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Preface 

Because of its wide applicability, graph theory is one of the fast-growing areas 
of modern mathematics. Graphs arise as mathematical models in areas as diverse 
as management science, chemistry, resource planning, and computing. Moreover, 
the theory of graphs provides a spectrum of methods of proof and is a good train
ing ground for pure mathematics. Thus, many colleges and universities provide 
a first course in graph theory that is intended primarily for mathematics majors 
but accessible to other students at the senior Ievel. This text is intended for such a 
course. 

I have presented this course many times. Over the years classes have included 
mainly mathematics and computer science majors, but there have been several 
engineers and occasional psychologists as weil. Often undergraduate and graduate 
students are in the same dass. Many instructors will no doubt find themselves with 
similar mixed groups. 

lt is to be expected that anyone enrolling in a senior Ievel mathematics course 
will be comfortable with mathematical ideas and notation. In particular, I assume 
the reader is familiar with the basic concepts of set theory, has seen mathematical 
induction, and has a passing acquaintance with matrices and algebra. However, 
one cannot assume that the students in a first graph theory course will have a 
good knowledge of any specific advanced area. My reaction to this is to avoid too 
many specific prerequisites. The main requirement, namely a little mathematical 
maturity, may have been acquired in a variety of ways. 

My students' reasons for studying graph theory have also been mixed. Some 
have seen graph theory as an area of pure mathematics to be studied for its own 
sake, others as an adjunct to such mathematical sturlies as combinatorics, algebra, 
or functional analysis, and others as an applied area. Even within a single area of 
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application, there are diverse reasons: one electrical engineer, for example, may 
use graph theory to study circuits, while another may see it as a foundation for 
neural networks. Taking this into account, I have concentrated on the topics that 
appeal to the majority of users, and generally I have omitted those with a smaller 
readership. I hope that I have attained a balance between the theoretical and prac
tical approaches. I have included several more specialized chapters dealing with 
material that students seem to enjoy, and (frankly) ones that I like to teach. In
structors can supplement the selection with other topics to meet their specific 
needs. 

Outline of the topics 

The first four chapters introduce the main ideas of graph theory and conclude with 
a short discussion of the minimal spanning tree problem. The idea is to introduce 
graph-theoretic reasoning along with an easy algorithm. 

The fifth chapter deals with the application of vector space ideas to graphs. This 
is one of three specialized excursions, and could be omitted or deferred; in par
ticular, anyone who has not seen a formallinear algebra course (including at least 
the general definition of a vector space) should probably skip this chapter. But 
I have found that students with an algebraic background often like this material, 
and if it is to be included at all, this is then probably the best place for it. 

Chapter 6 explores another special topic, one-factorizations of graphs. All stu
dents should read the first section, and most will enjoy the second. The rest is a 
little specialized, but introduces some good examples of graph-theoretic reason
ing. 

There follows an exposition of coloring and planarity. A discussion of edge
coloring is included, and should particularly interest those who read all of Chapter 
6. Ramsey's Theorem is studied in Chapter 9; the first section is of broad interest, 
while the general treatment given later will especially appeal to those with a wider 
combinatorial background. The later parts of this chapter are quite difficult. 

Chapter 10 introduces directed graphs. The two following chapters are devoted 
to two important application areas that will appeal to students of management 
science, namely critical paths and network flows. Students who do not know a 
little statistical theory - enough to use the normal distribution, and to Iook up 
values in a table of the normal probability function- should skip Section 11.3. 

A chapter on graph-theoretic algorithms concludes the book. I believe that com
puter scientists will see more than enough of these topics in other courses, and 
that graph algorithms are more appropriately studied among other algorithms, not 
among other aspects of graphs. Moreover, a proper study of algorithms would re
quire some study of computational complexity, which would probably not interest 
the majority of readers. So my treatment hete is intentionally short and quite su
perficial, but should satisfy the needs of those who are not likely to revisit the 
topic. 

I thought of including several further topics of pure graph theory - covering 
theorems, line graphs, general problems on cycles, various extremal problems 
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- but rejected them because of their specialized appeal; three specialized topics 
(graphs and linear spaces, one-factorizations, Ramsey theory) should be enough, 
and these are my preferences anyway. A pure-mathematically minded instructor 
could easily replace Chapters 11 through 13 with other appropriate topics; of 
course, her/his interpretation of what is "appropriate" could certainly be different 
from mine. Excellent sources of such material are the texts by West [106]1 and 
Balakrishnan [4], introductions to the subject that go much deeper than we do 
here. An instructor who prefers a more applied course will find a rieb fund of 
further material; some references are [19], [20] and [84]. 

Further reading 

I have made frequent reference to the papers where results first appeared, and to 
the research Iiterature in general. Those who want to go further into a topic can 
consult the papers cited. For generat reading, the student may wish to consult one 
of the more advanced volumes on graph theory, such as [4] and [106]. Volumes 
of surveys of specific topics include three volumes edited by Beineke and Wil
son [7, 8, 9) and two edited by Fulkerson [42, 43). One very readable book is 
Tutte's Connectivity in Graphs [97], now 35 years old but still an excellent re
search resource. Yap's collection [109] of short monographs on three topics of 
graph theory includes an excellent introduction to edge-coloring. Haynes, Hedet
neimi and Slater [60) have recently written a first-class introduction to a current 
bot topic, domination theory. The reader interested in graph matchings and fac
torization may wish to consult [71] or [104]. References to applications include 
[19), [20) and [84]. Biggs, Lloyd and Wilson provide a good deal of historical 
information, and some classical papers in [11 ]. 

The exercises 

I have tried to include a reasonable number of problems, but not so many that the 
student becomes overwhelmed. They range from the easy to the difficult. In a few 
cases, hints are included, and there are answers and solutions to selected exercises. 
A hint is indicated by H preceding the exercise number, while A announces an 
answer or solution. 
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