
Appendix A
The Dispersion Relation

The dispersion relation can be derived by calculating the contour integral of Fig. A.1.
Using the Cauchy formula for the function Π(s) (which contains a cut in the positive
region of the real axis and is analytic in the rest of the complex plane of s), we can
obtain

Π(q2) = 1

2π i

∮
C

ds
Π(s)

s − q2

= 1

2π i

∮
|s|=R

ds
Π(s)

s − q2 + 1

2π i

∫ R

0
ds

Π(s + iε) − Π(s − iε)

s − q2 , (A.1)

where R is the radius of the outer circle in Fig. A.1. If R is taken to infinity, the first
integral in Eq. (A.1) vanishes if Π(q2) decreases sufficiently fast at |q2| ∼ R → ∞.
If this is not the case, subtraction terms have to be considered, as will be discussed
below. The second integral in Eq. (A.1) can be simplified with the help of the Schwarz
reflection principle (Morse and Feshbach 1953; Arfken 1970):

Π(s + iε) − Π(s − iε) = 2iImΠ(s + iε). (A.2)

Let us examine this relation in detail. For this, we consider a complex function
f (z) (representing Π(s)) which is real on the real axis below a certain threshold
point xth, but possesses an imaginary part above xth. Moreover, it is analytic and
continuous on the upper half of the imaginary plane (we call this region D1) except
the region on the real axis above xth. Now, we define the function g(z), defined in the
lower half of the imaginary plane (D2) such that g(z) = f (z) (Here, the bar stands
for complex conjugation). It can be easily shown that the real and imaginary parts
of g(z) satisfy the Cauchy-Riemann conditions, which means that it is an analytic
function in D2. Furthermore, g(z) equals f (z) on the real axis below xth, because
f (z) is real there. Now, from the theory of analytic continuation of analytic functions,
one can proof the following theorem (Morse and Feshbach 1953):
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156 Appendix A: The Dispersion Relation

Fig. A.1 The contour inte-
gral C on the complex plane
of the variable s, used for
deriving the dispersion rela-
tion of Eq. (3.2). The wavy
line denotes the non-analytic
cut of Π(s) on the positive
side of the real axis. Note that
here q2 takes a negative value

q2

s

C

If f is analytic in D1 and g in D2, if f equals g along their common boundary A, and if f
and g are continuous along A, then g is the continuation of f in D2 and vice versa.

In our current setting, this theorem immediately leads to the Schwarz reflexion prin-
ciple, which states that f (z) = f (z) and holds for the whole imaginary plane except
non-analytic part on the real axis above xth.

Therefore, for x > xth and ε being an infinitesimal real constant, we have

f (x − iε) = f (x + iε)

= f (x + iε) − 2iIm f (x + iε), (A.3)

which corresponds to Eq. (A.2). Thus we have finally obtained the dispersion relation
of Eq. (3.2).

Next, let us consider the case, in which the integral Eq. (3.2) diverges. This problem
can be fixed by using subtracted correlators as shown below. For instance, if the
divergence is logarithmic, it suffices to employ the singly subtracted correlator:

Π̃(q2) ≡ Π(q2) − Π(0)

= q2

π

∫ ∞

0
ds

ImΠ(s + iε)

s(s − q2)
.

(A.4)

In this way, one power of s can be included into the denominator, therefore making
the integral convergent. This procedure can be repeated arbitrarily many times, by
subtracting more and more terms from the Taylor expansion of Π(q2) around q2 =
0, thus it is possible to cure divergences of any power. We however note, that by
applying the Borel transformation, which contains infinitely many differentiations
of q2, all subtraction terms (which are polynomials in q2) vanish and the integral of
Eq. (3.2) is automatically turned into convergent one. Therefore, as long as the Borel
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transformation is applied, one usually does not have to worry about divergences
and subtraction terms and can work directly with Eq. (3.2), the original form of the
dispersion relation.

http://dx.doi.org/10.1007/978-4-431-54318-3_3


Appendix B
The Fock-Schwinger Gauge

In this appendix, the derivative expansions of the gluonic and quark fields, given in
Eqs. (3.26) and (3.27), are derived. These expressions are valid only in the Fock-
Schwinger gauge (Fock 1937; Schwinger 1954) (sometimes also referred to as the
“fixed point gauge”),

(x − x0)
μ Aa

μ(x) = 0, (B.1)

where we set x0 = 0 in the following. The derivation is based on the discussions
given in Dubovikov and Smilga (1981) and Shifman (1980).

Multiplying Ga
μν , which is defined as

Ga
μν = ∂μ Aa

ν − ∂ν Aa
μ + g fabc Ab

μ Ac
ν (B.2)

by xμ and using Eq. (B.1), we get (with x0 = 0)

xμGa
μν(x) = xμ∂μ Aa

ν(x) + Aa
ν(x). (B.3)

Then, x is replaced by αx after which we integrate by α:

∫ 1

0
dααxμGa

μν(αx) =
∫ 1

0
dαα

d

dα
Aa

ν(αx) +
∫ 1

0
dαAa

ν(αx)

= Aa
ν(x). (B.4)

Here, the first line has been obtained by using

d

dα
Aa

ν(αx) = xμ ∂

∂(αxμ)
Aa

ν(αx) = xμ

α
∂xμ Aa

ν(αx). (B.5)

Taylor expanding Ga
μν(αx) around αx = 0 on the left hand side of Eq. (B.4) and

carrying out the integration of α, we arrive at
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160 Appendix B: The Fock-Schwinger Gauge

Aa
ν(x) = 1

2
xμGa

μν(0) + 1

3
xμxα∂αGa

μν(0) + 1

8
xμxαxβ∂α∂βGa

μν(0) + · · · (B.6)

For obtaining the final result, we have to show that the derivative ∂ can be replaced
by the covariant derivative D in the above equation. The Fock-Schwinger gauge
actually makes this substitution possible, as will be shown below.

