ψ(p)

)
, where the map ψ : π−1(U) → G is such that

ψ(pg) = ψ(p)g for every p ∈ π−1(U) and g ∈ G.

Let P → X be a principal bundle with structure group G, and let φ : G → GL(V )
be a representation of G on some vector space V . There is a free action of G on
P × V on the right:
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126 A The Circle Bundle Point of View

(p, v, g) ∈ P × V ×G �→ (p, g)v :=
(
pg, φ(g−1)v

) ∈ P × V.

This action induces an equivalence relation on P × V ; by taking the quotient, we
obtain a vector bundle (P × V )/G → P/G = X whose fibres (G × V )/G are
isomorphic to V .

Definition A.1.2. We denote by P ×φ V → X the vector bundle (P ×V )/G → X,
and we call it the vector bundle associated with the G-principal bundle P → X and
the representation φ.

T-Principal Bundles

Let P → X be a principal bundle with structure group T = R/2πZ and projection
π. The action of θ ∈ T will be denoted by

(p, θ) ∈ P × T �→ Rθ(p) ∈ P.

To this action is associated the vector field ∂θ of P defined as

∀p ∈ P ∂θ(p) =
d

dt

∣
∣
∣
∣
t=0

Rt(p)

whose flow at time t is equal to Rt. The elements of ker(dpπ) = span
(
∂θ(p)

)
are

called the vertical tangent vectors.

Definition A.1.3. A connection on P → X is the data of a one-form α ∈ Ω1(P )
which is T-invariant (R∗

θα = α for every θ ∈ T) and satisfies i∂θ
α = 1.

A connection α ∈ Ω1(P ) induces a splitting

TpP = ker(αp)⊕ span
(
∂θ(p)

)
= ker(αp)⊕ ker(dpπ).

The elements of the hyperplane ker(αp) of TpP are called the horizontal tangent
vectors. Since α is T-invariant, the distribution kerα also is, and the data of a
connection is equivalent to the data of a T-invariant subbundle E of TP such that
TP = E⊕ker(dπ). By construction, the restriction of dpπ to the horizontal subspace
at p is bijective. Thus, given a vector field Y on X, there exists a unique vector field
Y hor on P which is horizontal and satisfies dπ(Y hor) = Y ; it is called the horizontal
lift of Y .

The connections of the trivial T-principal bundle X ×T are the one-forms of the
type β + dθ, where β ∈ Ω1(X) and dθ is the usual 1-form of T.

T-Principal Bundles and Hermitian Line Bundles

Let L → X be a Hermitian complex line bundle, and let h( · , ·) denote its Hermitian
form. Let us consider the subbundle of L consisting of elements of norm 1:
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P = {u ∈ L | h(u, u) = 1}.

One readily checks that P is a T-principal bundle over X, with T-action given by
Rθ(u) = exp(iθ)u. Moreover, L is the vector bundle associated with P and the
representation

θ ∈ T �→ (z �→ exp(−iθ)z) ∈ GL(C)

of T. There is a natural isomorphism of C∞(X)-modules

φ : C∞(X,L) → {f ∈ C∞(P ) |R∗
θf = exp(−iθ)f}, s �→ f = φ(s)

where, for u ∈ P , f(u) is the unique complex number such that

s
(
π(u)

)
= f(u)u

where π : P → X is the canonical projection. Given any connection α ∈ Ω1(P ) on
P , we consider the connection∇ on L such that the covariant derivative with respect
to a vector field corresponds to the Lie derivative with respect to its horizontal lift:

∀Y ∈ C∞(X,TX), ∀s ∈ C∞(X,L) φ(∇Y s) = LY hor

(
φ(s)

)
.

This map ∇ is well-defined because φ is an isomorphism, and it satisfies the Leibniz
rule because the Lie derivative does and φ−1 is C∞(X)-linear.

Exercise A.1.4. Carefully check all the above statements.

Lemma A.1.5. The map sending α to ∇ is a bijection from the set of connections
on P to the set of connections on L.

Proof. Let us work with local trivialisations. Let U ⊂ X be an open subset endowed
with a unitary frame s ∈ C∞(U,L). We get a local trivialisation of P over U ,

ϕ : P|U → U × T, u �→ (π(u), θ)

where θ is the unique element of T such that s
(
π(u)

)
= exp(iθ)u. Now, let us

identify C∞(U,L) with C∞(U) by sending the section fs to f , and C∞(P|U ) with
C∞(U × T) via ϕ. Then φ(f) = g with

g(x, θ) = f(x) exp(−iθ).

