Advertisement

pp 1-16|Cite as

Molecular-Level Targets for the Development of Therapies Against Coronavirus Diseases

Protocol
Part of theMethods in Pharmacology and Toxicologybook series

Abstract

As research continues into the SARS-CoV-2 infection process, many viral and human proteins and other biomolecules have been identified as potential drug targets for treating this and other coronavirus infections. The most therapeutically promising of these include: (1) proteins involved in SARS-CoV-2 entry into host cells, such as the viral spike (S) protein, the human angiotensin-converting enzyme 2 (ACE2), and human proteases needed to cleave the S protein in preparation for cell membrane fusion; (2) nucleic acid–related enzymes involved in viral RNA replication such as the viral RNA-dependent RNA polymerase (RdRp) and helicase; (3) viral proteases 3-Chymotrypsin-like protease (3CLPro) and Papain-like protease (PLpro), which autocatalytically cleave the polyprotein translated from viral RNA; and (4) other intracellular human proteins the virus uses for replication and extracellular proteins the virus regulates to cause inflammation, blood coagulation and other problems associated with infection. In this chapter, we discuss these promising target proteins in terms of their structure, function, and possible chemical or biological modulators.

Key words

Coronavirus SARS-CoV-2 COVID-19 RdRp 3CLpro Plpro

References

  1. 1.
    Gordon DE, Jang GM, Boudaddou M et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816):459–468.https://doi.org/10.1038/s41586-020-2286-9 CrossRefGoogle Scholar
  2. 2.
    Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 9(1):221–236.https://doi.org/10.1080/22221751.2020.1719902 CrossRefGoogle Scholar
  3. 3.
    Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature.https://doi.org/10.1038/s41586-020-2601-5
  4. 4.
    Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412.https://doi.org/10.1126/science.abb3405 CrossRefGoogle Scholar
  5. 5.
    Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkin S (2020) Potential therapeutic agents and associated bioassay data for COVID-19 and related human coronavirus infections. ACS Pharmacol Transl Sci 3:813.https://doi.org/10.1021/acsptsci.0c00074 CrossRefGoogle Scholar
  6. 6.
    Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R (2020) A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cell 9(5):1267.https://doi.org/10.3390/cells9051267 CrossRefGoogle Scholar
  7. 7.
    Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492):779–782.https://doi.org/10.1126/science.abb7498 CrossRefGoogle Scholar
  8. 8.
    Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10:2342.https://doi.org/10.1038/s41467-019-10280-3 CrossRefGoogle Scholar
  9. 9.
    Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, Snijder EJ, Canard B, Imbert I (2014) One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Natl Acad Sci U S A 111(37):E3900–E3909.https://doi.org/10.1073/pnas.1323705111 CrossRefGoogle Scholar
  10. 10.
    te Velthuis AJW (2014) Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 71:4403–4420.https://doi.org/10.1007/s00018-014-1695-z CrossRefGoogle Scholar
  11. 11.
    Elfiky AA (2020) Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci 253:117592.https://doi.org/10.1016/j.lfs.2020.117592 CrossRefGoogle Scholar
  12. 12.
    Jockusch S, Tao C, Li X, Anderson TK, Chien M, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J (2020) A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses causing SARS and COVID-19. Antiviral Res 180:104857.https://doi.org/10.1016/j.antiviral.2020.104857 CrossRefGoogle Scholar
  13. 13.
    U.S. Food & Drug Administration. Fact sheet for health care providers Emergency Use Authorization (EUA) of remdesivir (GS-5734).https://www.fda.gov/media/137566/download
  14. 14.
    Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 295(15):4773–4779.https://doi.org/10.1074/jbc.AC120.013056 CrossRefGoogle Scholar
  15. 15.
    Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368(6497):1331–1335.https://doi.org/10.1126/science.abb4489 CrossRefGoogle Scholar
  16. 16.
    Zhang L, Lin D, Sun X, Rox K, Hilgenfeld R (2020) X-ray structure of main protease of the novel coronavirus SARS-CoV-2 enables design of α-ketoamide inhibitors. BioRxiv.https://doi.org/10.1101/2020.02.17.952879
  17. 17.
    Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH (2016) An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem 59(14):6595–6628.https://doi.org/10.1021/acs.jmedchem.5b01461 CrossRefGoogle Scholar
  18. 18.
    Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300(5626):1763–1767.https://doi.org/10.1126/science.1085658 CrossRefGoogle Scholar
  19. 19.
    Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao Z (2003) The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100(23):13190–13195.https://doi.org/10.1073/pnas.1835675100 CrossRefGoogle Scholar
  20. 20.
    Chang GG (2010) Quaternary structure of the SARS coronavirus main protease. In: Lal S (ed) Molecular biology of the SARS-coronavirus. Spring, Berlin.https://doi.org/10.1007/978-3-642-03683-5_8 CrossRefGoogle Scholar
  21. 21.
    Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM, Rota PA, Baker SC (2004) Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78(24):13600–13612.https://doi.org/10.1128/JVI.78.24.13600-13612.2004 CrossRefGoogle Scholar
  22. 22.
    Lim KP, Ng LFP, Liu DX (2000) Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74(4):1674–1685.https://doi.org/10.1128/JVI.74.4.1674-1685.2000 CrossRefGoogle Scholar
  23. 23.
    Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J Virol 83(13):6689–6705.https://doi.org/10.1128/JVI.02220-08 CrossRefGoogle Scholar
  24. 24.
    Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CTK, Baker SC, Li K (2007) Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282(44):32208–32221.https://doi.org/10.1074/jbc.M704870200 CrossRefGoogle Scholar
  25. 25.
    Bailey-Elkin BA, Knaap RCM, Johnson GG, Dalebout TJ, Ninaber DK, van Kasteren PB, Bredenbeek PJ, Snijder EJ, Kikkert M, Mark BL (2014) Crystal structure of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J Biol Chem 289(50):34667–34682.https://doi.org/10.1074/jbc.M114.609644 CrossRefGoogle Scholar
  26. 26.
    Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, Hogan RJ, Tripp RA, Pegan SD (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6(8):2099–2109.https://doi.org/10.1021/acsinfecdis.0c00168 CrossRefGoogle Scholar
  27. 27.
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263.https://doi.org/10.1126/science.abb2507 CrossRefGoogle Scholar
  28. 28.
    Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41:1141–1149.https://doi.org/10.1038/s41401-020-0485-4 CrossRefGoogle Scholar
  29. 29.
    Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17(7):765–767.https://doi.org/10.1038/s41423-020-0374-2 CrossRefGoogle Scholar
  30. 30.
    王Q,张Y,吴L,妞妞年代,歌曲C、Z,陆G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181(4):894–904.e9.https://doi.org/10.1016/j.cell.2020.03.045 CrossRefGoogle Scholar
  31. 31.
    Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, Wang Q, Du L, Tan W, Wilson IA, Jiang S, Yang B, Lu L (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 5(4):eaav4580.https://doi.org/10.1126/sciadv.aav4580 CrossRefGoogle Scholar
  32. 32.
    Lu G, Wang Q, Gao GF (2015) Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 23(8):468–478.https://doi.org/10.1016/j.tim.2015.06.003 CrossRefGoogle Scholar
  33. 33.
    Toelzer C,古普塔K, Yadav SKN et al(2020)免费足总tty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science 370:725.https://doi.org/10.1126/science.abd3255 CrossRefGoogle Scholar
  34. 34.
    Xia S, Xu W, Wang Q, Wang C, Hua C, Li W, Lu L, Jiang S (2018) Peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein HR1 and HR2 domains. Int J Mol Sci 19(2):487/1–487/15.https://doi.org/10.3390/ijms19020487 CrossRefGoogle Scholar
  35. 35.
    Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, Jiang S (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363(9413):938–947.https://doi.org/10.1016/S0140-6736(04)15788-7 CrossRefGoogle Scholar
  36. 36.
    Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, Nabavi SM (2020) Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Arch Med Res 51:733.https://doi.org/10.1016/j.arcmed.2020.05.024 CrossRefGoogle Scholar
  37. 37.
    Jang KJ, Jeong S, Kang DY, Sp N, Yang YM, Kim DE (2020) A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Sci Rep 10(1):4481.https://doi.org/10.1038/s41598-020-61432-1 CrossRefGoogle Scholar
  38. 38.
    Borgio摩根富林明,Alsuwat HS,艾尔Otaibi WM,易卜拉欣,Almandil NB, Al Asoom LI, Salahuddin M, Kamaraj B, AbdulAzeez S (2020) State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2. Arch Med Sci 16(3):508–518.https://doi.org/10.5114/aoms.2020.94567 CrossRefGoogle Scholar
  39. 39.
    Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50.https://doi.org/10.1146/annurev.biochem.76.052305.115300 CrossRefGoogle Scholar
  40. 40.
    Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z (2019) Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 47(12):6538–6550.https://doi.org/10.1093/nar/gkz409 CrossRefGoogle Scholar