The Taylor expansion of Eq. (B.1)

xμ Aa
μ(x) = xμ

[
Aa

μ(0) + xα∂α Aa
μ(0) + 1

2
xαxβ∂α∂β Aa

μ(0) + · · ·
]

= 0, (B.7)

which has to be valid for any value of xμ, leads to the equations

xμ Aa
μ(0) = 0,

xμxα∂α Aa
μ(0) = 0, (B.8)

. . .

As the covariant derivative applied to gluon fields is defined as

Dμ = ∂μ − igT a Aa
μ, (B.9)

where T a are the generators of SU (3) in the adjoint representation and g is the strong
coupling constant, we can derive the following relations:

xα∂αGa
μν(0) = xα DαGa

μν(0),

xαxβ∂α∂βGa
μν(0) = xαxβ∂α DβGa

μν(0) = xαxβ Dα DβGa
μν(0), (B.10)

. . .

This shows that the derivatives can be substituted by the covariant derivatives, giving
us thus the final result:

Aa
μ(x) = 1

2
xνGa

νμ(0) + 1

3
xνxα[DαGνμ(0)]a

+ 1

8
xνxαxβ [Dα DβGνμ(0)]a + · · · (B.11)

Next, we consider the quark fields. For this purpose, we simply Taylor expand the
field q(x) around x = 0, giving

q(x) = q(0) + xμ∂μq(0) + 1

2! xνxμ∂ν∂μq(0) + · · · (B.12)

Now, the relations of Eq. (B.10) are valid also for the covariant derivative living in
the fundamental representation,
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Dμ = ∂μ − ig
λa

2
Aa

μ, (B.13)

in which λa are the Gell-Mann matrices. Therefore, as for the gluonic fields above,
we can simply interchange the derivatives of Eq. (B.12) with the covariant derivative,
leading to the desired result:

q(x) = q(0) + xμ Dμq(0) + 1

2! xνxμ Dν Dμq(0) + · · · (B.14)



Appendix C
The Quark Propagator

To calculate the free quark propagator with no coupling to gluons and no long range
correlations is most simple. It is given in standard textbooks of quantum field theory
(such as Peskin and Schroeder 1995) and we here state only the result:

〈0pert.|T [q(x)q(0)]|0pert.〉 ≡ S0(x) =
∫

d4 pe−i px i

� p − mq

≈
∫

d4 pe−i px
(

i

� p + imq

p2

)
+ O(m2

q) (C.1)

≈ i

2π2

� x
x4 − mq

4π2

1

x2 + O(m2
q)

|0pert.〉 stands for the perturbative vacuum, where all condensates and expectation
values of matter fields vanish. The last line of the above equation gives us the first
two terms of Eq. (3.28).

C.1 Coupling with Gluon Fields

Here, the behavior of the quark propagator SA(x) in an external gluon field is dis-
cussed. Such a propagator satisfies the equation

(i � ∂ + g �A − mq)SA(x) = iδ4(x), (C.2)

and is expanded in powers of the external field Aa
μ(x). Expressed in Feynman dia-

grams, this expansion is shown in Fig. C.1, while mathematically it is given as

SA(x) = S0(x) +
∫

d4 yS0(x − y)ig �A(y)S0(y)

+
∫

d4 yd4zS0(x − y)ig �A(y)S0(y − z)ig �A(z)S0(z) + · · · (C.3)
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(a) (b) (c)

Fig. C.1 The first three diagrams of the external field expansion. a has already been calculated in
Eq.(C.1). Here, we calculate b while c and the other higher order terms are neglected

Switching to the momentum representation and expressing the gluon field with
the first term of Eq. (3.26), we get for the second term (Fig. C.1b):

∫
d4 yS0(x − y)ig �A(y)S0(y)

≈
∫

d4 y
∫

d4 p

(2π)4

∫
d4q

(2π)4 e−i p(x−y)e−iqy i( � p + mq)

p2 − m2
q

igγ μ

×
(

yα

2
Gαμ(0)

)
i( �q + mq)

q2 − m2
q

=
∫

d4 p

(2π)4 e−i px i( � p + mq)

p2 − m2
q

igγ μ

(
i

2
Gαμ(0)

)
∂

∂qα

(
i( �q + mq)

q2 − m2
q

)∣∣∣∣
q=p

= − i

4
gGμν(0)

∫
d4 p

(2π)4 e−i px σμν( � p + mq) + ( � p + mq)σμν

(p2 − m2
q)2 (C.4)

≈ − i

4
gGμν(0)

∫
d4 p

(2π)4 e−i px σμν � p+ � pσμν

p4

− i

2
gmq Gμν(0)σμν

∫
d4 p

(2π)4

1

p4 + O(m2
q)

= − i

32π2 gGμν(0)
σμν � x+ � xσμν

x2

− 1

32π2 gmq Gμν(0)σμν ln

(
− x2Λ2

4
+ 2γE M

)
+ O(m2

q).

This results provides us with terms number three and four of Eq. (3.28).

C.2 Non-Perturbative Contributions

As a next step, we have to consider long range fluctuations of quarks and gluons
in the quark propagator, which are expressed by various condensates such as 〈qq〉,
〈qgσ Gq〉 or 〈αs

π
G2〉.

For this, we make use of Eq. (3.27), substitute it into

http://dx.doi.org/10.1007/978-4-431-54318-3_3
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〈qa
i (x)qb

j (0)〉, (C.5)

and investigate its first few terms one after the other. For making the following
manipulations easier and more tractable, we have here explicitly denoted the color
and spinor indices as a, b and i , j , respectively. Note also that the non-perturbative
components of the quark (and gluon) fields behave as classical fields that satisfy the
equations of motion. Therefore, is valid to omit the time ordering operator T [. . . ].

