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Preface 

This book is a revised and greatly expanded version of our book Elements of 
Number Theory published in 1972. As with the first book the primary audience 
we envisage consists of upper level undergraduate mathematics majors and 
graduate students. We have assumed some familiarity with the material in a 
standard undergraduate course in abstract algebra. A large portion of 
Chapters 1-11 can be read even without such background with the aid of a 
small amount of supplementary reading. The later chapters assume some 
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with 
the theory of complex variables is necessary. 

Number theory is an ancient subject and its content is vast. Any intro
ductory book must, of necessity, make a very limited selection from the 
fascinat ing array of possible topics. Our focus is on topics which point in the 
direction of algebraic number theory and arithmetic algebraic geometry. By a 
careful selection of subject matter we have found it possible to exposit some 
rather advanced material without requiring very much in the way oftechnical 
background. Most of this material is classical in the sense that is was dis
covered during the nineteenth century and earlier, but it is also modern 
because it is intimately related to important research going on at the present 
time. 

In Chapters 1-5 we discuss prime numbers, unique factorization, arith
metic functions, congruences, and the law of quadratic reciprocity. Very little 
is demanded in the way of background. Nevertheless it is remarkable how a 
modicum of group and ring theory introduces unexpected order into the 
subject. For example, many scattered results turn out to be parts ofthe answer 
to a natural question: What is the structure of the group of units in the ring 
Z/nZ? 

v 
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Reciprocity laws constitute a major theme in the later chapters. The law 
of quadratic reciprocity, beautiful in it self, is the first of a series of reciprocity 
laws which lead ultimately to the Artin reciprocity law, one of the major 
achievements of algebraic number theory. We travel along the road beyond 
quadratic reciprocity by formulating and proving the laws of cubic and 
biquadratic reciprocity. In preparation for this many of the techniques of 
algebraic number theory are introduced; algebraic numbers and algebraic 
integers, finite fields, splitting of primes, etc. Another important tool in this 
investigat ion (and in others!) is the theory of Gauss and Jacobi sums. This 
material is covered in Chapters 6-9. Later in the book we formulate and prove 
the more advanced partial generalizat ion of these results, the Eisenstein 
reciprocity law. 

A second major theme is that of diophantine equations, at first over finite 
fields and later over the rational numbers. The discussion of polynomial 
equations over finite fields is begun in Chapters 8 and 10 and culminates in 
Chapter 11 with an exposition of a portion ofthe paper "Number ofsolutions 
of equations over finite fields" by A. Weil. This paper, published in 1948, has 
been very inftuential in the recent development of both algebraic geometry 
and number theory. In Chapters 17 and 18 we consider diophantine equations 
over the rational numbers. Chapter 17 covers many standard topics from 
sums of squares to Fermat's Last Theorem. However, because of material 
developed earlier we are able to treat a number of these topics from a novel 
point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif
fers from the earlier chapters in that it is primarily an overview with many 
definitions and statements of results but few proofs. Nevertheless, by con
centrating on some important special cases we hope to convey to the re ader 
something ofthe beauty ofthe accomplishments in this are a where much work 
is being done and many mysteries remain. 

The third, and final, major theme is that of zeta functions. In Chapter 11 we 
discuss the congruence zeta function associated to varieties defined over finite 
fields. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet 
L-functions. In Chapter 18 we discuss the zeta function associated to an 
algebraic curve defined over the rational numbers and Hecke L-functions. 
Zeta functions compress a large amount of arithmetic information into a 
single function and make possible the application ofthe powerful methods of 
analysis to number theory. 

Throughout the book we place considera bIe emphasis on the history of 
our subject. In the notes at the end of each chapter we give a brief historical 
sketch and provide references to the literature. The bibliography is extensive 
containing many items both classical and modern. Our aim has been to 
provide the reader with a wealth of material for further study. 

There are many exercises, some routine, some challenging. Some of the 
exercises supplement the text by providing a step by step guide through the 
proofs of important results. In the later chapters a number of exercises have 
been adapted from results which have appeared in the recent literature. We 
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hope that working through the exercises will be a source of enjoyment as well 
as instruction. 

In the writing of this book we have been helped immensely by the interest 
and assistance of many mathematical friends and acquaintances. We thank 
them all. In particular we would like to thank Henry Pohlmann who insisted 
we follow certain themes to their logical conclusion, David Goss for allowing 
us to incorporate some of his work into Chapter 16, and Oisin McGuiness 
for his invaluable assistance in the preparation of Chapter 18. We would 
like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira, 
for their patience and expertise in typing large portions of the manuscript. 
Finally, the second author wishes to express his gratitude to the Vaughn 
Foundation Fund for financial support during his sabbatical year in 
Berkeley, California (1979/80). 

July 25, 1981 Kenneth Ireland 
Michael Rosen 
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