  41. 41.
    Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JSM, Poon LLM, Kung HF, Huang JD (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278(41):39578–39582.https://doi.org/10.1074/jbc.C300328200 CrossRefGoogle Scholar
  42. 42.
    Adedeji AO, Marchand B, te Velthuis AJW, Snijder EJ, Weiss S, Eoff RL, Singh K, Sarafianos SG (2012) Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One 7(5):e36521.https://doi.org/10.1371/journal.pone.0036521 CrossRefGoogle Scholar
  43. 43.
    Betz UAK, Fischer R, Kleymann G, Hendrix M, Rubsamen-Waigmann H (2002) Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57-1293. Antimicrob Agents Chemother 46(6):1766–1772.https://doi.org/10.1128/Aac.46.6.1766-1772.2002 CrossRefGoogle Scholar
  44. 44.
    Kwong AD, Rao BG, Jeang KT (2005) Viral and cellular RNA helicases as antiviral targets. Nat Rev Drug Discov 4:845–853.https://doi.org/10.1038/nrd1853 CrossRefGoogle Scholar
  45. 45.
    Jang KJ, Lee NR, Yeo WS, Jeong YJ, Kim DE (2008) Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem Biophys Res Commun 366(3):738–744.https://doi.org/10.1016/j.bbrc.2007.12.020 CrossRefGoogle Scholar
  46. 46.
    ng KL, Lin YP, Lu LY, He ML, He ML, Kung HF, Kesel AJ, Huang JD (2005) The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 12(3):303–311.https://doi.org/10.1016/j.chembiol.2005.01.006 CrossRefGoogle Scholar
  47. 47.
    Lee C, Lee JM, Lee NR, Jin BS, Jang KJ, Kim DE, Jeong YJ, Chong Y (2009) Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg Med Chem Lett 19(6):1636–1638.https://doi.org/10.1016/j.bmcl.2009.02.010 CrossRefGoogle Scholar
  48. 48.
    Lee JM, Cho JB, Ahn HC, Jung W, Jeong YJ (2017) A novel chemical compound for inhibition of SARS coronavirus helicase. J Microbiol Biotechnol 27(11):2070–2073.https://doi.org/10.4014/jmb.1707.07073 CrossRefGoogle Scholar
  49. 49.
    Cho JB, Lee JM, Ahn HC, Jeong YJ (2015) Identification of a novel small molecule inhibitor against SARS coronavirus helicase. J Microbiol Biotechnol 25(12):2007–2010.https://doi.org/10.4014/jmb.1507.07078 CrossRefGoogle Scholar
  50. 50.
    Mirza MU, Froeyen M (2020) Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 10(4):320–328.https://doi.org/10.1016/j.jpha.2020.04.008 CrossRefGoogle Scholar
  51. 51.
    Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY (2020) Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 126(10):1456–1474.https://doi.org/10.1161/CIRCRESAHA.120.317015 CrossRefGoogle Scholar
  52. 52.
    Guo J, Huang Z, Lin L, Lv J (2020) Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc 9(7):e016219.https://doi.org/10.1161/jaha.120.016219 CrossRefGoogle Scholar
  53. 53.
    Khan A, Benthin C, Zeno B et al (2017) A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 21(1):234.https://doi.org/10.1186/s13054-017-1823-x CrossRefGoogle Scholar
  54. 54.
    Monteil V, Kwon H, Prado P, Hagelkruys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(4):905–913.e7.https://doi.org/10.1016/j.cell.2020.04.004 CrossRefGoogle Scholar
  55. 55.
    Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178:104792.https://doi.org/10.1016/j.antiviral.2020.104792 CrossRefGoogle Scholar
  56. 56.
    Hoffmann M, Kleine-Weber H, Pohlman S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 4(21):779–784.https://doi.org/10.1016/j.molcel.2020.04.022 CrossRefGoogle Scholar
  57. 57.
    Li F (2016) Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3:237–261.https://doi.org/10.1146/annurev-virology-110615-042301 CrossRefGoogle Scholar
  58. 58.
    Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23(6):101212.https://doi.org/10.1016/j.isci.2020.101212 CrossRefGoogle Scholar
  59. 59.
    Izaguirre G (2019) The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses 11(9):837.https://doi.org/10.3390/v11090837 CrossRefGoogle Scholar
  60. 60.
    Pasquato A, Ramos da Palma J, Galan C, Seidah NG, Kunz S (2013) Viral envelope glycoprotein processing by proprotein convertases. Antiviral Res 99(1):49–60.https://doi.org/10.1016/j.antiviral.2013.04.013 CrossRefGoogle Scholar
  61. 61.
    Seidah NG, Sadr MS, Chretien M, Mbikay M (2013) The multifaceted proprotein convertases: their unique, redundant, complementary and opposite functions. J Biol Chem 288(30):21473–21481.https://doi.org/10.1074/jbc.R113.481549 CrossRefGoogle Scholar
  62. 62.
    Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Boettcher-Friebertshaeuser E (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alli 3(9):e202000786.https://doi.org/10.26508/lsa.202000786 CrossRefGoogle Scholar