For the first term, since it is sandwiched between the vacuum, only the scalar and
color-singlet component survives. We can hence write

〈qa
i (0)qb

j (0)〉 = Aδabδi j . (C.6)

Taking the contractions of color and spinor indices on both sides and using the fact
that quarks are Fermions and therefore anti-symmetric, we get

A = − 1

12
〈qq〉 (C.7)

for A.
The second term can be expressed as

xμ
〈[

Dμqi (0)
]a

qb
j (0)

〉
= xμ δab

3
〈Dμqi (0)q j (0)〉, (C.8)

because, like above, only the color-singlet term survives. Then, the Dirac indices i, j
are expanded with the complete set of 1, γ 5, γν, γ

5γν, σνρ , which gives

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = xμ δab

3

(
−δi j

4
〈q(0)Dμq(0)〉 − γ 5

i j

4
〈q(0)γ 5 Dμq(0)〉

− γ ν
i j

4
〈q(0)γν Dμq(0)〉 + (γ 5γ ν)i j

4
〈q(0)γ 5γν Dμq(0)〉

− σ
νρ
i j

4
〈q(0)σνρ Dμq(0)〉

)
. (C.9)

In this equation, only the third term can have the same quantum numbers as the
vacuum and thus all the other terms vanish. Moreover, the scalar component of
γν Dμ can be obtained as gνμ

4 �D, which leads to

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = −xμ δab

48
(γμ)i j 〈q(0) �Dq(0)〉. (C.10)
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The equation of motion �Dq = −imqq is then used to derive the final result:

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = imq

48
( � x)i jδ

ab〈qq〉. (C.11)

Next, we consider the third term of Eq. (3.27). As before, the only the color singlet
part has to be retained and therefore

1

2
xμxν〈[DμDνqi (0)

]a
qb

j (0)〉 = δab

6
xμxν〈DμDνqi (0)q j (0)〉. (C.12)

Then, we do the same as in Eq. (C.9) and expand the Dirac indices. As is readily
understood, only the component proportional to δi j survives because it is the only
one containing a scalar part with positive parity. We thus get

1

2
xμxν〈[DμDνqi (0)

]a
qb

j (0)〉 = −δi jδ
ab

24
xμxν〈q(0)DμDνq(0)〉. (C.13)

Finally, using the fact that the scalar part of DμDν is gμν

4 D2 and the equation D2 =
1
2 gσ Gq − m2

qq, which is easily derived from the equation of motion, the following
result is obtained:

1
2 xμxν

〈[
DμDνqi (0)

]a
qb

j (0)
〉
= − x2

96 δi jδ
ab〈q(0)D2q(0)〉

≈ − x2

192δi jδ
ab〈qgσ Gq〉 + O(m2

q).
(C.14)

The derivation of the fourth term and the fifth term of Eq. (3.27) is more involved,
although the basic techniques are essentially the same. Here, only the results are
stated:

1

6
xμxν xρ

〈
DμDν Dρqa

i (0)qb
j (0)

〉
≈ imq x2

2732 ( � x)i j δ
ab〈qgσ Gq〉 + O(m2

q , g2), (C.15)

1
24 xμxνxρ xσ

〈
DμDν Dρ Dσ qa

i (0)qb
j (0)

〉
≈ −π2x4

2833 δi j δ
ab〈qq〉

〈
αs
π G2

〉
+O(m2

q , g2).
(C.16)

The explicit derivation of Eq. (C.15) can be found in Chap. 6 of Ioffe et al. (2010).
Furthermore, we note that for deriving Eq. (C.16), in addition to the method explained
above, the vacuum saturation approximation has been assumed and the contraction
formula for gluon fields

http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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〈Gk
μνGl

ρσ 〉 = δkl

253
(gμρgνσ − gμσ gνρ)〈G2〉 (C.17)

has been used.
Altogether, the results of this section give the remaining non-perturbative terms

of Eq. (3.28).

http://dx.doi.org/10.1007/978-4-431-54318-3_3


Appendix D
Non-Perturbative Coupling of Quarks
and Gluons

In this appendix, we derive the form of the non-perturbative coupling between quarks
and gluons, given in Eq. (3.30). Our starting point is the following expression,

〈
0|qa

i (x)gGk
μν(0)qb

j (0)|0〉 = 〈
0|qa

i (0)gGk
μν(0)qb

j (0)|0〉
+ xα

〈
0|Dαqa

i (0)gGk
μν(0)qb

j (0)|0〉 + · · · , (D.1)

for which we treat each of the two terms separately.

D.1 The First Term

In contrast to the calculations in the preceding appendix, one here has to build a color
octet from the quarks, which is then contracted with the gluon for constructing an
overall color-singlet operator. Therefore, for the first term, we get

〈0|qa
i (0)gGk

μν(0)qb
j (0)|0〉 = −2

(
λl

2

)ab 〈
0|q j (0)

(
λl

2

)
gGk

μν(0)qi (0)|0
〉

= −1

4

(
λk

2

)ab

〈0|q j (0)gGμν(0)qi (0)|0〉, (D.2)

after which the spinor indices are expanded as in Eq. (C.9). We then obtain

〈
0|qa

i (0)gGk
μν(0)qb

j (0)|0〉 = − (σρσ )i j

32

(
λk

2

)ab 〈
0|q(0)σρσ gGμν(0)q(0)|0〉

= − (σμν)i j

263

(
λk

2

)ab

〈qgσ Gq〉, (D.3)

which is the final result.
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D.2 The Second Term

The second term of Eq. (D.1) can be calculated in the same way, it is however some-
what more complicated. First, we construct a color octet from the quark fields and
combine it with the octet from the gluon, as before:

xα〈0|Dαqa
i (0)gGk

μν(0)qb
j (0)|0〉

= −2

(
λl

2

)ab

xα〈0|q j (0)

(
λl

2

)
gGk

μν(0)Dαqi (0)|0〉 (D.4)

= −1

4

(
λk

2

)ab

xα〈0|q j (0)gGμν(0)Dαqi (0)|0〉.