Using these identifications, α = β + dθ for some β ∈ Ω1(U). Therefore, given some
vector field Y on U , its horizontal lift is given by Y hor = Y − β(Y )∂θ, hence

(LY hor g)(x, θ) =

(
dxg(Y )− β(Y )

∂g

∂θ

)
(x, θ) = (LY f + iβ(Y )f)(x) exp(iθ)

Consequently,
∇(fs) = (df + iβ)⊗ s

so ∇ is uniquely determined by α. �
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A.2 The Szegő Projector of a Strictly Pseudoconvex Domain

Let Y be a complex manifold of complex dimension n+1. Let D ⊂ Y be a domain
(connected open subset) of Y with smooth compact boundary, defined as

D = {y ∈ Y | η(y) < 0}

with η : Y → R smooth and such that dη(y) 
= 0 whenever y belongs to ∂D. Let
H be the complex subbundle of T (∂D) ⊗ C consisting of the holomorphic tangent
vectors of Y which are tangent to the boundary of D; it has complex dimension n.
The Levi form of D is the restriction to H of the quadratic form ∂∂̄η.

Definition A.2.1. We say thatD is strictly pseudoconvex if its Levi form is positive
definite at every point of ∂D.

Note that this implies that the restriction α of −i∂η to ∂D is a contact form on
∂D. Thus we get a volume form μ = α ∧ (dα)n on ∂D, and we can consider the
Hilbert space L2(∂D) with respect to μ. The subspace

H(D) = {f ∈ L2(∂D) | ∀Z ∈ C∞(∂D,H)LZ f = 0}

is called the Hardy space of D. The Szegő projector of D is the orthogonal projector
Π : L2(∂D) → H(D).

A.3 Application to Geometric Quantisation

Coming back to our problem, where M is a compact Kähler manifold and L → M
is a prequantum line bundle, let us introduce the T-principal bundle P → M which
consists of unit norm elements (with respect to the norm induced by h) of the line
bundle L. It is such that for every integer k, we have the line bundle isomorphism
Lk � P ×sk C where sk : T → GL(C) is the representation given by

sk(θ) · v = exp(−ikθ)v

We can embed P into L−1 � P ×s−1
C via

ι : P → P ×s−1
C, ι(p) = [p, 1]

where the square brackets stand for equivalence class. The connection on L−1, that
we still denote by ∇, induces a connection one-form α ∈ Ω1(P ). Let Hor1,0 be the
subbundle of TP ⊗C consisting of the horizontal lifts of the holomorphic vectors of
TM ⊗ C. Let

ρ : L−1 → R, u �→ ‖u‖2

and let D = {u ∈ L−1 | ρ(u) < 1}.
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Proposition A.3.1. D is a strictly pseudoconvex domain of L−1 and ∂D = ι(P ).
The bundle H of holomorphic vectors of L−1 that are tangent to ι(P ) is ι∗ Hor1,0.
Moreover, ι∗∂ log ρ = iα.

Proof. We begin by proving the second assertion. Let us use some local coordinates.
Let U ⊂ M be an open subset such that P|U � U × T, and let us use coordinates
(x, θ) on U ×T. Then α = β +dθ for some β ∈ Ω1(U). Let s−1 be the local section
of L−1 → U defined by

s−1(x) = [(x, 0), 1] ∈ (U × T)×s−1 C � L−1
|U .

Then ∇s−1 = iβ ⊗ s−1. We pick a function φ ∈ C∞(U) such that

∂̄φ+ iβ(0,1) = 0; (A.1)

we know that such a function exists (taking a smaller U if necessary) thanks to the
Dolbeault–Grothendieck lemma, since dβ is a (1, 1)-form. Then

∇(exp(φ)s−1) = exp(φ)(∂φ+ ∂̄φ+ iβ)⊗ s−1 = exp(φ)
(
∂φ+ iβ(1,0)

)⊗ s−1

hence exp(φ)s−1 is a holomorphic section. Let w be the complex linear coordinate
of L−1 such that w(exp(φ)s−1) = 1, and let (zj)1≤j≤n be a system of complex
coordinates on U . In these coordinates, the maps ι and ρ read

ι : U × T → U × C, (z1, . . . , zn, θ) �→
(
z1, . . . , zn, w = exp

(
iθ − φ(z)

))

and
ρ : U × C → R, (z1, . . . , zn, w) �→ |w|2 exp(φ(z) + φ̄(z)

)
.

Let j ∈ �1, n�; the horizontal lift of ∂zj is

∂hor
zj = ∂zj − β(∂zj )∂θ

We compute

β(∂zj ) = β(1,0)(∂zj ) = −i
∂φ̄

∂zj
,

the last equality coming from the fact that ∂φ̄− iβ(1,0) = 0 because β is real-valued
and satisfies (A.1). Hence

∂hor
zj = ∂zj + i

∂φ̄

∂zj
∂θ.

