(8)

W.D. Wallis

A Beginner's Guide to Graph Theory

W.D. Wallis
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901
U.S.A.

Library of Congress Cataloging-in-Publication Data

Wallis, W.D.
A beginner's guide to graph theory / W.D. Wallis.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-4757-3136-1 ISBN 978-1-4757-3134-7 (eBook)

DOI 10.1007/978-1-4757-3134-7

1. Graph Theory. I. Title.

QA166.W314 2000
511'.5-dc21 00-031172 CIP

Math Subject Classifications 2000: 05-01, 05Cxx

Printed on acid-free paper
©2000 Springer Science+Business Media New York
Originally published by Birkhäuser Boston in 2000

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC.
except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 978-1-4757-3136-1 SPIN 10758558

Typeset by the author in IATEX.
Cover design by Jeff Cosloy, Newton, MA.

987654321
for Denise and Carolyn

Preface

Because of its wide applicability, graph theory is one of the fast-growing areas of modern mathematics. Graphs arise as mathematical models in areas as diverse as management science, chemistry, resource planning, and computing. Moreover, the theory of graphs provides a spectrum of methods of proof and is a good training ground for pure mathematics. Thus, many colleges and universities provide a first course in graph theory that is intended primarily for mathematics majors but accessible to other students at the senior level. This text is intended for such a course.
I have presented this course many times. Over the years classes have included mainly mathematics and computer science majors, but there have been several engineers and occasional psychologists as well. Often undergraduate and graduate students are in the same class. Many instructors will no doubt find themselves with similar mixed groups.
It is to be expected that anyone enrolling in a senior level mathematics course will be comfortable with mathematical ideas and notation. In particular, I assume the reader is familiar with the basic concepts of set theory, has seen mathematical induction, and has a passing acquaintance with matrices and algebra. However, one cannot assume that the students in a first graph theory course will have a good knowledge of any specific advanced area. My reaction to this is to avoid too many specific prerequisites. The main requirement, namely a little mathematical maturity, may have been acquired in a variety of ways.

My students' reasons for studying graph theory have also been mixed. Some have seen graph theory as an area of pure mathematics to be studied for its own sake, others as an adjunct to such mathematical studies as combinatorics, algebra, or functional analysis, and others as an applied area. Even within a single area of
application, there are diverse reasons: one electrical engineer, for example, may use graph theory to study circuits, while another may see it as a foundation for neural networks. Taking this into account, I have concentrated on the topics that appeal to the majority of users, and generally I have omitted those with a smaller readership. I hope that I have attained a balance between the theoretical and practical approaches. I have included several more specialized chapters dealing with material that students seem to enjoy, and (frankly) ones that I like to teach. Instructors can supplement the selection with other topics to meet their specific needs.

Outline of the topics

The first four chapters introduce the main ideas of graph theory and conclude with a short discussion of the minimal spanning tree problem. The idea is to introduce graph-theoretic reasoning along with an easy algorithm.
The fifth chapter deals with the application of vector space ideas to graphs. This is one of three specialized excursions, and could be omitted or deferred; in particular, anyone who has not seen a formal linear algebra course (including at least the general definition of a vector space) should probably skip this chapter. But I have found that students with an algebraic background often like this material, and if it is to be included at all, this is then probably the best place for it.

Chapter 6 explores another special topic, one-factorizations of graphs. All students should read the first section, and most will enjoy the second. The rest is a little specialized, but introduces some good examples of graph-theoretic reasoning.
There follows an exposition of coloring and planarity. A discussion of edgecoloring is included, and should particularly interest those who read all of Chapter 6. Ramsey's Theorem is studied in Chapter 9; the first section is of broad interest, while the general treatment given later will especially appeal to those with a wider combinatorial background. The later parts of this chapter are quite difficult.
Chapter 10 introduces directed graphs. The two following chapters are devoted to two important application areas that will appeal to students of management science, namely critical paths and network flows. Students who do not know a little statistical theory - enough to use the normal distribution, and to look up values in a table of the normal probability function - should skip Section 11.3.