Next, we expand the spinor indices of the quark fields. Doing this, it is clear that only
the terms with γμ or γ5γμ can survive, because from all other terms it is not possible
to construct a scalar operator. Thus we have

〈0|q j (0)gGμν(0)Dαqi (0)|0〉 = (γ β)i j
4 〈0|q(0)γβgGμν(0)Dαq(0)|0〉

− (γ5γ
β)i j

4 〈0|q(0)γ5γβgGμν(0)Dαq(0)|0〉.
(D.5)

Subsequently, we expand the remaining parts into their possible Lorentz structures.
Parity considerations tell us that the first term can only be proportional to gμνgαβ ,
gμαgνβ or gμβgαν and the second term only to εμναβ , giving

〈0|q(0)γβgGμν(0)Dαq(0)|0〉 = Agμνgαβ + Bgμαgνβ + Cgμβgαν, (D.6)

and
〈0|q(0)γ5γβgGμν(0)Dαq(0)|0〉 = Dεμναβ. (D.7)

Contracting Eq. (D.6) with gμνgαβ , gμαgνβ and gμβgαν , we get three equations,
which lead to

A = 0,

B = − 1

12
〈0|q(0)γ ρgGρσ (0)Dσ q(0)|0〉, (D.8)

C = 1

12
〈0|q(0)γ ρgGρσ (0)Dσ q(0)|0〉.

On the other hand, contracting Eq. (D.7) with εμναβ , we obtain

D = 1

24
〈0|q(0)γ5ε

μναβγβgGμν(0)Dαq(0)|0〉, (D.9)
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which can be rearranged by Eq. (E.21) of Appendix E and the equation of motion for
quarks ( �Dq = −imqq). This gives

D = i

12
〈0|q(0)γ ρgGρσ (0)Dσ q(0)|0〉

+ imq

24
〈0|q(0)gσ G(0)q(0)|0〉. (D.10)

Now, all we need is an expression of 〈0|q(0)γ ρgGρσ (0)Dσ q(0)|0〉 in form of
known condensates. The details of the manipulations necessary for this task are
explained in Chap. 6 of Ioffe et al. (2010) and we here give only the final result:

〈0|q(0)γ ρgGρσ (0)Dσ q(0)|0〉
= − 1

2
〈0|q(0)γ ρ

(
λn

2

)
q(0)g

[
Dσ Gρσ (0)

]n|0〉 (D.11)

− mq

2
〈0|q(0)gσ G(0)q(0)|0〉.

The first term on the right hand side of the above equation can be rewritten using the
equation of motion for gluons. This gives a term proportional to g2, which we neglect
here. If one wants to calculate higher orders of αs , it however has to be retained.

Assembling the results of Eqs. (D.6)–(D.11) we finally get

〈0|q j (0)gGμν(0)Dαqi (0)|0〉 = mq

253

[
(γν)i j gαμ − (γμ)i j gαν

]〈0|qgσ Gq|0〉,
(D.12)

which leads to

xα〈0|Dαqa
i (0)gGk

μν(0)qb
j (0)|0〉

≈ − mq

273

(
λk

2

)ab

[(γν)i j xμ − (γμ)i j xν

]〈0|qgσ Gq|0〉 + O(g2). (D.13)

The spinor part of this result (γνxμ − γμxν) can be further manipulated according to
formula of Eqs. (E.21) and (E.22) in Appendix E as follows

γνxμ − γμxν = −xλ(gνλγμ − gμλγν)

= −xλ(iεμνλργ5γ
ρ − gμνγλ + γμγνγλ)

= − i

2
( � xσμν + σμν � x) + iσμν � x (D.14)

= − i

2
( � xσμν − σμν � x),
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which gives

xα〈0|Dαqa
i (0)gGk

μν(0)qb
j (0)|0〉 ≈ imq

283
( � xσμν − σμν � x)i j

(
λk

2

)ab

〈qgσ Gq〉
+ O(g2). (D.15)

The final form of the non-perturbative coupling of quarks and gluons is then

〈0|qa
i (x)gGk

μν(0)qb
j (0)|0〉 ≈ − (σμν)i j

263

(
λk

2

)ab

〈qgσ Gq〉

+ imq

283
( � xσμν − σμν � x)i j

(
λk

2

)ab

〈qgσ Gq〉 (D.16)

+ O(m2
q , g2),

which corresponds to Eq. (3.30) of the main text.
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Appendix E
Gamma Matrix Algebra

When doing calculations in the QCD sum rule technique, various properties of gamma
matrices are frequently used. A few of the most convenient formulae concerning these
gamma matrices are given in this appendix. Note that we here use the convention
ε0123 = 1 for the totally antisymmetric Levi-Civita tensor.

{γμ, γν} = 2gμν (E.1)

{γμ, γ5} = 0 (E.2)

σμν ≡ i

2
[γμ, γν] (E.3)

γμγν = gμν − iσμν (E.4)

γ5 ≡ iγ 0γ 1γ 2γ 3 (E.5)

C ≡ iγ 2γ 0 (charge conjugation matrix) (E.6)

C = C∗ = −C† = −CT = −C−1 (E.7)

C2 = −1 (E.8)

Cγ5 = γ5C (E.9)

CΓ T C = +Γ for Γ = γμ, σμν, γ5σμν (E.10)

CΓ T C = −Γ for Γ = γ5, γ5γμ, ( � xσμν + σμν � x) (E.11)

γ μγνγμ = −2γν (E.12)

γ μγαγβγμ = 4gαβ (E.13)
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γ μγαγβγγ γμ = −2γγ γβγα (E.14)

σαβσαβ = 12 (E.15)

σαβγ μγ νσαβ = 4γ νγ μ + 8gμν = 16gμν − 4γ μγ ν (E.16)

σαβ(odd number of γ -matrices)σαβ = 0 (E.17)

( � xσαβ + σαβ � x)( � xσαβ + σαβ � x) = 24x2 (E.18)

( � xσαβ + σαβ � x)γ μ( � xσαβ + σαβ � x) = 8(x2γ μ + 2xμ � x) (E.19)