  63. 63.
    Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 176:104742.https://doi.org/10.1016/j.antiviral.2020.104742 CrossRefGoogle Scholar
  64. 64.
    Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W (2017) TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. Biochimie 142:1–10.https://doi.org/10.1016/j.biochi.2017.07.016 CrossRefGoogle Scholar
  65. 65.
    Bugge TH, Antalis TM, Wu Q (2009) Type II transmembrane serine proteases. J Biol Chem 284(35):23177–23181.https://doi.org/10.1074/jbc.R109.021006 CrossRefGoogle Scholar
  66. 66.
    Garten W, Braden C, Arendt A, Peitsch C, Baron J, Lu Y, Pawletko K, Hardes K, Steinmetzer T, Boettcher-Friebertshaeuser E (2015) Influenza virus activating host proteases: identification, localization and inhibitors as potential therapeutics. Eur J Cell Biol 94(7–9):375–383.https://doi.org/10.1016/j.ejcb.2015.05.013 CrossRefGoogle Scholar
  67. 67.
    Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80(19):9896–9898.https://doi.org/10.1128/JVI.01118-06 CrossRefGoogle Scholar
  68. 68.
    Baron J, Tarnow C, Mayoli-Nüssle D, Schilling E, Meyer D, Hammami M, Schwalm F, Steinmetzer T, Guan Y, Garten W, Klenk HD, Bottcher-Friebertshäuser E (2013) Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol 87(3):1811–1820.https://doi.org/10.1128/JVI.02320-12 CrossRefGoogle Scholar
  69. 69.
    Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106(14):5871–5876.https://doi.org/10.1073/pnas.0809524106 CrossRefGoogle Scholar
  70. 70.
    霍夫曼M, Kleine-Weber H,施罗德年代,克鲁格N,Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8.https://doi.org/10.1016/j.cell.2020.02.052 CrossRefGoogle Scholar
  71. 71.
    Zang R, Castro MFG, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S (2020) TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 5(47):eabc3582.https://doi.org/10.1126/sciimmunol.abc3582 CrossRefGoogle Scholar
  72. 72.
    Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620.https://doi.org/10.1038/s41467-020-15562-9 CrossRefGoogle Scholar
  73. 73.
    Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, Zhu Y, Wang Q, Lu L, Jiang S (2020) The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther 5(1):92.https://doi.org/10.1038/s41392-020-0184-0 CrossRefGoogle Scholar
  74. 74.
    Ulrich H, Pillat M (2020) CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep 16(3):434–440.https://doi.org/10.1007/s12015-020-09976-7 CrossRefGoogle Scholar
  75. 75.
    Cantuti-Castelvetri L, Ojha R,佩德罗LD et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. BioRxiv.https://doi.org/10.1101/2020.06.07.137802
  76. 76.
    Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M (2020) Cholesterol in relation to COVID-19: should we care about it? J Clin Med 9(6):1909.https://doi.org/10.3390/jcm9061909 CrossRefGoogle Scholar
  77. 77.
    Wei C, Wan L, Yan Q et al (2020) SARS-CoV-2 manipulates the SR-B1-mediated HDL uptake pathway for its entry. BioRxiv.https://doi.org/10.1101/2020.08.13.248872
  78. 78.
    Hadjadj J, Yatim N, Barnabei L et al (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504):718–724.https://doi.org/10.1126/science.abc6027 CrossRefGoogle Scholar
  79. 79.
    Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R (2020) The anti-viral facet of anti-rheumatic drugs: lessons from COVID-19. J Autoimmun 111:102468.https://doi.org/10.1016/j.jaut.2020.102468 CrossRefGoogle Scholar
  80. 80.
    Roche JA, Roche R (2020) A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J 34(6):7265–7269.https://doi.org/10.1096/fj.202000967 CrossRefGoogle Scholar
  81. 81.
    van de Veerdonk FL, Kouijer IJE, de Nooijer AH et al (2020) Outcomes associated with use of a kinin B2 receptor antagonist among patients with COVID-19. JAMA Netw Open 3(8):e2017708.https://doi.org/10.1001/jamanetworkopen.2020.17708 CrossRefGoogle Scholar
  82. 82.
    Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J (2020) Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 220:1–13.https://doi.org/10.1016/j.trsl.2020.04.007 CrossRefGoogle Scholar
  83. 83.
    Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS (2020) Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. MedRxiv.https://doi.org/10.1101/2020.04.09.20059626
  84. 84.
    McFadyen J, Stevens H, Peter K (2020) The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ Res 127(4):571–587.https://doi.org/10.1161/CIRCRESAHA.120.317447 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2021

Authors and Affiliations

  1. 1.CAS, a division of the American Chemical SocietyColumbusUSA

Personalised recommendations