A chapter on graph-theoretic algorithms concludes the book. I believe that computer scientists will see more than enough of these topics in other courses, and that graph algorithms are more appropriately studied among other algorithms, not among other aspects of graphs. Moreover, a proper study of algorithms would require some study of computational complexity, which would probably not interest the majority of readers. So my treatment here is intentionally short and quite superficial, but should satisfy the needs of those who are not likely to revisit the topic.

I thought of including several further topics of pure graph theory - covering theorems, line graphs, general problems on cycles, various extremal problems

- but rejected them because of their specialized appeal; three specialized topics (graphs and linear spaces, one-factorizations, Ramsey theory) should be enough, and these are my preferences anyway. A pure-mathematically minded instructor could easily replace Chapters 11 through 13 with other appropriate topics; of course, her/his interpretation of what is "appropriate" could certainly be different from mine. Excellent sources of such material are the texts by West $[106]^{1}$ and Balakrishnan [4], introductions to the subject that go much deeper than we do here. An instructor who prefers a more applied course will find a rich fund of further material; some references are [19], [20] and [84].

Further reading

I have made frequent reference to the papers where results first appeared, and to the research literature in general. Those who want to go further into a topic can consult the papers cited. For general reading, the student may wish to consult one of the more advanced volumes on graph theory, such as [4] and [106]. Volumes of surveys of specific topics include three volumes edited by Beineke and Wilson $[7,8,9]$ and two edited by Fulkerson [42, 43]. One very readable book is Tutte's Connectivity in Graphs [97], now 35 years old but still an excellent research resource. Yap's collection [109] of short monographs on three topics of graph theory includes an excellent introduction to edge-coloring. Haynes, Hedetneimi and Slater [60] have recently written a first-class introduction to a current hot topic, domination theory. The reader interested in graph matchings and factorization may wish to consult [71] or [104]. References to applications include [19], [20] and [84]. Biggs, Lloyd and Wilson provide a good deal of historical information, and some classical papers in [11].

The exercises

I have tried to include a reasonable number of problems, but not so many that the student becomes overwhelmed. They range from the easy to the difficult. In a few cases, hints are included, and there are answers and solutions to selected exercises. A hint is indicated by H preceding the exercise number, while A announces an answer or solution.

Acknowledgments

This book has grown out of graph theory courses that I have taught at the University of Newcastle and Southern Illinois University over the past 30 years. A number of students have made comments and contributions; I hope they will forgive me if I do not mention them by name, but if I tried to do so, I would surely (unintentionally) omit some.

[^0]My friend and colleague Roger Eggleton used a draft version of the text for a course at Illinois State University. He made a large number of intelligent and informed comments and corrections, including the discovery of at least two instances where a widely-published, accepted "proof" was in need of amendment. I am very grateful to him and his students for their assistance.
Finally, the book would not exist without the support of George Anastassiou, of the University of Memphis, who recommended it to the publisher, and of Birkhäuser's Ann Kostant, who suggested the title, and Tom Grasso. Thank you all.