( � xσαβ + σαβ � x)γ μγ ν( � xσαβ + σαβ � x) =
8(4x2gμν − 2xμγ ν � x + 2xνγ μ � x − x2γ μγ ν) (E.20)

εμνλργ ρ = −iγ5(gμνγλ − gμλγν + gνλγμ − γμγνγλ) (E.21)

� xσμν + σμν � x = −2εμναβγ5γ
αxβ (E.22)

σμν = i

2
εμνρλγ5σ

ρλ (E.23)

Tr[γμγν] = 4gμν (E.24)

Tr[γμγνγργλ] = 4(gμνgρλ − gμρgνλ + gμλgνρ) (E.25)

Tr[odd number of γ -matrices] = 0 (E.26)

Tr[γμγνγργσ · · · ] = Tr[· · · γσ γργνγμ] (E.27)

Tr[γ5γμγν] = 0 (E.28)

Tr[γ5γμγνγργσ ] = −4iεμνρσ (E.29)

Tr[γμ � xγν � x] = 8xμxν − 4x2gμν (E.30)

Tr[γμ( � xσρλ + σρλ � x)γν � x] = −8i x2(gρμgλν − gρνgλμ)

+ 8i xμ(xρgλν − xλgρν)

+ 8i xν(xλgρμ − xρgλμ) (E.31)

Tr[σρλγ5 � xγμ] = 4εαρλμxα (E.32)

Tr[σρλ � xγμ] = 4i(gρμxλ − gλμxρ) (E.33)

Tr[σμνσρλ] = 4(gμρgνλ − gμλgνρ) (E.34)

Tr[( � xσμν + σμν � x)( � xσρλ + σρλ � x)] = −16εσμναεσ
ρλβ xαxβ (E.35)
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εσμναεσ
ρλβ = gμρgνλgαβ + gμβgνρgαλ + gμλgνβgαρ

− gνρgμλgαβ − gνβgμρgαλ − gνλgμβgαρ (E.36)

εαβμνε
αβ

ρλ = 2(gμλgνρ − gμρgνλ) (E.37)



Appendix F
The Fourier Transformation

When QCD sum rules of hadrons containing light quarks are considered, one usually
carries out the OPE in coordinate space and Fourier transforms the result back into
momentum space at the end of the calculation. We give in this appendix the necessary
formulae for this task.

F.1 The Standard Case

For the standard Fourier transformation, one can derive (almost) all formulae needed
in practical calculations from

∫
d4xeiqx 1

(x2)n
= i(−1)n 24−2nπ2

Γ (n − 1)Γ (n)
(q2)n−2 ln(−q2) + Pn−2(q

2), (F.1)

which is valid for n ≥ 2. The derivation of this equation can be found in Novikov et
al. (1984). Pm(q2) stands for a polynomial of q2 of order m. The coefficients of this
polynomial are in fact divergent, but as they will in any case vanish when the Borel
transform is applied, we omit them in the following discussion.

Variations of Eq. (F.1) with various tensor structures can be constructed by taking
appropriate derivatives:

∫
d4xeiqx xμxν . . .

(x2)n
=

(
∂

i∂qμ

)(
∂

i∂qν

)
. . .

∫
d4xeiqx 1

(x2)n
. (F.2)

F.2 The “Old Fashioned” Case

Here, we evaluate the Fourier transforms of the various terms occurring in the “old
fashioned” correlator of Eq. (3.53).
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F.2.1 Dimension 0–5 Terms

For the terms appearing at dimensions 0–5, it is most convenient to work in coordinate
space. Therefore, we directly use the expressions of Eq. (3.61) and substitute them
into Eq. (3.53). For the dimension 5 term, this gives

∫
d4xθ(x0)e

iqx i

(x2 − iε)2 =
∫

dx0θ(x0)e
iq0x0

∫
d3x

i

(x2
0 − x2 − iε)2

e−iq·x. (F.3)

First, we calculate the integrals over the spacial angles θ and φ, leading to

2π

|q|
∫

dx0θ(x0)e
iq0x0

∫ ∞

−∞
dr

r

(r − x0 + iε)2(r + x0 − iε)2 ei |q|r , (F.4)

where we have used the definition r ≡ |x|. Next comes the integral over r , which
can be done in a standard way with the help of the Cauchy theorem. We thus obtain

π2
∫

dx0θ(x0)
1

x0 − iε
eix0(q0−|q|). (F.5)

At this point, we can drop |q|, as there is no danger that the limit |q| → 0 leads to a
divergence. Furthermore, we here introduce the Fourier transformed expression for
the Heaviside step function:

θ(x0) = 1

2π i

∫
dk0

1

k0 − iε
eix0k0 . (F.6)

We then get
π

2i

∫
dk0

∫
dx0

1

k0 − iε

1

x0 − iε
eix0(q0+k0). (F.7)

Making use of Eq. (F.6) now for the integral over x0, giving the final result:

π2
∫ ∞

−q0

dk0
1

k0 − iε
= −π2 ln(−q0 − iε) + π2 ln(∞ − iε). (F.8)

Here, we encounter a divergence in the second term, which, however, leads to no
relevant contribution to the imaginary part of the correlator, which is the only quantity
that is needed for the sum rules. We can therefore ignore it and hence have obtained
the result used in Eq. (3.63).

The term of dimension 0, 3 and 4 can be calculated in a similar fashion. The main
difference is that due to the larger powers in the denominator, the poles used in the
Cauchy theorem leading to Eq. (F.5) are of a larger degree, which however does not

http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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introduce any essential new difficulties. We here give only the results:

dim. 0 :
∫

d4xθ(x0)e
iqx � x

(x2 − iε)5
= − π2

293
γ0q5

0 ln(−q0 − iε),

dim. 3 :
∫

d4xθ(x0)e
iqx i

(x2 − iε)3 = π2

8
q2

0 ln(−q0 − iε), (F.9)

dim. 4 :
∫

d4xθ(x0)e
iqx � x

(x2 − iε)3 = −π2

4
γ0q0 ln(−q0 − iε).