Therefore, its pushforward by ι satisfies

ι∗
(
∂hor
zj

)
= dzj

(
∂zj + i

∂φ̄

∂zj
∂θ

)
∂zj + dw

(
∂zj + i

∂φ̄

∂zj
∂θ

)
∂w,

which yields
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ι∗
(
∂hor
zj

)
= ∂zj + dw

(
∂zj + i

∂φ̄

∂zj
∂θ

)
∂w.

Since dw = w(idθ − dφ), we finally obtain that

ι∗
(
∂hor
zj

)
= ∂zj −

∂(φ+ φ̄)

∂zj
∂w.

This implies that ι∗ Hor1,0 is a subbundle of the bundle H of holomorphic vectors
of L−1 which are tangent to ι(P ); since both bundles have complex dimension n,
this means that they are equal.

Let us now prove the last claim of the proposition. We have that

∂ρ = exp
(
φ+ φ̄

)(
w dw + |w|2∂(φ+ φ̄

))
,

hence

∂(log ρ) =
dw

w
+ ∂

(
φ+ φ̄

)
.

Consequently,

ι∗∂(log ρ) = idθ − dφ+ ∂
(
φ+ φ̄

)
= idθ − ∂̄φ+ ∂φ̄.

Remembering (A.1) and the conjugate equality, we finally obtain that

ι∗∂(log ρ) = i(dθ + β) = iα.

It remains to show that D is strictly pseudoconvex. Its Levi form is equal to the
restriction of ι∗(∂∂̄ log ρ) to H = ι∗ Hor1,0. But

ι∗(∂∂̄ log ρ) = −ι∗(∂̄∂ log ρ) = −ι∗(d∂̄ log ρ) = − dι∗(∂ log ρ) = −idα.

Since −idα corresponds to the curvature of the connection on L over U , we have
that

−idα
(
∂hor
zj , ∂hor

z̄�

)
= −iω(∂zj , ∂z̄�) > 0,

which concludes the proof. �

As a consequence of this result, we construct the Hilbert space L2(P ) by using
the volume form μP = (1/(2πn!))α ∧ (dα)n, the Hardy space

H(P ) = {f ∈ L2(P ) | ∀Z ∈ C∞(P,H),LZ f = 0} ⊂ L2(P )

as in the previous section and the Szegő projector Π : L2(P ) → H(P ).
Since Lk � P ×sk C, we have an identification

C∞(M,Lk) → {f ∈ C∞(P ) |R∗
θf = exp(ikθ)f}
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which sends s ∈ C∞(M,Lk) to f ∈ C∞(P ), where, for p ∈ P , f(p) is the unique
complex number such that s

(
π(p)

)
= f(p)p.

Lemma A.3.2. This identification is compatible with the scalar products on C∞(P )
and C∞(M,Lk) (i.e., it defines an isometry).

Proof. Let s, t ∈ C∞(M,Lk) and let f, g ∈ C∞(P ) be the corresponding functions.
Observe that for p ∈ P ,

hk

(
s
(
π(p)

)
, t
(
π(p)

))
= f(p)ḡ(p)

since h(p, p) = 1. Therefore, we have that

〈f, g〉P =

∫

P

fḡ μP =

∫

P

π∗(hk(s, t)
)
μP .

Since α ∧ (dα)n = dθ ∧ π∗ωn, we deduce from this equality that

〈f, g〉P =

∫

M

hk(s, t)μ = 〈s, t〉k,

which was to be proved. �
Under this identification, the covariant derivative ∇Xs corresponds to the Lie

derivative LXhor f ; hence, s is holomorphic if and only if f belongs to H(P ), since,
as we saw earlier, H = ι∗ Hor1,0. By Fourier decomposition, we have the splitting

L2(P ) =
⊕

k∈Z

{f ∈ L2(P ) | ∀θ ∈ T, R∗
θf = exp(ikθ)f}.

To be more precise, (R∗
θ)θ∈T is a family of commuting self-adjoint operators acting

on L2(P ), each R∗
θ has discrete spectrum

(
exp(ikθ)

)
k∈Z

, therefore they all have the

same eigenspaces, and L2(P ) splits into the direct sum of these eigenspaces. Now,
using the above lemma, this yields a unitary isomorphism

L2(P ) �
⊕

k∈Z

L2(M,Lk).

Since Π commutes with every R∗
θ , θ ∈ T, we also obtain the unitary equivalence

H(P ) �
⊕

k∈Z

H0(M,Lk) =
⊕

k∈Z

Hk =
⊕

k≥0

Hk,

where the last equality comes from Proposition 4.2.1, and Πk corresponds to the
Fourier coefficient at order k of Π, that is its restriction to the space L2(M,Lk).

