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Preface 

This book is intended to be an introduction to the theory of thermo-fluid 
dynamics of two-phase flow for graduate students, scientists and practicing 
engineers seriously involved in the subject.  It can be used as a text book at 
the graduate level courses focused on the two-phase flow in Nuclear 
Engineering, Mechanical Engineering and Chemical Engineering, as well as 
a basic reference book for two-phase flow formulations for researchers and 
engineers involved in solving multiphase flow problems in various 
technological fields. 

The principles of single-phase flow fluid dynamics and heat transfer are 
relatively well understood, however two-phase flow thermo-fluid dynamics 
is an order of magnitude more complicated subject than that of the single-
phase flow due to the existence of moving and deformable interface and its 
interactions with the two phases.  However, in view of the practical 
importance of two-phase flow in various modern engineering technologies 
related to nuclear energy, chemical engineering processes and advanced heat 
transfer systems, significant efforts have been made in recent years to 
develop accurate general two-phase formulations, mechanistic models for 
interfacial transfer and interfacial structures, and computational methods to 
solve these predictive models. 

A strong emphasis has been put on the rational approach to the derivation 
of the two-phase flow formulations which represent the fundamental 
physical principles such as the conservations laws and constitutive modeling 
for various transfer mechanisms both in bulk fluids and at interface.  Several 
models such as the local instant formulation based on the single-phase flow 
model with explicit treatment of interface and the macroscopic continuum 
formulations based on various averaging methods are presented and 
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discussed in detail.  The macroscopic formulations are presented in terms of 
the two-fluid model and drift-flux model which are two of the most accurate 
and useful formulations for practical engineering problems. 

The change of the interfacial structures in two-phase flow is dynamically 
modeled through the interfacial area transport equation.  This is a new 
approach which can replace the static and inaccurate approach based on the 
flow regime transition criteria.  The interfacial momentum transfer models 
are discussed in great detail, because for most two-phase flow, thermo-fluid 
dynamics are dominated by the interfacial structures and interfacial 
momentum transfer.  Some other necessary constitutive relations such as the 
turbulence modeling, transient forces and lift forces are also discussed. 

 
 

Mamoru Ishii, Ph.D. 
School of Nuclear Engineering 

Purdue University 
West Lafayette, IN, USA 

 
Takashi Hibiki, Ph.D. 

School of Nuclear Engineering 
Purdue University 

West Lafayette, IN, USA 
 

August 2010 



 

Foreword 

Thermo-Fluid Dynamics of Two-Phase Flow takes a major step forward 
in our quest for understanding fluids as they metamorphose through change 
of phase, properties and structure.  Like Janus, the mythical Roman God 
with two faces, fluids separating into liquid and gas, each state sufficiently 
understood on its own, present a major challenge to the most astute and 
insightful scientific minds when it comes to deciphering their dynamic 
entanglement.  

The challenge stems in part from the vastness of scale where two phase 
phenomena can be encountered.  Between the microscopic nano-scale of 
molecular dynamics and deeply submerged modeling assumptions and the 
macro-scale of measurements, there is a meso-scale as broad as it is 
nebulous and elusive.  This is the scale where everything is in a permanent 
state of exchange, a Heraclitean state of flux, where nothing ever stays the 
same and where knowledge can only be achieved by firmly grasping the 
underlying principles of things.  

The subject matter has sprung from the authors’ own firm grasp of 
fundamentals.  Their bibliographical contributions on two-phase principles 
reflect a scientific tradition that considers theory and experiment a duality as 
fundamental as that of appearance and reality.  In this it differs from other 
topical works in the science of fluids.  For example, the leading notion that 
runs through two-phase flow is that of interfacial velocity.  It is a concept 
that requires, amongst other things, continuous improvements in both 
modeling and measurement.  In the meso-scale, this gives rise to new science 
of the interface which, besides the complexity of its problems and the 
fuzziness of its structure, affords ample scope for the creation of elegant, 
parsimonious formulations, as well as promising engineering applications.  
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The two-phase flow theoretical discourse and experimental inquiry are 
closely linked.  The synthesis that arises from this connection generates 
immense technological potential for measurements informing and validating 
dynamic models and conversely.  The resulting technology finds growing 
utility in a broad spectrum of applications, ranging from next generation 
nuclear machinery and space engines to pharmaceutical manufacturing, food 
technology, energy and environmental remediation. 

This is an intriguing subject and its proper understanding calls for 
exercising the rigorous tools of advanced mathematics.  The authors, with 
enormous care and intellectual affection for the subject reach out and invite 
an inclusive audience of scientists, engineers, technologists, professors and 
students. 

It is a great privilege to include the Thermo-Fluid Dynamics of Two-
Phase Flow in the series Smart Energy Systems: Nanowatts to Terawatts.  
This is work that will stand the test of time for its scientific value as well as 
its elegance and aesthetic character.   
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