We here, as above, have taken the limit |q| → 0. Note, however that in all the above
calculations, this limit can be taken only after the integral over r has been carried
out, as otherwise the factor 1/|q| appearing in Eq. (F.4) can not be properly treated.

F.2.2 Dimension 6–10 Terms

For the terms with dimension larger than 5, the calculation is simpler if one starts
from momentum space. This means that we take the expressions of Eq. (3.61) to
substitute them into Eq. (3.53). In fact, the basic steps of the calculation are already
given in Eqs. (3.54) and (3.55) of the main text and the result of the dimension 6 term
can be directly deduced from these equations by setting m± = 0. For the sake of
illustration, we here show the calculation of one more term, the one of dimension 7.

For getting the result of this term we have to evaluate the following integral:

∫
d4xθ(x0)e

iqx
∫

d4 p

(2π)4 e−i px 1

p2 + iε
. (F.10)

Here, we first employ the expression of Eq. (F.6) and perform the integral over x.
This yields

1

2π i

∫
dk0

1

k0 − iε

1

(k0 + q0)2 − q2 + iε
. (F.11)

For calculating the remaining integral over k0, we note that there are three poles in
the integrand, two in the upper half of the imaginary plane, and one in the lower half.
Closing thus the contour in the lower half of the imaginary plane, we pick up the
residue of this single pole, which originates from the second factor of the integrand.
We then obtain the final result as

1

2

1√
q2 − iε

1

q0 − √
q2 + iε

. (F.12)
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As is clear from this expression, we can at this point not take the limit |q| → 0 as it
would lead to a divergence. This problem is only cured after the integral over q0 is
carried out as shown in Eq. (3.64).

The Fourier transforms of the higher order terms can be calculated analogously
and we here show only the results.

dim. 8 :
∫

d4xθ(x0)e
iqx

∫
d4 p

(2π)4 e−i px � p
(p2 + iε)2

= γ0
1

4

1√
q2 − iε

1

(q0 − √
q2 + iε)2

,

dim. 9 :
∫

d4xθ(x0)e
iqx

∫
d4 p

(2π)4 e−i px 1

(p2 + iε)2

= 1

4

[
1

(
√

q2 − iε)2

1

(q0 − √
q2 + iε)2

− 1

(
√

q2 − iε)3

1

q0 − √
q2 + iε

]
.

(F.13)

Note that the result of the dimension 8 term in principle also contains expressions
proportional to q · γ as long as the |q| → 0 limit is not taken. These however vanish
when the traces of Eq. (3.56) are taken and are therefore of no relevance here.

F.2.3 Evenness (Oddness) of Dimension 6, 8,…(7, 9,…) Terms

In this section, we proof the statement made in the main text, that the imaginary parts
of the terms corresponding to dimensions 6, 8, . . . (7, 9, . . .) in Eq. (3.63) are even
(odd) functions of q0, if one takes the limit |q| → 0.

First, by following the same steps that lead from Eq. (F.10) to Eq. (F.11), and setting
|q| = 0, we notice that all terms appearing at dimensions 6, 8, . . . can generally be
written down as

1

2π i

∫
dk0

1

k0 − iε

k0 + q0

[(k0 + q0)2 + iε]n
≡ F1(q0)

= 1

2π i

∫
dk0

1

k0 − iε

k0 + q0

(k0 + q0 + iε)n(k0 + q0 − iε)n
. (n = 1, 2, . . . ) (F.14)

Here, we are ignoring any proportional real constant, including γ0. Similarly, for
dimensions 7, 9, . . . , we get

1
2π i

∫
dk0

1

k0 − iε

1

[(k0 + q0)2 + iε]n
≡ F2(q0)

= 1
2π i

∫
dk0

1

k0 − iε

1

(k0 + q0 + iε)n(k0 + q0 − iε)n
. (n = 1, 2, . . . )

(F.15)
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Next, we take the imaginary parts and, after some simple manipulations, get for
F1(q0)

ImF1(q0) = 1

2i

[
F1(q0) − F1(q0)

]

= − 1

4π

∫
dk0

( 1

k0 − iε
+ 1

k0 − iε

) [
k0 + q0

(k0 + q0 + iε)n(k0 + q0 − iε)n
(F.16)

− −k0 + q0

(−k0 + q0 + iε)n(−k0 + q0 − iε)n

]
,

while the result for F2(q0) is

ImF2(q0) = 1

2i

[
F2(q0) − F2(q0)

]

= − 1

4π

∫
dk0

( 1

k0 − iε

) [
1

(k0 + q0 + iε)n(k0 + q0 − iε)n
(F.17)

− 1

(−k0 + q0 + iε)n(−k0 + q0 − iε)n

]
.

Having the above equations at hand, it is now a trivial matter to show that

ImF1(−q0) = ImF1(q0), (F.18)

and
ImF2(−q0) = −ImF2(q0), (F.19)

which proofs our statement made in the main text, that the imaginary parts of the
terms of dimensions 6, 8, . . . (7, 9, . . .) in the OPE of the “old fashioned” correlator
are even (odd) functions of q0 in the limit |q| → 0.



Appendix G
Derivation of the Shannon-Jaynes Entropy

In this appendix, we will provide two derivations for the Shannon-Jaynes entropy,
given in Eq. (4.7), the first one making use of the law of large numbers, the second
one being an axiomatic construction based on locality, system independence and
scaling. We will mainly follow the explanations given in Asakawa et al. (2001).

G.1 Proof Based on the Law of Large Numbers

The proof of the Shannon-Jaynes entropy can be given by the so-called “monkey
argument”, which basically assumes that the probability of the spectral function
ρ(ω) follows a certain Poisson distribution, as will be explained below.

What we need to derive is the probability of ρ(ω) to be in a specific region V of
its allowed phase space. Formally, this probability can be denoted as

P(ρ ∈ V ) = 1

Z(α)

∫
V
[dρ]W (αS(ρ)), (G.1)

where Z(α) is simply a normalization constant, while α is just an arbitrary parameter,
whose significance will be discussed in the main text. Furthermore, S(ρ) is the
entropy that we want to derive here. Also note that, as P(ρ ∈ V ) should have
the maximum value where S(ρ) is largest, the function W should be a monotone
increasing function.