One can use this approach to derive another proof of Theorem 7.2.1, in a way
that we quickly describe now. In their seminal article [34], Boutet de Monvel and
Sjöstrand obtained a precise description of the Schwartz kernel of this projector,

https://doi.org/_4
https://doi.org/_7
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that we describe now. Let φ ∈ C∞(Y × Y ) be such that

φ(y, y) = −iη, φ(x, y) = −φ(y, x), LZ�
φ ≡ LZr

φ ≡ 0 mod I∞(
diag(Y 2)

)

for every holomorphic vector field Z, where Z� (respectively Zr) means acting on the
left (respectively right) variable, and I∞(

diag(Y 2)
)
is the set of functions vanishing

to infinite order along the diagonal of Y 2. It is known that such a function φ exists
and is unique up to a function vanishing to infinite order along the diagonal of Y 2.

Define ϕ ∈ C∞(∂D × ∂D) as the restriction of φ to ∂D × ∂D. Then dϕ does
not vanish on diag(∂D× ∂D), whereas d(�ϕ) vanishes on diag(∂D× ∂D) and has
negative Hessian with kernel diag(T∂D×T∂D). Thus we may assume, by modifying
ϕ outside a neighbourhood of diag(∂D × ∂D) if necessary, that �ϕ(u�, ur) < 0 if
u� 
= ur.

Theorem A.3.3. ([34, Theorem 1.5]) The Schwartz kernel of the Szegő projector
Π satisfies

Π(u�, ur) =

∫

R+

exp
(
iτϕ(u�, ur)

)
s(u�, ur, τ) dτ + f(u�, ur)

where f ∈ C∞(∂D × ∂D) and s ∈ Sn(∂D × ∂D × R
+) is a classical symbol having

the asymptotic expansion

s(u�, ur, τ) ∼
∑

j≥0

τn−jsj(u�, ur).

Theorem 7.2.1 can be inferred from this result, the idea being that one can deduce
the asymptotics of Πk when k goes to infinity from the description of the Schwartz
kernel of Π, in a way which is similar to the deduction of the behaviour of the
Fourier coefficients of a function at ±∞ from the regularity of this function. For a
detailed proof using this approach, one can, for example, look at Section 3.3 in [14].

https://doi.org/_7
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Astérisque, pp. 123–164. Soc. Math. France, Paris (1976)

35. Moroianu, A.: Lectures on Kähler Geometry, London Math. Soc. Stud. Texts, vol. 69. Cam-
bridge Univ. Press, Cambridge (2007)

36. Mumford, D.: Tata Lectures on Theta. I. Modern Birkhäuser Classics. Birkhäuser, Boston,
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(L,∇, h): prequantum line bundle, 37
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‖ · ‖k: norm on Hk, 39
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αE , 77
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C∞(M,Lk), 39
C∞(M,TM), 7
curv(∇): curvature of ∇, 31

Δ: Laplacian, 99
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E: section of L � L̄ → M ×M , 75

F : conjugate of a vector bundle, 65

g̃, 77

Hk, 39
hk, 39

I∞(Y ), 75
iXα: interior product, 7

j̃, 77
j: almost complex structure, 7

L2(M,Lk), 55

Lk, 27

LX : Lie derivative with respect to X, 12

M , 75

μ: Liouville volume form, 20

∇k, 40
˜∇: connection on L � L̄, 76

O(−1): tautological bundle, 26

O(k), 47

Ωp(M), 7

Ωp,q(M), 10

ωFS: Fubini–Study symplectic form, 20
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∂, ∂̄, 13

ϕE , 78

Πk: Szegő projector, 55

Πk( · , · ): Bergman kernel, 82

T 1,0M,T 0,1M , 8

Tk(f): Berezin–Toeplitz operator associated
with f , 55

T c
k(f), 97

Xf : Hamiltonian vector field associated with
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ξuk : coherent vector at u, 115

Y 1,0, Y 0,1, 8

© Springer International Publishing AG, part of Springer Nature 2018

Y. Le Floch, A Brief Introduction to Berezin–Toeplitz Operators
on Compact Kähler Manifolds, CRM Short Courses,
https://doi.org/10.1007/978-3-319-94682-5

137



Index

Symbols

(p, q)-form, 10

B

Bargmann space, 45

Bergman kernel, 75

C

Chern

character, 43
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correspondence principle, 57, 98

F

Fubini–Study symplectic form, 20, 38, 48,
57, 80, 84, 122

H
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