Contents

Preface vii
List of Figures xv
1 Graphs 1
1.1 Sets, Binary Relations and Graphs 1
1.2 Some Definitions 4
1.3 Degree 11
2 Walks, Paths and Cycles 15
2.1 Basic Ideas 15
2.2 Weights and Shortest Paths 19
2.3 Euler Walks 23
2.4 Hamilton Cycles 26
2.5 The Traveling Salesman Problem 31
3 Cuts and Connectivity 35
3.1 Cutpoints and Bridges 35
3.2 Blocks 37
3.3 Connectivity 40
4 Trees 43
4.1 Characterizations of Trees 43
4.2 Spanning Trees 46
4.3 Minimal Spanning Trees 51
5 Linear Spaces Associated with Graphs 55
5.1 Finite Fields and Vector Spaces 55
5.2 The Power Set as a Vector Space 56
5.3 The Vector Spaces Associated with a Graph 58
5.4 The Cutset Subspace 60
5.5 Bases and Spanning Trees 63
6 Factorizations 69
6.1 One-Factorizations 69
6.2 Tournament Applications of One-Factorizations 75
6.3 A General Existence Theorem 77
6.4 Graphs Without One-Factors 81
7 Graph Colorings 85
7.1 Vertex Colorings 85
7.2 Brooks' Theorem 89
7.3 Counting Vertex Colorings 91
7.4 Edge-Colorings 96
7.5 Class 2 Graphs 99
8 Planarity 105
8.1 Representations and Crossings 105
8.2 Euler's Formula 108
8.3 Maps, Graphs and Planarity 111
9 Ramsey Theory 115
9.1 The Graphical Case of Ramsey's Theorem 115
9.2 Ramsey Multiplicity 120
9.3 Application of Sum-Free Sets 123
9.4 Bounds on Classical Ramsey Numbers 125
9.5 The General Case of Ramsey's Theorem 129
10 Digraphs 131
10.1 Basic Ideas 131
10.2 Orientations and Tournaments 135
10.3 Directed Euler Walks 139
11 Critical Paths 143
11.1 Activity Digraphs 143
11.2 Critical Path Analysis 146
11.3 Critical Paths Under Uncertainty 153
12 Flows in Networks 159
12.1 Transportation Networks and Flows 159
12.2 Maximal Flows 165
12.3 The Max Flow Min Cut Theorem 171
12.4 The Max Flow Min Cut Algorithm 173
12.5 Supply and Demand Problems 179
13 Computational Considerations 185
13.1 Computation Time 185
13.2 Data Structures 188
13.3 Some Graph Algorithms 190
13.4 Intractability 194
References 197
Hints 205
Answers and Solutions 207
ndex 225