According to the monkey argument, we now divide the function ρ(ω) into N
ω-regions of the same size and consider a monkey that throws M balls into them.
The throwing process is not completely arbitrary, but is assumed to follow a certain
pattern. Thus, each region has a probability pi (1 ≤ i ≤ N ) to receive a ball, leading
to an expectation value for the number of balls of λi = Mpi . Furthermore, we denote
the actual number of balls that reaches a specific region as ni . From probability theory,
we know that if we take M to be very large and keep λi fixed, the probability of ni to
have a certain value will behave according to a Poisson distribution. Therefore, the
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probability for a certain combination of n = (n1, n2, . . . , nN ) to take place, can be
written down as

P(n) =
N∏

i=1

λ
ni
i e−λi

ni ! . (G.2)

Here, the components of n are integers, and hence can not yet be considered to be a
useful parametrization of the smooth function ρ(ω). We thus introduce a parameter
q, with which we can make n proportional to the function ρ(ω):

ρi = qni , (G.3)

where ρi stands for the value of ρ(ω) in the ith region of ω. Similarly, we can define
the default model as

mi = qλi . (G.4)

We are now in a position to explicitly evaluate the probability of Eq. (G.1) as
follows:

P(ρ ∈ V ) = ∑
n∈V P(n) � 1

q N

∏N
i=1

∫
V dρi

λ
ni
i e−λi

ni !
� 1

(2πq)N/2

∫
V

∏N
i=1

ρi√
ρi

eS(ρ)/q ,
(G.5)

where we have used the Stirling approximation n! � √
2πnen log n−n in the last line.

S(ρ) is given as

S(ρ) =
N∑

i=1

[
ρi − mi − ρi log

(
ρi/mi

)]
, (G.6)

which is equivalent to Eq. (4.7) of the main text. Furthermore, it is seen from
Eqs. (G.1) and (G.5) that q = 1/α and that the measure [dρ] and the normaliza-
tion constant Z(α) can be expressed as

[dρ] =
N∏

i=1

ρi√
ρi

, Z(α) =
(

2π

α

)N/2

. (G.7)

As a last point, we also observe that the function W of Eq. (G.1) is a simple expo-
nential and therefore indeed a monotone increasing function as it should be.

G.2 Proof Based on an Axiomatic Construction

For illustration, we here give another proof for the Shannon-Jaynes entropy, which
is based on the four axioms of locality, coordinate invariance, system independence
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and scaling. This proof is less intuitive than the one given in the last section, it is,
however, in some sense, more general, as it does not rely on the assumption of the
Poisson distribution used in Eq. (G.2).

As in the last section, our task is to define a real functional, which satisfies the
following condition:

If ρ1 is a more probable function than ρ2, then: S(ρ1) > S(ρ2). (G.8)

Thus, the most probable of all functions can be found by looking for a stationary
point in S( f ), which follows from the equation

δρ S(ρ) = 0. (G.9)

Let us now derive the actual form of S(ρ) by considering the four axioms mentioned
above.

G.2.0.1 Locality

This axiom declares that the values of ρ(ω) at various values of ω should indepen-
dently contribute to S(ρ) without any correlation. Therefore, one can conclude that
S(ρ) should be a local function of ρ(ω) and can written down as

S(ρ) =
∫

dωm(ω)φ(ρ(ω), ω), (G.10)

where m(ω) can be considered to be the integration measure and must be positive
definite. Furthermore, φ is an arbitrary function of ρ(ω) and ω, but cannot contain
any derivatives of ρ(ω), as they would lead to correlations between different values
of ω.

G.2.0.2 Coordinate Invariance

The axiom of coordinate invariance demands that S(ρ) does not depend on what sort
of coordinates one uses for the function ρ(ω). In other words, S(ρ) should be invariant
under the coordinate transformation ω′ = ω′(ω). Now, using ρ(ω)dω = ρ′(ω′)dω′
and m(ω)dω = m′(ω′)dω′, one can understand that the right hand side of Eq. (G.10)
can only be invariant if the function ρ(ω) appears in φ divided by m(ω), because of
the relation ρ(ω)/m(ω) = ρ′(ω′)/m′(ω′). Hence, we can express Eq. (G.10) as

S(ρ) =
∫

dωm(ω)φ(ρ(ω)/m(ω)). (G.11)



186 Appendix G: Derivation of the Shannon-Jaynes Entropy

G.2.0.3 System Independence

This axiom states that in case of a function ρc(ω1, ω2) having two independent
variables ω1 and ω2, this function can be written as a product of two functions:
ρc(ω1, ω2) = ρ1(ω1)ρ2(ω2). Moreover, the corresponding integration measure can
be divided in the same way: mc(ω1, ω2) = m1(ω1)m2(ω2). A further consequence
of the axiom is that the variance of S(ρc) w.r.t. ρc(ω1, ω2) is given as

δS(ρc)

δρc(ω1, ω2)
= α(ω1) + β(ω2), (G.12)

where α(ω1) and β(ω2) are functions related to the variance of S(ρc) w.r.t. ρ1(ω1)

and ρ2(ω2), respectively.
Now, using the form for S(ρc) that we have obtained in Eq. (G.11), we can write

down S(ρc) as

S(ρc) =
∫

dω1

∫
dω2mc(ω1, ω2)φ(ρc(ω1, ω2)/mc(ω1, ω2)), (G.13)

which gives

δS(ρc)

δρc(ω1, ω2)
= dφ

d Z

∣∣∣
Z=ρc(ω1,ω2)/mc(ω1,ω2)

≡ σ(Z = ρc(ω1, ω2)/mc(ω1, ω2)).

(G.14)
Next, we act with ∂2/∂ω1∂ω2 on the right hand sides of both Eqs. (G.12) and (G.14).
As these should be equal, we are lead to the following equation for σ(Z):

Z
d2σ(Z)

d Z2 + dσ(Z)

d Z
= 0. (G.15)

The above equation can be easily solved, giving σ(Z) = c1 log(Z)+c2, from which
we finally get the functional form of φ(Z) as

φ(Z) = c1 Z log(Z) + (c2 − c1)Z + c3, (G.16)

where c1, c2 and c3 are integration constants that are not yet determined at the current
stage. Substituting the result of Eq. (G.16) into Eq. (G.11), S( f ) can now be given as

S(ρ) =
∫

dω
[
c1ρ(ω) log

(
ρ(ω)

m(ω)

)
+ (c2 − c1)ρ(ω) + c3m(ω)

]
. (G.17)

Using this equation, we get δ2/δρ2S(ρ) = c1/ρ and thus observe that the sign of
c1 completely determines the curvature of S(ρ), as ρ is a positive definite function.
Therefore, in order for S(ρ) to be bounded from above, one has to chose c1 to be
negative.
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G.2.0.4 Scaling

According to this axiom, in case of no additional information available on ρ(ω) (for
instance, from the likelihood function of Eq. (4.4)), the most probable form of ρ(ω)

should be equal to the integration measure m(ω). Thus the maximum of S(ρ) should
be at ρ(ω) = m(ω).

The maximum of S(ρ) of Eq. (G.17) can be obtained from the solution of δS(ρ)
δρ

=
0, which gives

ρ(ω) = m(ω)e−c2/c1 . (G.18)

From this result, we can immediately conclude that for satisfying the scaling axiom,
we need to set c2 = 0. Thus, the form of S(ρ) is now

S(ρ) = −c1

∫
dω

[
ρ(ω) − ρ(ω) log

(
ρ(ω)

m(ω)

)
− c3

c1
m(ω)

]
. (G.19)

As a last task, we still have to determine c1 and c3. Considering first c3, we see from
the above equation that the term proportional to this constant does not depend on ρ(ω)

and is therefore not of much relevance in the present discussion. In order for S(ρ)

to vanish when ρ(ω) equals m(ω), one usually chooses c3 = c1 for convenience. As
for c1, we have already mentioned above that it should have a negative value. As can
be observed from Eq. (G.19), its magnitude just becomes an overall normalization
factor in front of the integral over ω, which can be arbitrarily chosen. Usually, one
takes c1 = −1 for simplicity. We thus are lead to

S(ρ) =
∫

dω

[
ρ(ω) − m(ω) − ρ(ω) log

(
ρ(ω)

m(ω)

)]
, (G.20)

which is indeed the Shannon-Jaynes entropy of Eq. (4.7).

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_4


Appendix H
Uniqueness of the Maximum of P[ρ|GH]

It is important for the MEM procedure that there is only one solution for ρ(ω),
which maximizes the conditional probability P[ρ|GH]. We will proof in this short
appendix, that the solution is indeed unique if it exists, following the discussion given
in Asakawa et al. (2001).

For proofing the uniqueness of the solution for ρ(ω), we first have to show the
correctness of the following mathematical statement:

Given a real and smooth function F(x1, x2, . . . , xn) with real variables (x1, x2, . . . , xn) ∈
Rn, for which the matrix ∂2 F/∂xi ∂x j is negative definite, the solution of the equations
∂ F/∂xi = 0 is unique if it exists.

Note here that the negative definiteness of ∂ F/∂xi∂x j can be denoted as

n∑
i, j=1

yi
∂2 F

∂xi∂x j
y j < 0 (∀yi ∈ R/{0}). (H.1)

For showing the above statement, we assume that there are two solutions for
∂ F/∂xi = 0, x1 and x2, and define x(t) ≡ x1 + t (x2 − x1) and G(t) ≡ F(x(t)).
From these definitions, we can immediately see that dG(t)/dt satisfies

dG(t)

dt

∣∣∣∣
t=0

= dG(t)

dt

∣∣∣∣
t=1

= 0. (H.2)

Now, from the smoothness of F , the function G(t) must be continuous and differ-
entiable. We can therefore use Rolle’s theorem, which states that between t = 0 and
t = 1, there must be at least one t which satisfies

d2G(t)

dt2 =
n∑

i, j=1

yi
∂2 F

∂xi∂x j

∣∣∣∣
x=x(t)

y j = 0, (H.3)
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which leads to a contradiction with Eq. (H.1). Therefore, the solution of ∂ F/∂xi = 0
must be unique if it exists.

Thus, all we have to do for proofing the uniqueness of the solution for ρ(ω), is
to show that Q(ρ) of Eq. (4.9) satisfies the condition analog to Eq. (H.1). Using the
(discretized forms of) the likelihood function and the prior probability of Eqs. (4.4)
and (4.7), we can derive

Nω∑
i, j=1

yi
∂2 Q

∂ρi∂ρ j
y j = − α

Δω

Nω∑
i=1

y2
i

ρi
− Δx

xmax − xmin

Nx∑
j=1

Nω∑
i=1

[
K (x j , ρi )yi

]2

σ 2(x j )
. (H.4)

Here, ρi represents the discretized data points of ρ(ω): ρi ≡ ρ(ωi )Δω, with
Δω ≡ ωmax−ωmin

Nω
and ωi ≡ i

Nω
(ωmax − ωmin) + ωmin. Similarly, x j stands for

x j ≡ j
Nx

(xmax − xmin) + xmin and Δx for Δx ≡ xmax−xmin
Nx

. While the second term
in principle can become 0 for certain values of y, the first term is always negative
because of 0 < α and 0 ≤ ρi . Therefore, we can conclude that

Nω∑
i, j=1

yi
∂2 Q

∂ρi∂ρ j
y j < 0 (∀yi ∈ R/{0}), (H.5)

which, together with the statement shown above, proofs the uniqueness of the max-
imum of P[ρ|GH] if it exists.
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