List of Figures

1.1 Diagrams of binary relations 2
1.2 Graphical representation of a road network 3
1.3 Three representations of K_{4} 5
1.4 Adding and deleting edges 6
1.5 A graph and its clique graph 8
$1.6 \quad K_{4,3}$ 8
1.7 The cartesian product of two graphs 9
1.8 Constructing a graph with given degrees 13
$2.1 \quad P_{4}$ and C_{5} 17
2.2 Find all paths from s to t 17
2.3 Petersen graph 18
2.4 Find the path of minimum weight from s to t 21
2.5 Graphs for Exercise 2.2.2 22
2.6 Graphs for Exercise 2.2.3 22
2.7 Königsberg bridges 23
2.8 A multigraph representing the Königsberg bridges 24
2.9 Which of these graphs contain Euler walks? 26
2.10 Which of these graphs contain Euler walks? 26
2.11 A graph with no Hamilton cycle 28
2.12 Steps in proving there is no Hamilton cycle 29
2.13 A bipartite graph with no Hamilton cycle 29
2.14 Graphs for Exercise 2.4.1 30
2.15 Graphs for Exercise 2.4.2 30
2.16 Traveling Salesman problem example 32
2.17 Graphs for Exercise 2.5.2 33
2.18 Graphs for Exercise 2.5.3 33
2.19 Graphs for Exercises 2.5.4 and 2.5.5 34
3.1 Find all cutsets in these graphs 36
3.2 Find all cutsets in these graphs 37
3.3 Proof that (i) \Rightarrow (ii) in Theorem 3.3 38
3.4 Proof that (ii) \Rightarrow (iii) in Theorem 3.3 39
3.5 A graph G with $\kappa(G)=1, \kappa^{\prime}(G)=2, \delta(G)=3$ 41
3.6 Find the connectivity and edge-connectivity 42
3.7 Find the connectivity and edge-connectivity 42
4.1 Three trees 43
4.2 Multigraphs whose trees are to be counted 46
4.3 The multigraphs used in counting trees 47
4.4 Counting trees 48
4.5 Count the spanning trees 49
4.6 Count the spanning trees 50
4.7 An example of Prim's algorithm 52
4.8 Find the minimal spanning trees 53
4.9 Find the minimal spanning trees 54
5.1 A graph G 58
5.2 Subgraphs of G 59
5.3 Addition of subgraphs 59
$5.4\left\{A_{1}+A_{2}, B_{1}+A_{2}\right\}$ is a partition 61
5.5 Proof of Theorem 5.2 62
5.6 Cycle and cutset spaces are not disjoint 63
5.7 More cycle and cutset subspaces 64
5.8 A graph, and a spanning tree 64
5.9 Forming a basis for the cycle subspace 64
5.10 Forming a basis for the cutset space 65
6.1 Find the one-factors and one-factorizations 69
6.2 N, the smallest cubic graph without a one-factor 70
6.3 M, the smallest cubic graph without a one-factorization 71
6.4 The factor F_{0} in $\mathcal{G} \mathcal{K}_{2 n}$ 72
6.5 Graph for Exercise 6.1.3 74
6.6 Graphs for Exercise 6.1.5 74
6.7 Graphs for Exercise 6.1.6 74
6.8 A subgraph arising in the proof of Theorem 6.6 78
6.9 Two cases needed in Theorem 6.6 78
7.1 A graph with chromatic number 3 87
7.2 What are the chromatic numbers of these graphs? 88
7.3 Graphs with the same chromatic polynomial 95
7.4 Find the chromatic polynomials of these graphs 96
7.5 A 3-edge-critical graph 104
8.1 Two representations of K_{4} 105
8.2 Which of these graphs are planar? 107
8.3 Different faces in different representations 108
8.4 Graphs with bridges 109
8.5 Find v, e and f and verify Euler's formula 111
8.6 The map and graph of mainland Australia 112
8.7 A neighborhood used in the 5-color proof 113
8.8 A neighborhood in Kempe's proof 114
Decomposition of K_{8} proving $R(3,4) \geq 9$ 117
! \quad Proving $R\left(K_{3}, C_{4}\right)<8$ 118
10.1 A typical digraph 132
10.2 Digraphs for analysis in Exercise 10.1.1 134
10.3 Digraphs for analysis in Exercise 10.1.2 134
10.4 Tournaments for Exercises 10.2.4 and 10.2.8 138
10.5 Tournaments for Exercise 10.2.9 139
10.6 A generalized switch 140
10.7 Directed multigraph corresponding to a generalized switch 141
11.1 Illustration of precedence relations 143
11.2 Digraph for the barn example 144
11.3 Activity network example 147
11.4 Activity network with earliest start and finish times 147
11.5 Network for door painting 149
11.6 Find all critical paths 152
11.7 Digraph for the example 154
11.8 Digraph for the example with earliest and latest times 155
12.1 Network for the oil pipeline problem. 160
12.2 Augmented network for the oil pipeline problem 161
12.3 An example of a flow 162
12.4 Network N for Exercise 12.1.1 163
12.5 Networks for Exercise 12.1.4 164
12.6 Network for Exercise 12.1.5. 164
12.7 Networks for Exercise 12.1.6 165
12.8 Restrictions on the maximum flow. 165
12.9 A network with a flow 167
12.10 Maximal flows in the network of Figure 12.9 167
12.11 Network with flows for Exercise 12.2.3 169
12.12 Networks with flows for Exercise 12.2.4 170
12.13 Networks with flows for Exercise 12.2.5 171
12.14 Networks with flows for Exercise 12.2.6 171
12.15 Augmenting a flow 174
12.16 Example network: the maximal flow is to be found 175
12.17 The Labeling Algorithm 175
12.18 Augmented flow for the example 177
12.19 Finding the minimal cut 178
12.20 A traffic flow problem 178
12.21 For Exercise 12.4.5: find the maximal flow. 178
12.22 For Exercise 12.4.6: find the maximal flow. 179
12.23 Figures for the example 182
12.24 Network for Exercise 12.5.2 183
12.25 The network for Exercise 12.5.3. Can supply meet demand? 183
12.26 Matrices and network for Exercise 12.5.4 184
13.1 Pseudocode for Dijkstra's algorithm 190
13.2 Pseudocode for the all paths algorithm. 191
13.3 Pseudocode for depth-first search 192

[^0]: ${ }^{1}$ Citations refer to the References section at the back of the book.

